
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023 2413

Differentiable RandAugment: Learning Selecting
Weights and Magnitude Distributions

of Image Transformations
Anqi Xiao , Biluo Shen , Jie Tian , Fellow, IEEE, and Zhenhua Hu , Senior Member, IEEE

Abstract— Automatic data augmentation is a technique to
automatically search for strategies for image transformations,
which can improve the performance of different vision tasks.
RandAugment (RA), one of the most widely used automatic data
augmentations, achieves great success in different scales of models
and datasets. However, RA randomly selects transformations
with equivalent probabilities and applies a single magnitude for
all transformations, which is suboptimal for different models
and datasets. In this paper, we develop Differentiable Ran-
dAugment (DRA) to learn selecting weights and magnitudes of
transformations for RA. The magnitude of each transformation
is modeled following a normal distribution with both learnable
mean and standard deviation. We also introduce the gradient of
transformations to reduce the bias in gradient estimation and
KL divergence as part of the loss to reduce the optimization
gap. Experiments on CIFAR-10/100 and ImageNet demonstrate
the efficiency and effectiveness of DRA. Searching for only
0.95 GPU hours on ImageNet, DRA can reach a Top-1 accuracy
of 78.19% with ResNet-50, which outperforms RA by 0.28%
under the same settings. Transfer learning on object detection
also demonstrates the power of DRA. The proposed DRA is one
of the few that surpasses RA on ImageNet and has great potential
to be integrated into modern training pipelines to achieve state-

Manuscript received 16 June 2022; revised 25 February 2023;
accepted 21 March 2023. Date of publication 17 April 2023; date of current
version 27 April 2023. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 92059207, Grant
62027901, Grant 81930053, and Grant 81227901; in part by the Chinese
Academy of Sciences (CAS) Youth Interdisciplinary Team under Grant JCTD-
2021-08; in part by the Zhuhai High-Level Health Personnel Team Project
under Grant Zhuhai HLHPTP201703; and in part by the Cloud Tensor
Processing Unit (TPUs) from Google’s TPU Research Cloud (TRC). The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Giulia Fracastoro. (Corresponding authors: Jie Tian;
Zhenhua Hu.)

Anqi Xiao, Biluo Shen, and Zhenhua Hu are with the CAS Key Laboratory
of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Insti-
tute of Automation, Chinese Academy of Sciences, Beijing 100190, China,
and also with the School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing 101408, China (e-mail: xiaoanqi2020@ia.ac.cn;
shenbiluo2019@ia.ac.cn; zhenhua.hu@ia.ac.cn).

Jie Tian is with the CAS Key Laboratory of Molecular Imaging, Beijing
Key Laboratory of Molecular Imaging, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China, also with the School of
Artificial Intelligence, University of Chinese Academy of Sciences, Beijing
101408, China, also with the Beijing Advanced Innovation Center for Big
Data-Based Precision Medicine, School of Engineering Medicine, Beihang
University, Beijing 100191, China, and also with the Engineering Research
Center of Molecular and Neuro Imaging of Ministry of Education, School of
Life Science and Technology, Xidian University, Xi’an 710071, China (e-mail:
tian@ieee.org).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIP.2023.3265266, provided by the authors.

Digital Object Identifier 10.1109/TIP.2023.3265266

of-the-art performance. Our code will be made publicly available
for out-of-the-box use.

Index Terms— Data augmentation, automated machine learn-
ing, differentiable optimization, random augmentation.

I. INTRODUCTION

DATA augmentation, which mainly consists of geometric
transformations (rotate, translate, etc.) and color trans-

formations (invert, contrast, etc.), is a commonly used tool
to generate additional data from the original. It increases
diversity of the training dataset without collecting extra data.
This technique is widely used in computer vision tasks to
help the training of deep neural networks without severely
changing high-level semantics in images. It can be seen as
a regularization method to alleviate the over-fitting problem
as well. Many synthetic data augmentation strategies [1], [2],
[3], [4] have been designed and achieved great success in
recent years. However, these designs usually require expert
knowledge, large amounts of experimental trials and prior
information to seek a proper configuration. Improper applica-
tion or choice of augmentation even introduces outliers to the
training data, which harms the final performance [3], [5], [6].

