
2786 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fast ACE (FACE): An Error-Bounded
Approximation of Automatic Color Equalization

Alice Plutino and Marco Tarini

Abstract— We present an efficient algorithm to approximate
the Automatic Color Equalization (ACE) of an input color image,
with an upper-bound on the introduced approximation error. The
computation is based on Summed Area Tables and a carefully
optimized partitioning of the plane into rectangular regions,
resulting in a pseudo-linear asymptotic complexity with the num-
ber of pixels (against a quadratic straightforward computation of
ACE). Our experimental evaluation confirms both the speedups
and high accuracy, reaching lower approximation errors than
existing approaches. We provide a publicly available reference
implementation of our algorithm.

Index Terms— Image processing, automatic color equalization
(ACE), contrast enhancement.

I. INTRODUCTION

AUTOMATIC Color Equalization (ACE) [1], [2] is a
well-known unsupervised image processing procedure,

which enhances globally and locally lightness and contrast
while resulting in visual color constancy, and optimizing the
quantization of the dynamic range. ACE is fairly widely used.
Since its introduction in 2002 [1], [2], [3], ACE has had
a great impact on several application domains. The recent
review [4] tracks over 80 published scientific articles report-
ing utilizing ACE in numerous application fields, including:
general-purpose image processing pipeline [5], [6], astropho-
tography [7], [8], cultural heritage [9], [10], [11], underwater
imaging [12], [13], tone mapping applications [14], machine
vision [15], medical imaging [16], [17]; it has also been used
to reproduce and explain visual illusions such as simultaneous
contrast [2]. The overall impact of ACE is also testified by
measures such as the citation count of the articles introducing
it [1], [2].1

Compared to other image filters, the appeal of ACE is that
its definition stems directly from the self-adjusting behavior of
the Human Visual System (HVS), as described in [18]. Among
other practical benefits, ACE uses a non-Bayesian approach
and is completely unsupervised and automatic, bypassing the
need for any reference image or information.

Manuscript received 22 June 2022; revised 30 January 2023;
accepted 21 April 2023. Date of publication 15 May 2023; date of current
version 19 May 2023. This work was supported in part by CORISAMIL
under Project VSP 170 7122-04C 120PB 27 182-016 and in part by NVIDIA.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Giacomo Boracchi. (Corresponding author:
Alice Plutino.)

The authors are with the Computer Science Department, Universita degli
Studi di Milano, 20133 Milan, Italy (e-mail: alice.plutino@unimi.it).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIP.2023.3270770, provided by the authors.

Digital Object Identifier 10.1109/TIP.2023.3270770
1To date, Scopus, https://www.scopus.com/ reports more than 400 com-

bined citations, and Google Scholar reports more than 600.

Unfortunately, from an algorithmic point of view, ACE
original algorithm is inherently work-intensive to compute,
making it unfeasible on large images. Its salient characteristic
is that the value of every output pixel depends on the entire
input image, leading to an O(N 2) complexity, with N the
number of pixels. The quadratic asymptotic complexity makes
a direct application of ACE unpractical, except for very low
resolution images. This probably hindered its further adoption
in additional scenarios and determined that many situations
where ACE has been adopted actually resorted to one approx-
imation or another, rather than the original definition. At
the same time, accurate approximations are difficult because,
in ACE, the combined effect of far-away pixels never vanishes
with their increasing distance (see Sec. III-B).

In this work, we present a new algorithm to rapidly
approximate ACE, based on Summed Area Tables (SAT). Our
approximation takes one user-defined parameter to let users
control the trade-off between computation time and accuracy.

Compared to existing approximations (see Sec. II-B), ours
offers key benefits:

• high accuracy: empirical evaluation (Sec. IX) shows that
RMSE below 1 (on an intensity pixel intensity scale in
0..255) can be easily reached in short times. To our
knowledge, no existing method can reliably offer an
RMSE below 5.

• error bounds: our approximation comes with an a priori
strict upper-bound for the discrepancy with the original
ACE, as a function of the user parameter (even if the a
posteriori validation shows this upper-bound to often be
overly conservative).

• arbitrary accuracy: additionally, the error upper-bound
can be set arbitrarily low, progressively forgoing the
speedup; in the limit, an upper-bound of 0 removes
completely the speedup, resulting in the original
quadratic complexity. In contrast, most existing approx-
imations have inherent, non-compressible, sources of
error.

II. RELATED WORK

A. Original ACE Algorithm

ACE is part of the Spatial Color Algorithms (SCAs) [18].
It was presented for the first time by Gatta et al. in 2002 [3],
and published by Rizzi et al. in 2003 [1]. ACE is derived
from the Retinex model [19], as other algorithms in this
family [2]. As such, it applies principles that are motivated
by the characteristics of the HVS reconstruction [20], [21].
Specifically, ACE focuses on the ability of the HVS to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6749-0783
https://orcid.org/0000-0003-2301-3173

PLUTINO AND TARINI: FAST ACE (FACE): AN ERROR-BOUNDED APPROXIMATION OF ACE 2787

reproduce color and lightness constancy, using a global (but
localized) approach [22]. See Sec. III for a recap of the original
algorithm.

B. Algorithms for Fast ACE Approximations

Since its initial proposal [1], the quadratic computational
cost of ACE was identified as a crucial practical obstacle. This
concern has led to the proposal of several countermeasures.
The original algorithm already suggests, as an approximation
technique, considering a subset of the image around a given
pixel. We will discuss in Sec. III-B why this approach is
inherently flawed, and leads to significant (and unbounded)
approximation errors.

A similar approximation has been proposed by Artusi et al.
in [23]. Here the authors propose a similar approach that
leverages Singular Value Decomposition (SVD) to create a
filtering mapping function before the application of ACE,
anyway, this leads to similar issues (see Sec. III-B).

Chambah et al. [24] propose two linear techniques, Local
Linear LUT (LLL) and PC2D (Principal Component analysis
2D mapping), for the enhancement of image sequences consid-
ering the spatial relationship between image areas. Similarly,
Gatta et al. in [25] propose the use of LLL (Local Linear Look-
up Table) to speed up the original ACE algorithm, keeping its
local filtering properties, while adding a limited amount of
chromatic noise. In those works, the idea is that ACE is fully
computed for only a subset of the image, and then color to
color piece-wise linear mapping is extracted from this subset
and applied to the rest of the image. While this achieves
considerable speedups, it sacrifices the strong dependency of
the enhancement on immediately neighboring pixels, causing
large approximation errors. It is also not clear if the introduced
error can be bounded. An empirical comparison offered in
Sec. IX, confirms these considerations.

In 2007 Bertalmío et al. [26] reduced the ACE complexity
to O(N log N) starting from the idea that the major cost of the
algorithm is in the computation of the contrast modification
function. This study was reported in [27], where a new model
named Kernel-Based Retinex (KBR) was proposed.

One of the most successful fast approximations of ACE,
based on fast-convolutions, was introduced by Getreuer [28]
and is the current go-to implementation of ACE. It was
adopted for applications ranging from traffic images [29],
underwater imaging [30], [31] and medical imaging [32],
among many others. This approach introduces several sources
of approximation error; the first one pertains to the treatment
of the image boundaries; to make the processing more “convo-
lution friendly”, the input image is considered as indefinitely
extended symmetrically beyond its original boundaries. This
modification departs, to some extent, from the HVS-inspired
principles that motivate the adoption of ACE. In practical
terms, the effect on the output image of this modification
is difficult to predict or bound; previous work neglect to
measure this effect, but our empirical experiments (Sec. IX-
C) reveal it to be significant, being around 5 RMSE (on a
scale of 255 intensity levels). Furthermore, this is an inherent
incompressible source of error that cannot be controlled or

reduced by, for example, the choice of a parameter. It should be
noted that the measured errors reported in [28] are computed
net of the effect of this initial modification, and only reflect
the effect of further approximations stacked on top of it
as the used “ground truth” is also affected by this initial
approximation; this was probably due to practical reasons,
as producing ground truths to compare against can absorb days
of computation (for a high-resolution image). This approach
is, however, extremely efficient, and [28] imposes processing
times that are significantly shorter than our owns, making it
still the best choice in many circumstances. Plots in Figure 10
summarize this trade-off.

C. GPU-Based Accelerations

A CUDA implementation of ACE for stereoscopic streams
was published by Gadia et al. in [33], and an evaluation of
gamut changes in the final image was presented by the authors.
Similarly, a further implementation of ACE algorithm through
FPGA using VHDL was proposed by Romero et al. [34].
Hardware-based implementations achieve constant speedups,
which can be of great practical significance, although they do
not affect the asymptotic cost. These efforts are orthogonal to
our proposal: our prototypical implementation of the proposed
algorithm has not been explicitly Hardware-accelerated (other
than what is automatically done by the MATLAB suite), and
we conjecture that it could similarly benefit from a comparable
engineerization process.

D. Per-Frame Enhancement for Video Processing

Among the motivations for accelerating ACE computation,
we aim at unlocking the possibility of using it as a filter
for videos and providing SCAs for movie restoration. In
2003, Chambah et al. [35] proposed the first such applica-
tion and this work opened a new direction for perceptual
color restoration. Films and the analog materials that need
to be conserved and restored have been subject, by now,
to considerable decay and aging. Furthermore, during cinema
history, different techniques of color reproduction have been
developed, using different film bases, materials, filters, and
instruments. As a consequence, a trustworthy and faithful
reference of the original colors and contrast is not available to
perform the restoration and enhancement of films [36]. With
their work, Chambah et al. proposed a new approach to film
color and contrast restoration, using the SCAs implementations
to recover the original appearance of old digitized films.

From this first application, SCAs have been used for frame
restoration [35], [37], [38] and as a kick-off technique in the
restoration workflow [39]. A recent analysis of image quality
in film restoration demonstrated the significant advantages
that unsupervised SCAs can provide to film restoration [40],
[41]. Despite the demonstrated advantages that ACE algorithm
would provide in this context, its execution time still limits
considerably its potential applicability.

III. ACE DEFINITION AND COMPUTATION

Here, we recap the original Automatic Color Equalization
(ACE) algorithm [1], using a formulation that is equivalent to

2788 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

the original one but eases the definition of our modification of
the algorithm later. Used notation is summarized in Table I.

ACE computation consists of two steps: the chro-
matic/spatial adjustment, and the dynamic tone reproduction.
Given an input rasterized gray-scale image I, the first stage
produces an enhanced image E. In RGB color images, this
computation is repeated for each color channel separately (red,
green, and blue).

For each pixel p in image I, its unnormalized ACE value
V[p] is defined as the summation, over all other pixels q, of the
intensity difference between the two pixels c(p, q), scaled by
the inverse of their Euclidean distance d(p, q):

V[p] =

∑
q∈I \ {p}

c(p, q)

d(p, q)
, (1)

The intensity difference c(p, q) is given by

c(p, q) = fσ (I[p] − I[q]) , (2)

where the non-linear amplification function fσ is defined as

fσ (x) =

−1 if σ x ≤ −1
σ x if − 1 < σ x < +1
+1 if σ x ≥ +1

(3)

(that is, fσ is a scaling by a factor σ followed by clamping in
the −1 to +1 interval). The value σ is the only parameter of
ACE, and acts as a way to tune the contrast [1]. While more
generic functions can be used in place of fσ , Equation (3) is
the most commonly adopted one. We employ this definition,
but our method can be easily extended to arbitrary functions.

Normalization: the normalized ACE value E[p] for pixel p,
in the interval [−1, +1], is then given by

E[p] =
V[p]

Vmax[p]
(4)

where Vmax[p] is the maximal value that can be assumed,
in absolute value, by V[p] for a pixel in position p (irrespective
of the content of the image), which is:

Vmax[p] =

∑
q∈I \ {p}

1
d(p, q)

(5)

Final Tone Mapping: the resulting enhanced image E is
mapped into the final output image. This is done maximizing
its dynamic range by re-normalizing the white at a global
level. Computationally, this is a much simpler process, and
it is linear with the number of pixels. The simplest method,
which we adopt in our examples, is to scale linearly the
range of values E (in each channel) into the range [0, 1].
As an alternative, orthogonal to our work, Gray World and
White Patch assumptions can be used, considering that the
final output colours may differ significantly depending on the
adopted scaling method [42], [43], [44].

A. Straightforward Computation of ACE

A straightforward approach to compute Equation (1) is to
iterate over each pixel p, and, for each pixel, iterate over all
the other pixels q (and likewise for Equation 5).

TABLE I
LIST OF SYMBOLS AND NOTATION USED IN THIS PAPER

This approach would be, as noted, quadratic with the
number of pixels, and thus extremely slow. For example,
in our experiments, a weakly parallelized implementation of
this approach took more than a day for every single three
channeled 1000 × 1000 image (see Table III).

B. Failure of Trivial Approximations of ACE

An immediate observation is that, when computing E[p],
the further an input pixel q is from pixel p, the less it
contributes to the final value. Therefore, a tempting time-
saving approximation is to neglect, in the inner loop over other
pixels q, all pixels further away than a given threshold distance
from p. This approach has been suggested in the literature,
including in the original definition of ACE [1].

At a closer scrutiny, however, the approximation resulting
from this class of approaches is excessively inaccurate. While
the individual contributions of pixels at any given distance
d diminishes linearly, their number increases linearly, so the
expected combined contribution of all pixels at distance d is
constant for every d (within the boundary of the image). Any
optimization that only considers a subset of the image around
a given pixel will introduce unbounded errors.

We conjecture that this intrinsic characteristic of ACE is
directly linked to its desirable characteristics. For example,
if the scaling of the distance were squared, substituting ||p−q||

with ||p − q||
2 in Equations (1) and (5), the combined effect

of all pixels at distance d would vanish with increasing d , but
[1] reports that the resulting filter downgrades, functionally,
to a simple local contrast enhancement filter.

IV. OVERVIEW OF FACE: FAST ACE COMPUTATION

Like in the straightforward application of the defini-
tion, our approximated algorithm processes each pixel of
the input image I, at position p, and produces the cor-
responding value E[p] of the output image (potentially,
in parallel).