With the advances of automated machine learning
(AutoML), automatically exploring data augmentation strate-
gies directly from the dataset becomes popular. The process to
explore an optimal augmentation strategy, including a set of
parameters or rules, is called search. For example, AutoAug-
ment [7] (AA) focuses on the learning of augmentations based
on reinforcement learning (RL). Compared with traditional
data augmentation, AA requires less expert knowledge and
prior information to achieve impressive results by automati-
cally searching for the amounts of transformations and their
combinations. It is an offline search method that decouples the
process for searching the augmentation strategies and training
the target model. The searched strategies are called policy,
which can also be easily transferred to new classification tasks
for wider applications. However, the search cost of AA is
extremely expensive, even on a proxy task that adopts a subset
of the target dataset. As a result, the following works try
to improve the search efficiency. Differentiable methods [8],
[9], [10] appear and significantly reduce the search cost of
policy learning to a few hours. Trends to the development of
automatic data augmentation show the potential for differen-
tiable methods. Nevertheless, these methods generally slightly

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-7356-0434
https://orcid.org/0000-0001-9906-3885
https://orcid.org/0000-0003-0498-0432
https://orcid.org/0000-0002-4600-3405

2414 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

sacrifice performance, especially on complex datasets.
Besides, current differentiable methods mainly focus on learn-
ing a set of fixed magnitudes for transformations, which limits
the scale of the augmented image space and the upper bound
for model performance.

Online automatic data augmentation methods use a differ-
ent manner that learns augmentation strategies together with
model training [5], [11], [12], [13], [14] to improve model
performance. These methods avoid extra search overhead
before training while expanding the augmented image space.
However, the frameworks of online augmentation works are
complex, and the search overhead remains high. Although
search methods combined with meta-learning [15] and
bi-level optimization [16] reduce the time for online search,
these methods suffer from obvious performance decrements
that lose one of the most important benefits of online learning.
Besides, the augmentation policy of the online search methods
can hardly be transferred to different tasks. These shortages
limit the wide application of online augmentation methods.

Recent works, such as RandAugment [5] (RA), adopt
randomness to improve performance for wide applications.
RA uniformly samples combinations of transformations in
the search space to augment images. The simple design
achieves unexpected impressive results. Due to the simplicity
and effectiveness, RA has been integrated into other works
(e.g., DeiT [17], Swin Transformer [18]) as an augmented
training strategy. However, to achieve optimal performance,
RA requires an offline grid search on the whole training dataset
to find the proper policy parameters, which is time-consuming
even with a dramatically reduced search space. Although RA
has the capability to achieve satisfactory performance with
manually selected parameters to avoid the search, the simple
search space limits the upper bound of the augmented image
space. UniformAugment [14] and TrivialAugment [13] are
two other methods that benefit from randomness with no
search process, while they are not flexible enough for different
target models and tasks that rely on inconsistent types and
magnitudes of transformations.

In this work, we take the advantages of differentiable
augmentation and effectiveness of random factors, and develop
Differentiable RandAugment (DRA), an offline automatic aug-
mentation method that can effectively learn policy parame-
ters, including selecting weights and magnitude distributions
of transformations, with a small search cost to expand the
augmented image space of RA. Our DRA treats each aug-
mentation transformation as a module in the model, with a
weight indicating the probability in forward sampling and a
magnitude following a learnable normal distribution to control
the deformation. Besides, we introduce the gradient of trans-
formations to reduce the bias of gradient estimation during
the search. We also revisit the optimization objective of the
differentiable augmentation search and find the inconsistency
between updating model parameters and policy parameters.
To reduce the gap, we propose a loss function with KL
divergence, which measures the similarity of augmented and
original images after model inference. Experiments on CIFAR-
10/100 [19] and ImageNet [20] show that our DRA achieves
better accuracy compared with some mainstream methods

Fig. 1. A simplified example of the pipeline of Differentiable RandAugment
in the forward. One yellow box represents an augmentation layer, which
samples an operator from categorical distribution according to the weights
of operators w. Each operator inside an augmentation layer owns a learnable
normal distribution of magnitude. The sampled operator has probability pd

to be applied in the d th layer, where pd
∼ U

(
pmin_t , pmax_t

)
is randomly

sampled before each iteration. The output of each augmentation layer is a
weighted sum of the calculation results of all operators, where the weights
are the sampled results of categorical distribution. Cat is short for categorical
distribution.

within a short search time. Transfer learning on object detec-
tion using COCO [21] further demonstrates the effectiveness
of DRA. We emphasize that our DRA outperforms RA by
0.28% under the same settings, with only 0.95 GPU hours
overhead on a single Tesla P100 on ImageNet using ResNet-
50. Compared with prior works, it has a flexible design to be
adaptive to different tasks, with a small search cost to improve
performance of the offline automatic data augmentation. The
pipeline of DRA is shown in Fig. 1.

The contributions of our work can be summarized as
follows:

1) We propose a differentiable automatic data augmentation
method DRA that models the magnitudes of transforma-
tions following a learnable normal distribution, which
achieves better performance on classification and object
detection compared with RA. The search overhead is
also reduced to only 0.95 GPU hours on ImageNet with
a single Tesla P100.

2) DRA adapts the search space based on RA and applies
operator-sharing strategies to reduce both the search cost
and difficulty, which is different from many previous
methods that are based on the search space of AA.