PLUTINO AND TARINI: FAST ACE (FACE): AN ERROR-BOUNDED APPROXIMATION OF ACE 2789

Fig. 1. A graphical overview of the proposed FACE algorithm. Given an input image I sized m × n, we first precompute an optimized layout or rectangles
L , which partitions an area around a central pixel (red circle) into several rectangles of appropriate shapes and sizes. The layout L is constructed for a given
maximal tolerated error emax and image resolution. For each possible intensity value k (and for each channel), we pre-compute image fσ (I − k) (equation 3)
over the entire image channel and integrate it into a corresponding Summed Area Table Sk . At this point (main loop), the Layout L is “slid” over the image,
by positioning its central pixel over each pixel in position p of I ; for each pixel in p having intensity I[p], the combined contribution from all pixels inside
a rectangle of L is quickly computed, in constant time, by accessing Sk with k = I[p]. Summing this over all the rectangles of L , we get an approximation
of V[p] (Equation 1) for that pixel. The layout L is also used to compute, for every pixel, the maximal value of that pixel, that is, value Vmax (Equation 5).
The per-pixel division of these two images gives us the final image, which is then linearly mapped in the final output image, as normal.

Consider one pixel in position p. To quickly evaluate the
value E[p], we partition the rest of the input image, I \ {p},
into a set L of a certain number of disjoint integer rectangles
of various sizes L = {R0, R1, . . . }, with⋃

Ri ∈L

Ri = I \ {p} (6)

and

∀
Ri ,R j ∈L

Ri ∩ R j = ∅. (7)

We then rewrite the sum over all other q in I (Equation 1)
as the sum over all rectangles in L:

V[p] =

∑
Ri ∈L

∑
q∈Ri

c(p, q)

d(p, q)

 (8)

and similarly for Vmax[p] (Equation 5).
The combined contribution to V[p] from all pixels inside a

rectangular region Ri , which we denote as as C(p, R) is:

C(p, R)
1
=

∑
q∈R

c(p, q)

d(p, q)
(9)

leading to

V[p] =

∑
Ri ∈L

C(p, Ri). (10)

The core of our approximation technique is to quickly
approximate the values for C(p, Ri), in constant time (inde-
pendently from the size of the rectangle Ri), introducing only
a small, upper-bounded approximations. This process, based
on Summed Area Tables (SAT) [45], is detailed in Sec. V.
The consequence is that V[p] is evaluated using a number
of operations that is linear with the number of rectangles

in L , rather than the drastically larger number of original
pixels.

This process requires two pre-processing steps.
a) SAT creation (Sec. VI): we pre-compute a set of

Summed Area Tables for the given input image. One SAT
is created for each possible gray-scale value of a pixel (for
RGB images, this is repeated for each channel).

b) Layout creation (Sec. VIII): we produce an optimized
layout L of rectangles partitioning the region around the
processed pixel p. A single layout is created, and used for all
processed pixels, by sliding the layout over the image during
the processing (see Figure 2).

To construct L , we analyze the error introduced by any
considered rectangle R (Sec. VII), which depends on its size,
shape, and position. We derive maximal and expected errors
as closed functions of R, and use these estimations to keep
the total error under an user-defined upper-bound.

The overall resulting algorithm is summarized in Figure 1.

V. PER-RECTANGLE APPROXIMATED EVALUATION

At the core of our system, we approximate C(p, R) (Equa-
tion 9) as C̃(p, R), defined as follows:

C(p, R) =

∑
q∈R

c(p, q)

d(p, q)
≈

∑
q∈R

c(p, q)

davg(R)
= C̃(p, R) (11)

where davg(R) is defined as the average between the maximal
dmax and minimal dmin distances from any q ∈ R to p (see
Figure 3). The substitution of d(p, q) with davg(R) is central
in our approximation; we analyze its impact on accuracy is
in Sec. VII. The rationale is that, because davg(R) does not
depend on q, the value C̃(p, R) can be written as

C̃(p, R) =
1

davg(R)

∑
q∈R

c(p, q) (12)

2790 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 2. A toy example of the main loop, for a 10 × 7 input image I (green-hued pixels). The optimized layout L is slid over I , centering its central pixel
(red circle) over each pixel p of I ; this induces a different partition of I into rectangles, some of which can be partially or completely empty. For illustration,
four iterations are shown; the order of the processed pixels is arbitrary. The layout L is sized (2n − 1) × (2m − 1) = 19 × 10, so that it always covers the
entire image, including when centered in a corner (leftmost and rightmost iterations).

Fig. 3. Examples of minimal (dmin) and maximal (dmax) distances, for two
rectangles Ri and R j , defined as the distances from the central layout pixel
(red circle) to the nearest (blue cross) and the farthest pixel (green cross)
in R.

and, the summation can be quickly computed using SAT
tables, in constant time (Sec. VI).

VI. USING SUMMED AREA TABLES

A Summed Area Table (SAT) [45], sometimes referred to
as Integral Image, the is a well-known technique, in Computer
Graphics and Image Processing, to evaluate the sum of values
inside any axis-aligned sub-rectangle of an image, irrespective
of its size, in constant time.

Specifically, given a w × h grid of values, a SAT is a (w +

1)× (h +1) table of partial sums, each element S[i, j] storing
the sum of all original grid values at coordinates x, y, with
x < i and y < j .

The summed value for any rectangle R = [x0, x1)×[y0, y1)

(that is, R spans from x0 included to x1 excluded in the
horizontal direction, and from y0 included to y1 excluded in
the vertical direction) is then given by:

S(R)
1
= S[x1, y1] + S[x0, y0] − S[x1, y0] − S[x0, y1] (13)

In our case, we need the sum of contributions that are
defined, at every pixel in position q ∈ R, as c(p, q) (Equa-
tion 2), which depends not only on the pixel values inside
R but also on the value I[p] at the currently input processed
pixel p.

In a quantized image, however, any pixel value can only
assume one of M possible values, [v0 . . . vM−1]. For example,
with common 8-bit images, M = 256. For each of the M
possible values vi , we first precompute the image fσ (I−vi) (by
subtracting vi to the entire image and computing fσ to every
pixel), and then compute the corresponding SAT Si . We cache

all M separated SAT {S0 . . . SM−1}. For color images, this
process is repeated for each RGB channel.

Efficiency: SAT computation is only O(N) with the number
of pixels [45], and can be made very efficient, leveraging on
GPU parallelization techniques [46].

Consistency: Because we slide the layout L over the image
(Fig 2), some rectangles in L will be partially or completely
outside of image I . By simply clamping the boundary of the
rectangle R on the boundary of I in Equation 13, we obtain the
correct result for rectangles partially outside I , and (correctly)
zero for any rectangle completely outside I .

VII. A-PRIORI ESTIMATION OF APPROXIMATION ERROR

A. Maximal Error for a Rectangle

The approximation in Equation (11) introduces an error for
each pixel q in R defined as the discrepancy between the real
value of its contribution to C(p, R) and the approximation of
this value in C̃(p, R):

error(q) =

∣∣∣∣ c(p, q)

d(p, q)
−

c(p, q)

davg(R)

∣∣∣∣
= |c(p, q)| ·

|d(p, q) − davg|

d(p, q) · davg
. (14)

By the definition of ACE, we know that |c(p, q)| is
upper-bounded by 1 (Equations 2 and 3).

Because q is inside R, the value d(p, q) is in the interval
from dmin and dmax , and |d(p, q) − davg| is upper-bounded
by half the length of that interval. This leads to the following
upper-bound for the error introduced for pixel q:

error(q) ≤
dmax − dmin

2 · dmin · davg
. (15)

Therefore, the total error introduced by a given rectangle
R cannot be larger than the above quantity repeated for each
pixel inside R, and, in conclusion, is bound from above by

errormax (R) = area(R)
dmax − dmin

2 · dmin · davg
(16)

where area(R) is the number of pixels inside rectangle R.