3) We revisit the inconsistency between updating model
parameters and policy parameters in policy learning, and
introduce KL divergence as a loss item in the outer loop
of bi-level optimization to reduce the optimization gap.

II. RELATED WORKS

A. Data Augmentation

Data augmentation (DA) has been widely used in computer
vision tasks to improve the robustness of models, especially
in image classification. The most widely used augmentations

XIAO et al.: DRA: LEARNING SELECTING WEIGHTS AND MAGNITUDE DISTRIBUTIONS OF IMAGE TRANSFORMATIONS 2415

include cropping, flipping, and resizing, which usually couple
random factors to transform images. In recent years, several
novel augmentation methods [1], [2], [3], [4], [6], [22], [23],
[24] are designed according to expert or domain knowledge,
and improve the performance and robustness of models.
Apart from supervised training, DA has also been applied
in other areas, such as contrastive learning [25], [26], [27]
and reinforcement learning [28]. Although these augmentation
methods achieve great success in many tasks, they require
careful design with painstaking labor and large amounts of
trials. Improper usage of augmentation shows no effect or
even hurts performance. For example, Cutout [1] significantly
decreased performance on reduced SVHN [29] as reported by
Cubuk et al. [7]. As a result, the automatic design of data
augmentation might be more suitable for different tasks.

B. Automatic Data Augmentation

Since Google proposed neural architecture search [30]
(NAS), learning architectures and hyperparameters of deep
neural networks automatically became popular. Inspired by
NAS, automatic data augmentation appears and achieves great
success in computer vision tasks. Current mainstream auto-
matic data augmentation methods can mainly be divided into
two types: offline [7], [8], [9], [10], [31], [32] and online [5],
[11], [12], [13], [14], [33], [34].

The offline methods attempt to search for proper com-
binations of different image transformations, namely policy.
Many offline data augmentation methods search the optimal
policy on a proxy task to reduce the huge calculation cost,
assuming that the policy found on the proxy performs as
well as the one found on the whole dataset and target model.
For instance, AutoAugment [7] (AA) is proposed based on
reinforcement learning to automatically find a policy for
optimal data augmentation. The policy contains a series of sub-
policies, with a list of sequentially applied operators containing
the name, applying probability, and a level indicating the
magnitude of the operator. It achieves excellent performance
on image classification in several datasets. Nevertheless, the
search time is too expensive to be widely applied to different
datasets. Although the learned policy can be transferred to
other tasks, it is not as good as the one directly searched on
the target task. Some algorithms are proposed afterward to
speed up the search procedure. PBA [32] proposes to search
for an augmentation schedule instead of a fixed policy. Fast
AutoAugment [31] (Fast AA) avoids the trials on each policy
to accelerate the search procedure. Although their search cost
is severely reduced compared with AA, it is still expensive for
the wide applications of these methods.

Recently, inspired by DARTS [35], differentiable methods
for automatic data augmentation appear and show great effi-
ciency in policy search. Faster AutoAugment [10] (Faster AA)
regards data augmentation as filling the missing points in the
training dataset. DADA [8] uses a GDAS-like [36] sampling
strategy in the forward, and applies the RELAX estimator
[37] to estimate unbiased gradients of policy parameters in
the backward. DDAS [9] directly derives the search formula
from training loss without the Gumbel-Softmax estimator

for a more accurate gradient estimation. These differentiable
methods use gradient update strategy to solve the optimization
problem and reduce the search cost in order to be affordable.
However, they mainly adopt a fix magnitude that limits the
scale of augmented space and the upper bound for model
performance.

On the other hand, online data augmentation methods adjust
policy parameters dynamically during model training. OHL-
Auto-Aug [12] and Adversarial Augment [11] jointly adjust
policy parameters and model parameters on the target dataset,
which dynamically augment images during training and adjust
the augmentation policy without retraining the model. These
online search methods achieve superior results compared with
offline methods, but the search overhead remains large; mean-
while, the policy is hardly transferred to other tasks or also
suffers from obvious performance degradation. Shortages limit
the wide application of these online search methods. Meta
online data augmentation [15] and online bi-level optimization
[16] for data augmentation search also use differentiable
learning to reduce the overheads of online methods, while they
severely sacrifice performance.

Another simple but effective way to augment images is to
introduce random factors for transformations. RandAugment
[5] (RA), UniformAugment [14] (UA) and TrivialAugment
[13] (TA) carefully design the augmentation ranges and uni-
formly sample transformations to augment the input data. The
simple design shows amazing performance in classification
tasks. However, as these random factors are non-specific to
datasets, there exists a great chance for improvement. RA also
suffers from heavy constraints and a large search cost to find
optimal policy parameters.