PLUTINO AND TARINI: FAST ACE (FACE): AN ERROR-BOUNDED APPROXIMATION OF ACE 2791

B. Predicted Average Error for a Rectangle

The bound in Equation (16) assumes the worst-case sce-
nario, where the errors from each pixel inside the rectangle
R never cancel out. In reality, this is extremely unlikely to
occur: for the sign of the error to always match, each pixel in
R at a distance d > davg would need to be brighter than the
pixel in p, and each pixel at a distance d < davg would need
to be darker (or the vice-versa). If, for example, the entire
sub-image inside R is all uniformly brighter or darker than
the pixel in p, the error would cancel out almost completely.

It is impossible to estimate the expected amount of approx-
imation error generated for a rectangle R unless the proba-
bilistic distribution of pixel values is known. As a simplifying
assumption, we consider an ideal case where each pixel has
an equal and independent probability to be either overesti-
mated or underestimated by the approximation in Equation
(11), which is equivalent to postulating that the probability
for a pixel in q ∈ R to be brighter or darker than the
central pixel p is independent from q being closer or fur-
ther than davg from p. Under this assumption, the expected
averaged error, after Donsker’s invariance principle [47], is
predicted by

erroravg(R) =

√
area(R)

dmax − dmin

2 · dmin · davg
(17)

This estimation is still conservative because, among other
things, the distance of every pixel from p is assumed to
always be maximally discrepant from davg; still, it reflects
the expected cancellation of errors. We use this prediction
to inform the creation of optimal layouts (Sec. VIII); we
empirically validate this choice in Sec. IX-B.

C. Observations on the Error Estimation

A few considerations of practical importance stem from
the formulation of the maximal (Equation 16) and average
(Equation 17) error.

The (worst case) approximation error introduced by a
rectangle grows linearly with its area, but it also decreases
quadratically with its distance from the processed pixel p.
Therefore, in a layout where rectangle areas scale quadratically
with their distance from p, the error contributed by each rect-
angle can be expected to be similar. This is ideal, because each
rectangle imposes the same computational cost, regardless of
its dimension.

This consideration also suggests that FACE is scalable: as
the input resolution increases, the number of rectangles grows
slowly, as each additional rectangle can cover larger and larger
regions. Our empirical experiments confirm this expectation.

The error bound for a rectangle is also affected by its shape,
for the same area and distance. A wide and short rectangle
located straight above or below p will have a more favorable
error bound, compared to square-shaped one, because its
internal pixels will present a smaller variation of distance from
p (making dmax − dmin smaller); likewise, a rectangle straight
to the left or the right of p must be tall and thin in order to
minimize the error bound.

The error bound and the predicted error are always < + inf,
as davg ≥ dmin > 0, because the central point is never found

inside any rectangle. Also, any 1 × 1 rectangle has an error
bound and error prediction of 0, as dmax = dmin , and, in this
case, the approximated value is exact.

D. Global Error Estimation

To estimate, or bound, the total error, we just sum up all
estimations, or bounds, from every rectangle. Considering that,
at most, one-quarter of the area of the layout contributes to
the error, and the rest of it falls outside the image, a better
estimation is obtained by dividing by 4. Both the bound and
the estimation are still conservative, for the reasons discussed;
however, they serve well to inform the optimization of the
layout, as described in the next Section.

VIII. AUTOMATIC SYNTHESIS OF LAYOUTS

We construct a layout L consisting of a set of non-
overlapping rectangles, in a pre-processing phase. Our objec-
tive is to minimize the combined error bound while keeping the
number of rectangles in L low. Finding the optimum among all
possibilities would be unfeasible; instead, we employ a greedy
heuristic that produces a sufficiently good layout.

The m × n resolution of input image I is an input of this
procedure. The sought layout L must cover a rectangular area
sized (2m−1)×(2n−1) pixels so that when its central pixel is
positioned on any pixel of I , the entire image is still covered
by L (see Figure 2); the central pixel of that area must be
outside of all rectangles in L and all other pixels must belong
to exactly one rectangle in L .

We start with an initial procedurally-generated layout
(Sec. VIII-B), which covers the necessary areas using only
a few rectangles; then, we iteratively refine it (Sec. VIII-A),
by selecting and splitting one rectangle at a time.

A. Iterative Layout Refinement

At each iteration, we identify the rectangle Ri currently
contributing the largest total error, given by Equation (16),
split it into two sub-rectangles Ri0 and Ri1, and substitute Ri
in the layout with Ri0 and Ri1.

Splitting Procedure: given a chosen Ri , we evaluate up to
four potential ways to split it in two (see Figure 5): up to
two horizontal ones (unless Ri is already only 1 pixel tall),
and up to two vertical ones (unless Ri is already only 1 pixel
wide). For each direction, we split the rectangle in half; if
the extension of the rectangle is an odd number of pixels,
we consider two split positions, by rounding either up or down.
We pick whichever alternative results in the smallest combined
error of the two resulting rectangles Ri0 and Ri1, again using
Equation (16). Although many other potential splits could be
considered, in our greedy strategy we only evaluate these four,
for the sake of simplicity.

Stopping Condition: The rectangles are split until their
combined error falls below a user-prescribed maximal error
tolerance emax . As an alternative, the user can directly specify
a targeted number of rectangles kmax , and the resulting final
error bound is a function of kmax . Setting kmax serves as a
way to control the computation times, while obtaining the
best possible approximation within that budget. Vice-versa,

2792 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 4. Example of layouts automatically generated for an image of resolution
16 × 16. Left: two procedurally generated initial solutions; right: the result
of our iterative refinement, which targets 100 rectangles, and minimizes the
maximal error. If the refinement is initialized with the coarsest possible pattern
(top), the final result presents a less favorable error bound and predicted
average error; this is due to the preservation of the poorly positioned initial
lines (such as the blue dotted line). To avoid this issue, we initialize the layout
using a slightly denser procedurally generated solution (bottom).

Fig. 5. The four splits considered when Ri is a 5 × 7 rectangle.

setting emax is a way to control the quality of the results,
while striving to minimize the computation times to achieve
that quality. See Sec. IX for examples of used values.

Guiding Criterion: as a variant, instead of minimizing the
error upper-bound of Equation (16), we can choose to target
the minimization of the expected error in Equation (17),
trading off some guarantee on the maximal error for a lower
expected error. To do so, we simply employ the latter Equation,
in place of the former, to select the rectangle, to choose the
split, and to evaluate the stopping criteria. Figure 6 shows the
impact of this choice on the produced layouts.

The only difference between the two equations is in the
exponent of the area, which is 1 in Equation (16) and
0.5 in Equation (17), so we can generalize and use any
other exponent, to get intermediate solutions. Experimental

Fig. 6. Two different layouts were obtained for an image of resolution
150 × 100, targeting a fixed number of 100 rectangles, and optimized to
minimize the global error bound (left), or the predicted average error (right).
Optimizing for the predicted average error results in a comparatively denser
rectangles partition around the central pixel of the layout.

Fig. 7. Measurement of the maximum (blue line) and average (orange line)
error over all pixels obtained when using layouts constructed using different
Area Exponent values in the per-rectangle error estimation, averaged over all
reported in Table II. The lowest values are found for the Area Exponent value
0.5, corresponding to the adoption of erroravg (Equation 17) as the criterion
guiding the construction of the layout.

Fig. 8. Empirical evaluation of the scalability of FACE. Progressively
increasing the number of pixels in the input image, the number of rectangles
required in our layout to target the same expected error increases slowly (top),
resulting in an almost linear increase in total computational time (bottom).

results (see Figure 7) confirm the expectation that the lowest
average error is indeed obtained using the value 0.5, providing

PLUTINO AND TARINI: FAST ACE (FACE): AN ERROR-BOUNDED APPROXIMATION OF ACE 2793

Fig. 9. Example image (“Angel”) from the data-set [48] (see Table II). Top: the input image and original ACE enhancement. Second line: four approximations
of ACE: FACE, Gatta et al. [25], and polynomial and interpolation-based methods of Getreuer [28]. Bottom: the difference images versus ACE, color coded
with the Euclidean distance in the RGB space (1RG B), on a scale from 0 to 255.
.

empirical indirect support for our assumption on error distri-
bution. Unless otherwise specified, we use that value in our
experiments.

Results: the generated rectangle layouts (e.g., Figures 4,
bottom right and 6) automatically adhere to the considera-
tions on ideal sizes, positions, and shapes of the rectangles
(Sec. VII-C). For example, the sizes of the rectangles tend to
increase with their distance from the central p, and long and
thin rectangles tend to be constructed on the sides of p, while
tall and flat rectangles are generated above and below it.

Soundness: 1 × 1 rectangles are associated with 0 error,
meaning that they will never be elected for a split, and
also that the procedure always converges, as the total error
will eventually go below any user-requested positive maximal
error. If, hypothetically, a maximal error of 0 is requested,
all rectangles will be split until only 1 × 1 rectangles remain,
as any larger rectangle is associated with an error > 0. This
observation means that FACE is a real generalization of the
original ACE, and it naturally produces the exact same result
when a global error of zero is requested (but, in this case,
no benefit is offered in terms of performances).

B. Initial Layout Definition

We need an initial layout as a starting point for the iterative
refinement. This layout must be very coarse, to leave the
optimization procedure in control of the produced layout.
We use a simple procedurally generated layout, as follows.

The trivial solution with a single rectangle covering the
entire region is not valid, because we need the central pixel
to be outside any rectangle. The coarsest possible solutions
use 4 rectangles, such as the “gammadion” pattern depicted in
Figure 4, top-left. This pattern, however, it is not ideal for our
purposes because it features four axis-aligned lines emanating
from the central point and traversing the entire image. These
lines will be preserved by the refinement phase, hindering the
creation of ideally shaped rectangles (Figure 4, top).

As a better solution, we opt to construct the initial layout
by a sequence of “gammadion” concentric frames of doubling
size, as depicted in Figure 4, bottom left. Starting with 1,
we double the width of every subsequent frame, until the
prescribed layout size is covered. In the end, we trim the
rectangles in the outer layer to get the prescribed layout
dimension. While this initial pattern features a logarithmic
(rather than constant) number of rectangles, it avoids the
aforementioned problem, meaning that the final refined pattern
will present a smaller error bound for the same number of
rectangles (compare Figure 4, right sides).

IX. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To test our algorithm, we implemented a prototype using
MATLAB (provided as Additional Materials). Our implemen-
tation is optimized only in the sense that it exploits the built-in
parallelization mechanisms of that suite.

We test our method over 20 natural images taken from a
standard benchmark [48] (RGB images, 8 bits per channel).

2794 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

TABLE II
ANALYSIS OF FOUR IMAGES FROM THE DATA-SET [48] (SEE FIGURE 9) AT DIFFERENT RESOLUTIONS; SEE TABLE V IN THE ADDITIONAL MATERIAL

FOR THE REST OF THE DATASET. WE REPORT THE COMPUTATIONAL TIME OF THE ORIGINAL ACE AND FACE (PRE-PROCESSING TIME INCLUDE
COMPUTATION OF LAYOUT AND THE SATs). WE ALSO REPORT THE (MAXIMAL AND AVERAGE) ERRORS AS PREDICTED BY OUR METHOD

(SEE SEC VII), AND THE ACTUAL (MAXIMAL AND AVERAGE) ERRORS AS MEASURED IN THE OUTPUTS, BOTH AS RAW RGB
DISCREPANCIES (IN A SCALE FROM 0 TO 255), AND USING RMSE AND 1E00 MEASURES [50]

TABLE III
COMPARISON BETWEEN THE ORIGINAL ACE ALGORITHM, AND FOUR DIFFERENT ALGORITHMS TO APPROXIMATE IT: FACE (OURS), [25], [28]

POLYNOMIAL AND [28] INTERPOLATION. THE AVERAGE ERROR AND THE STANDARD DEVIATION IN THE IMAGES HAVE BEEN COMPUTED AS
EUCLIDEAN DISTANCE IN RGB SPACE, USING THE RMSE (ROOT-MEAN-SQUARE ERROR) AND 1E00, AGAINST A GROUND TRUTH ACE

IMPLEMENTATION. FOR A FAIR COMPARISON, THE PARAMETERS OF COMPETING METHODS HAVE BEEN SELECTED TO RESULT IN
THE LOWEST ERROR. SEE TABLE VI IN THE ADDITIONAL MATERIAL FOR THE INDIVIDUAL MEASURES FOR EACH IMAGE

Although intended for a different context (Non Photo Realistic
images), it is a good fit for our experiment because it is
designed to feature a wide range of visual characteristics,
in terms of detail size, texture variation, visual clutter, con-
trasts, lighting, gradients, etc.

We run our all experiments on consumer hardware (Intel-R
Core i7-7700 CPU 3.60 GHz, 16GB RAM). We always used
5 as the value of the slope parameter σ (Equation 3).

To measure the produced error, we compare it against
a ground truth, which we computed using the brute-force
quadratic approach. This computation is, as expected,
extremely slow and takes more than one full day for one
high resolution image, on the same hardware setup. The
used implementation is also available in the provided code
and the resulting images are available in the multimedia
materials.

A. Time and Error Evaluation
In one experiment, we run our approximated FACE imple-

mentation on images at various resolutions, and measure
timings and distances with the ground truth. In this setup,
we use layouts targeting a fixed number of 100 rectangles
and the minimization of the average error. Processing times
and measured errors for different images and resolutions are
reported in Table II; examples of resulting images are shown in
Figures 9, 11, 13 and in Figure 13, in the Additional Materials;
all images, including Ground Truths, are attached as additional
multimedia materials; spatial error distributions are shown in
Figure 9, bottom.

A qualitative, visual evaluation indicates that FACE repro-
duces images that are indistinguishable from ACE, on a
wide variety of natural images. Additional visual experiments,
specifically targeting boundary cases and challenging inputs,

PLUTINO AND TARINI: FAST ACE (FACE): AN ERROR-BOUNDED APPROXIMATION OF ACE 2795

Fig. 10. Scatter plots of time (seconds, horizontal axis) versus error (RMSE, vertical axis), obtained with various ACE approximations methods, including
our own (red dots). Both axes are logarithmic. Each symbol corresponds to a test performed over four images from the database [48], which have been
re-scaled to different widths (100, 200, 300, 500 and 1000 pixels). For completeness, we also mark, on the horizontal axis, the timings obtained with our
straightforward implementation of the original ACE method (having an error 0 by definition, their vertical position is at minus infinite).

reveals that FACE perfectly reproduces desirable behaviours
of the original ACE algorithm with images featuring bordering
light and dark regions, avoiding halo effects (Figure 12), and
color casts (Figure 13).

Quantitative error measurements confirm this, reporting
very low errormax and erroravg (the maximum and average
difference) and Root-Mean-Square Error (RMSE) in RGB
space.

We also attempt a quantitative estimation of the percep-
tual difference, although produced images are not necessarily
intended for direct human consumption (e.g., ACE is used in
Machine Visions applications such as [6], [49]). Table III
reports the average DeltaE00 [50] between the original ACE
algorithm and four different algorithms which approximate it.
The average DeltaE00 [50] between the original ACE and
FACE is 0.414 ± 0.056 (1 is often considered a plausible
discernibly threshold), the average SSIM value [51] is 0.999±

0.0004 (on 1), the PSNR is 49.897 ± 1.403, and the average
value of HDR-VDP 3.0.6 Quality Correlation measure [52] is
9.999±0.0008 on 10 (see Table VII in the Additional Materials
for the individual measures for each image). These results
strongly suggest that FACE consistently produces images that
are, in most contexts, indistinguishable from ACE.

In Table II, timings go from sub-second for low-resolution
images, to sub-minute for high-resolution images. This is,
as expected, orders of magnitudes faster than a direct imple-
mentation of the original ACE, which is also reported. The
table also report the time spent on each sub-phase. Despite
being only linear with the number of pixels, SAT con-
struction dominates the computation times. As noted, SAT
construction is known to be amenable to GPU specialized
speedups, indicating that the performances of our algorithm
can potentially be further improved in a more engineered
implementation.

2796 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

TABLE IV
COMPUTATIONAL TIMES OF FACE ON VIDEO SEQUENCES. THE DIGI-

TIZED SUPER8 FILMS ARE THE SAME ANALYZED IN [41], AND THE
DIGITAL VIDEOS ARE TAKEN FROM PEXELS STOCK [53]

B. Comparing Actual Vs. Predicted Error

Table II also reports data empirically validating our pre-
dicted a priori error upper-bounds and estimations: the mea-
sured error is always lower than its bounds and, as expected,
predictions are strongly conservative. An additional sequence
of experiments, reported in Figure 7, serves as an empirical
validation of the assumptions we use to estimate the expected
average error (Sec. VII-B), and as an analysis of the actual
effect on an error of the parameter which is supposed to
control it. As we report, the average error is indeed minimized
when the layout is constructed by estimating the per-rectangle
average error using an area exponent of 0.5, that is, using
Equation (17).

C. Comparison With Competing Methods

In a third set of experiments, we compare FACE against
the existing State-of-the-Art approximations of ACE Gatta
et al. [25] and Getreuer [28] in terms of efficiency and accu-
racy. To this end, we use publicly available implementations
of competing methods offered by the respective authors. All
methods, and our own, are controlled by one parameter to
balance between error and speed: for our method, we use
the number of rectangles; the method presented in Gatta
et al. [25] uses “sub-sampling ratio;” Getreuer [28] comes in
two variants, which are assessed individually, each controlled
by one parameter: “polynomial degrees” and “interpolation
level.” We perform a large number of runs, assigning the
respective parameter to several values inside suggested ranges.

Results are plotted in Figure 9; timing and quantitative error
measures against the ground truth are reported, for the most
accurate choice of settings, in Table III. It is important to
remark that the error measures originally self-reported in [28]
(i.e., ”Ground Truth” used in Getreuer P. [28]) are measured
not against the original ACE algorithm, but against the best
possible approximation obtainable with that particular method
(an interpolation level of 256 in this case), for any parameter
choice (as discussed in II-B); the residual incompressible error,
which is also reported in Table III, is substantial.

The overall picture for this set of experiments emerges from
the time versus RMSE error scatter-plots shown, for images at
increasing resolutions, in Figure 10. The experiment evidences
that our method results in a discrepancy with the ground truth

Fig. 11. Frames of the films enhanced through FACE (see Table IV and
attached multimedia materials).

which is almost one full order of magnitude smaller than the
ones obtainable with any other method, even when they use the
settings favoring the best possible accuracy (and worst speed).
In other words, our method reaches an accuracy that currently
cannot be obtained with any existing method.

The most accurate competing method [28], using its most
expensive settings, results in an average value of DeltaE00 of
2.224±0.565, on average over the tested images. This suggests
that our method is the first one to approximate ACE with an
error that is below the threshold of visual discernibly.

The situation is reversed for computation times, which,
while still more than three orders of magnitude shorter than
exact, brute-force ACE computations, are almost one order of

PLUTINO AND TARINI: FAST ACE (FACE): AN ERROR-BOUNDED APPROXIMATION OF ACE 2797

Fig. 12. Results obtained by the original ACE and our FACE approximation over the same test images originally used in [54] to showcase the benefit
of ACE over images featuring bordering light and dark regions, while avoiding halo effects. Above: closeups, revealing the ability of our approximation to
exactly reproduce this characteristic.

Fig. 13. The results obtained by the original ACE and our FACE approximation over the same test image originally used in [54] to showcase the benefit of
ACE over images with color casts (Fig. 13) and noise. Above: closeups, revealing the ability of our approximation to exactly reproduce this characteristic.

magnitude slower than competing methods, or more when they
are used with settings favoring speed over accuracy.

In conclusion, being more accurate but also slower, our
method does not dominate, nor it is dominated, by any
competing method.

D. Application to Video Sequences

Lastly, we successfully test FACE over movies, which,
as mentioned, is one of the original motivations for our work
(in the context of video restoration). Table IV reports FACE
execution times on some digitized videos, and Figure 11
features a few individual frames. Both input and processed
movies are available in the attached multimedia materials.
Although FACE (and ACE) does not explicitly enforce any
form of frame-to-frame consistency, the results do not seem
to exhibit, at a preliminary analysis, any obvious artifact in
this sense; a more detailed investigation is required to confirm
this conclusion.

X. DISCUSSION AND CONCLUSION

The presented FACE algorithm is fully automatic and error
bounded. It is controlled with a single parameter, which
balances computation time and accuracy.

Experimental evaluations, qualitative and quantitative,
empirically confirm that FACE images are in practice indis-
tinguishable from ACE images, and are fit to replace them in
basically any context. At the same time, the speedup is drastic,
unlocking the practical possibility to adopt this beneficial
image enhancement technique in a wider range of scenarios.

Compared to existing ACE approximation strategies, the
proposed method is considerably more accurate, but also
slower, at least with the current implementation.

In conclusion, we think that our new approximation algo-
rithm can potentially unlock the use of Automatic Color
Equalization technique in several application contexts.

To help the reproduction of this work, and to foster further
research, we provide our prototype as a reference implemen-
tation of FACE (in the attached multimedia materials).

FACE for Video Processing: the achieved speedup makes it
possible to use ACE over every frame of a movie or video
sequence (see Fig. 11 and additional material). In our algo-
rithm, the optimized layout and the per-pixel normalization
factors can be computed, once and for all, for a given choice of
parameter and images resolution, and then used for all images
at that resolution. This makes our schema an even better fit,
for example, to process all frames of a movie (also, to a large
collection of pictures shot with the same camera). This is a
steppingstone to unlock the use of ACE to video processing,

2798 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

potentially improving over the current methodologies of color
movie restoration and color grading, by providing an automatic
enhancement to by colorists and restorers.

Future Works: several aspects of FACE can be improved,
for example, designing stricter error bounds, more conserva-
tive average error estimations, or better layout-construction
heuristics. More aggressive GPU-based optimizations can bet-
ter exploit the intrinsic parallelism. Finally, while our work
unlocks the possibility of a direct use of ACE over video
sequences, we still did not experiment with adapting it to
this scenario, for example, to take into account inter-frame
equalization.

Limitation: poor fit for HDR. The spatial and temporal com-
plexity of FACE, specifically the preparation and the storage
of the SAT, is linear with the number of distinct possible
intensity values. With high-dynamic-range (HDR) images, the
pre-processing time and storage become unfeasible, making
FACE unusable, for example, on 16-bit per channel images.
In these cases, FACE can be, naturally, applied after tone-
mapping. A potential modification to make FACE directly
applicable to HDR images is to compute and store SATs only
for a subset of the possible intensity values, and interpolate
linearly between them during the main loop; a problem with
this approach is that, due to the non-linearly of function fσ ,
it is unclear how to bound or predict the resulting error.

REFERENCES

[1] A. Rizzi, C. Gatta, and D. Marini, “A new algorithm for unsupervised
global and local color correction,” Pattern Recognit. Lett., vol. 24, no. 11,
pp. 1663–1677, Jul. 2003.

[2] A. Rizzi, C. Gatta, and D. Marini, “From Retinex to automatic color
equalization: Issues in developing a new algorithm for unsupervised
color equalization,” J. Electron. Imag., vol. 13, no. 1, pp. 75–84, 2004.

[3] C. Gatta, A. Rizzi, and D. Marini, “ACE: An automatic color equal-
ization algorithm,” in Proc. Conf. Colour Graph., Imag., Vis., 2002,
pp. 316–320.

[4] A. Plutino, B. R. Barricelli, E. Casiraghi, and A. Rizzi, “Scoping review
on automatic color equalization algorithm,” J. Electron. Imag., vol. 30,
no. 2, pp. 1–32, Apr. 2021.

[5] M. Fierro, H.-G. Ha, and Y.-H. Ha, “Noise reduction based on partial-
reference, dual-tree complex wavelet transform shrinkage,” IEEE Trans.
Image Process., vol. 22, no. 5, pp. 1859–1872, May 2013.

[6] X. Fu, R. Yu, W. Zhang, L. Feng, and S. Shao, “Pedestrian detec-
tion by feature selected self-similarity features,” IEEE Access, vol. 6,
pp. 14223–14237, 2018.

[7] D. L. R. Marini, C. Bonanomi, and A. Rizzi, “Perceptual contrast
enhancement in visual rendering of astrophotographs,” J. Electron.
Imag., vol. 26, no. 3, Mar. 2017, Art. no. 031205.

[8] D. L. R. Marini, C. Bonanomi, and A. Rizzi, “Processing astro-
photographs using Retinex based methods,” Electron. Imag., vol. 28,
no. 6, pp. 1–10, Feb. 2016.

[9] D. Gadia, C. Bonanomi, M. Marzullo, and A. Rizzi, “Perceptual
enhancement of degraded etruscan wall paintings,” J. Cultural Heritage,
vol. 21, pp. 904–909, Sep. 2016.

[10] E. Roe and C. A. B. de Mello, “Restoring images of ancient color
postcards,” Vis. Comput., vol. 31, no. 5, pp. 627–641, May 2015.

[11] A. Rizzi and C. Parraman, “Developments in the recovery of colour
in fine art prints using spatial image processing,” J. Phys., Conf. Ser.,
vol. 231, Jun. 2010, Art. no. 012003.

[12] P. Zhang and C. Li, “Region-based color image segmentation of fishes
with complex background in water,” in Proc. IEEE Int. Conf. Comput.
Sci. Autom. Eng., Jun. 2011, pp. 596–600.

[13] C. J. Prabhakar and P. U. Praveen Kumar, “Underwater image denoising
using adaptive wavelet subband thresholding,” in Proc. Int. Conf. Signal
Image Process., Dec. 2010, pp. 322–327.

[14] C. Gatta, A. Rizzi, and D. Marini, “Perceptually inspired HDR images
tone mapping with color correction,” Int. J. Imag. Syst. Technol., vol. 17,
no. 5, pp. 285–294, 2007.

[15] S. Paisitkriangkrai, C. Shen, and A. Van Den Hengel, “Strengthening
the effectiveness of pedestrian detection with spatially pooled features,”
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2014,
pp. 546–561.

[16] G. Schaefer, M. I. Rajab, M. E. Celebi, and H. Iyatomi, “Skin lesion
extraction in dermoscopic images based on colour enhancement and
iterative segmentation,” in Proc. 16th IEEE Int. Conf. Image Process.
(ICIP), Nov. 2009, pp. 3361–3364.

[17] B. R. Barricelli et al., “Ki67 nuclei detection and ki67-index estimation:
A novel automatic approach based on human vision modeling,” BMC
Bioinf., vol. 20, no. 1, p. 733, Dec. 2019.

[18] A. Rizzi and J. McCann, “On the behavior of spatial models of color,”
Proc. SPIE, vol. 6493, pp. 11–24, Jan. 2007.

[19] E. Land and J. McCann, “Lightness and Retinex theory,” J. Opt. Soc.
Amer., vol. 61, no. 1, p. 1–11, 1971.

[20] A. Rizzi and C. Bonanomi, “Milano retinex family,” J. Electron. Imag.,
vol. 26, no. 3, Mar. 2017, Art. no. 031207.

[21] J. J. McCann, “Retinex at 50: Color theory and spatial algorithms, a
review,” J. Electron. Imag., vol. 26, no. 3, Feb. 2017, Art. no. 031204.

[22] A. Rizzi, “Colour after colorimetry,” Coloration Technol., vol. 137, no. 1,
pp. 22–28, Feb. 2021.

[23] A. Artusi, C. Gatta, D. Marini, W. Purgathofer, and A. Rizzi, “Speed-
up technique for a local automatic colour equalization model,” Comput.
Graph. Forum, vol. 25, no. 1, pp. 5–14, Mar. 2006.

[24] M. Chambah, C. Gatta, and A. Rizzi, “Linear techniques for image
sequence processing acceleration,” Proc. SPIE, vol. 5667, Jan. 2005,
pp. 263–274.

[25] C. Gatta, A. Rizzi, and D. Marini, “Local linear LUT method for spatial
colour-correction algorithm speed-up,” IEE Proc. Vis., Image Signal
Process., vol. 153, no. 3, pp. 357–363, Jun. 2006.

[26] M. Bertalmio, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color
correction through variational techniques,” IEEE Trans. Image Process.,
vol. 16, no. 4, pp. 1058–1072, Apr. 2007.

[27] M. Bertalmío, V. Caselles, and E. Provenzi, “Issues about Retinex
theory and contrast enhancement,” Int. J. Comput. Vis., vol. 83, no. 1,
pp. 101–119, Jun. 2009.

[28] P. Getreuer, “Automatic color enhancement (ACE) and its fast imple-
mentation,” Image Process. Line, vol. 2, pp. 266–277, Nov. 2012.

[29] Q. Hu, S. Paisitkriangkrai, C. Shen, A. van den Hengel, and F. Porikli,
“Fast detection of multiple objects in traffic scenes with a common
detection framework,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4,
pp. 1002–1014, Apr. 2016.

[30] M. Mangeruga, M. Cozza, and F. Bruno, “Evaluation of underwater
image enhancement algorithms under different environmental condi-
tions,” J. Mar. Sci. Eng., vol. 6, no. 1, p. 10, Jan. 2018.

[31] C. Tang, U. F. von Lukas, M. Vahl, S. Wang, Y. Wang, and M. Tan,
“Efficient underwater image and video enhancement based on retinex,”
Signal, Image Video Process., vol. 13, no. 5, pp. 1011–1018, Jul. 2019.

[32] R. Marée, S. Dallongeville, J.-C. Olivo-Marin, and V. Meas-Yedid,
“An approach for detection of glomeruli in multisite digital pathology,”
in Proc. IEEE 13th Int. Symp. Biomed. Imag. (ISBI), Apr. 2016,
pp. 1033–1036.

[33] D. Gadia, D. Villa, C. Bonanomi, A. Rizzi, and D. Marini, “Local
color correction of stereo pairs,” Proc. SPIE, vol. 7524, Feb. 2010,
Art. no. 75240W.

[34] J. S. Romero, L. M. Procel, L. Trojman, and D. Verdier, “Implementation
and optimization of the algorithm of automatic color enhancement in
digital images,” in Proc. IEEE Int. Autumn Meeting Power, Electron.
Comput. (ROPEC), Nov. 2017, pp. 1–6.

[35] M. Chambah, A. Rizzi, C. Gatta, B. Besserer, and D. Marini, “Perceptual
approach for unsupervised digital color restoration of cinematographic
archives,” Proc. SPIE, vol. 5008, Jan. 2003, pp. 138–149.

[36] A. Plutino, M. Lanaro, G. Alfredo, R. Cammarata, and A. Rizzi, “ACE
for super 8 movie restoration,” in Mathematics for Computer Vision,
vol. 2. Feb. 2018, pp. 15–16.

[37] A. Rizzi, M. Chambah, D. Lenza, B. Besserer, and D. Marini, “Tuning
of perceptual technique for digital movie color restoration,” Proc. SPIE,
vol. 5308, Jan. 2004, pp. 1286–1294.

[38] O.-M. Machidon and M. Ivanovici, “Digital color restoration for the
preservation of reversal film heritage,” J. Cultural Heritage, vol. 33,
pp. 181–190, Sep. 2018.

[39] A. Rizzi and M. Chambah, “Perceptual color film restoration,” SMPTE
Motion Imag. J., vol. 119, no. 8, pp. 33–41, Nov. 2010.

PLUTINO AND TARINI: FAST ACE (FACE): AN ERROR-BOUNDED APPROXIMATION OF ACE 2799

[40] A. Plutino, M. P. Lanaro, S. Liberini, and A. Rizzi, “Work memories
in super 8: Searching a frame quality metric for movie restoration
assessment,” J. Cultural Heritage, vol. 41, pp. 238–248, Jan. 2020.

[41] B. R. Barricelli, E. Casiraghi, M. Lecca, A. Plutino, and A. Rizzi,
“A cockpit of multiple measures for assessing film restoration quality,”
Pattern Recognit. Lett., vol. 131, pp. 178–184, 2020.

[42] A. Rizzi, C. Gatta, and D. Marini, “Color correction between gray world
and white patch,” Proc. SPIE, vol. 4662, pp. 367–375, May 2002.

[43] E. Provenzi, C. Gatta, M. Fierro, and A. Rizzi, “A spatially variant white-
patch and gray-world method for color image enhancement driven by
local contrast,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10,
pp. 1757–1770, Oct. 2008.

[44] A. Rizzi, B. R. Barricelli, C. Bonanomi, A. Plutino, and M. P. Lanaro,
“Spatial models of color for digital color restoration,” in Conservation,
Restoration, and Analysis of Architectural and Archaeological Heritage.
Hershey, PA, USA: IGI Global, 2019, pp. 386–404.

[45] F. C. Crow, “Summed-area tables for texture mapping,” in Proc. 11th
Annu. Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), 1984,
pp. 207–212.

[46] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra,
“Fast summed-area table generation and its applications,” in Computer
Graphics Forum, vol. 24. Princeton, NJ, USA: Citeseer, Mar. 2005,
pp. 547–556.

[47] M. D. Donsker, An Invariance Principle for Certain Probability Limit
Theorems, no. 6. RI, USA: Memoirs of the American Mathematical
Society, 1951.

[48] D. Mould and P. L. Rosin, “A benchmark image set for evaluating
stylization,” in Proc. NPAR, pp. 11–20, 2016.

[49] M. Mathias, R. Benenson, M. Pedersoli, and L. V. Gool, “Face detection
without bells and whistles,” in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2014, pp. 720–735.

[50] C. Oleari, Standard Colorimetry: Definitions, Algorithms and Software.
Hoboken, NJ, USA: Wiley, 2016.

[51] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[52] R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “HDR-VDP-2:
A calibrated visual metric for visibility and quality predictions in all
luminance conditions,” ACM Trans. Graph., vol. 30, no. 4, pp. 1–14,
2011.

[53] B. Joseph, I. Joseph, and D. Frese. Pexels. Accessed: Apr. 28, 2022.
[Online]. Available: https://www.pexels.com/

[54] B. Funt, F. Ciurea, and J. McCann, “Retinex in MATLAB,” in Proc.
Color Imag. Conf., 2000, pp. 112–121.

Alice Plutino received the Ph.D. degree from Uni-
versità degli Studi di Milano in 2021. She is a
Postdoctoral Fellow with Università degli Studi
di Milano, where she is also an Adjunct Profes-
sor with Centro Sperimentale di Cinematografia,
teaching digital film restoration and digital media
conservation. In 2023, she was awarded a Marie
Skłodowska-Curie Postdoctoral Fellowship, which
will support her research with the University of
Amsterdam. She is the author of the book Tecniche
di Restauro Cinematografico and several journals

and conference papers of national and international relevance. Her research
interests include color science, colorimetry, image enhancement, image digiti-
zation and archiving, with a particular interest in cultural heritage applications.
She is a member of the Italian Color Group (Gruppo del Colore), the
Deputy Editor of the Color Culture and Science Journal (CCSJ), and the
Vice-Coordinator of the Division one and eight of NC CIE Italy.

Marco Tarini received the Ph.D. degree from Uni-
versità degli Studi di Pisa, in 2003. He is an Full
Professor with Università degli Studi di Milano,
where he teaches courses on computer graphics and
video games. His research activity spans several
fields within computer graphics, image and geom-
etry processing, and their applications, including
texture mapping, mesh processing, computer ani-
mation, real-time rendering, scientific visualization,
and video games technologies. He has authored or
coauthored more than 50 articles on these subjects

on international journals and conferences. He is a Marie Skłodowska-Curie
Fellow in 2001. He is also a core developer in many open source projects
for libraries and tools, widely used by the scientific community. He received
several awards, including the Young Researcher Award by Eurographics in
2006, for these activities. He serves as an associate editor, the chair, and an
IPC/ITC member for several journals and conferences.

Open Access funding provided by ‘Università degli Studi di Milano’ within the CRUI CARE Agreement