Very recently, DAAS [33] and DHA [34] jointly optimized
policy parameters with architecture parameters or even hyper-
parameters. These methods try to find an optimal augmentation
strategy that fits the searched model. However, they suffer from
the same limitations as online search methods.

III. DIFFERENTIABLE RANDAUGMENT

In this section, we first reformulate automatic data augmen-
tation and define our search space based on RandAugment.
Then, we introduce the relaxation and approximation for
differentiable learning. After that, we revisit the optimization
objective of the differentiable augmentation search, and add
KL divergence as a loss item to alleviate the inconsistency
between updating policy parameters and model parameters.

A. Reformulate Data Augmentation

Data augmentation can be presented as a sequence of oper-
ations to transform the input image, which can also be viewed
as sequentially piled layers in the model before normalization.
Let D be the length of the operation sequence, which we
also call total augmentation depth as follows. Take the d th

augmentation layer as an example. Let X0
∈ RH×W be the

original image, where H and W are the height and width of
the image, respectively. Xd−1

∈ RH×W is the input of the
d th augmentation layer, and Xd

∈ RH×W is the output of the

2416 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

d th augmentation layer. The augmentation of one layer can be
denoted as

Xd
=

∑
o∈O

o
(

Xd−1
)

· cd
o , d = 1, 2, · · · , D, (1)

where

cd
∼ Categorical

(
wd

)
, (2)

and

o
(

Xd−1
)

=

1, i f cd

o = 0

O Po

(
Xd−1, md

o

)
, i f cd

o = 1 and p < pd

Xd−1, otherwise
(3)

Here, 1 ∈ RH×W is a matrix with the same shape of Xd−1

and all elements of value 1, cd
=

[
cd

1 , cd
2 , · · · , cd

N
]

∈ RN is
a one-hot vector that denotes the sampled categorical result,
where N denotes the number of candidate operators. wd

=[
wd

1 , wd
2 , . . ., wd

N
]

∈ RN denotes the weights of operators
in the d th layer, O Po (·) denotes the oth transform operator
in O , where O = {O P1, O P2, . . . , O PN } denotes the set
of candidate operators in the search space. md

o denotes the
magnitude to apply the oth operator in the d th augmentation
layer. The matrix 1 is introduced to avoid the calculation of
operators that are not sampled, while adding the calculation
of selecting weights of these unsampled operators in the
forward without changing the results. Thus, selecting weights
of unsampled operators can also be updated during back prop-
agation. Equation (3) shows that the sampled operator in the
d th augmentation layer has pd probability to be applied, while
1− pd probability unchanged. Note that pd is a sampled value
in our DRA, which follows a uniform distribution. This design
follows the implementation of RA in TensorFlow models.1 We
sample a new p ∼ U (0, 1) and pd

∼U
(

pmin_t , pmax_t
)

before
each augmentation layer for each minibatch, where pmin_t and
pmax_t are two hyperparameters defined before the search.

In RA, operators have the same probability, or they fol-
low a categorical distribution to be sampled as proposed by
Wightman et al. [38] when manually designed weights are
given. Here, the weights wd are learnable parameters in our
search space, which determine the selecting weights of the
operators. This design is the same as the one mentioned in
RA, while the authors only explored the impact of differen-
tiable selecting weights without considering magnitudes. Note
that unlike methods based on the search space of AA that
separately learn the parameters of each sub-policy [7], [8],
[10], [31], our DRA has an operator-sharing strategy in the
d th augmentation layer for sub-policies to reduce the number
of learnable parameters. This design allows sampling operators
within an augmentation layer, thus facilitating propagating
gradients of the operators between augmentation layers. The
illustration of the AA and RA search space is shown in
Supplementary Materials Fig. S1.

Besides, to improve the generalization ability of the target
model, the magnitude of each operator in DRA follows a learn-
able distribution to generate more transformations of the input

1https://github.com/tensorflow/models.git

images. This design is motivated by the idea that randomized
magnitude can improve the diversity of the data, meanwhile
the augmented images should follow a similar distribution to
the original ones to alleviate the over-transformation problem
[10], [39]. Since the magnitude controls the deformation to the
original image, with 0.0 indicating no change and 1.0 indicat-
ing the maximum, using different magnitudes for the same
operator to generate different transformations of the input is
an intuitive idea. The effectiveness of variant magnitudes in
data augmentation has also been shown in TA and UA. Thus,
we assume that introducing randomness to the magnitudes can
yield abundant transformations to improve model performance.
On the other hand, since fixed magnitudes in sub-policy-
based methods [7], [31] achieve good results, we assume that
augmented images that are similar to images generated by the
learned sub-policies can yield better performance. As a result,
we adopt a magnitude sampling strategy that samples magni-
tude from a specific normal distribution rather than uniform
distribution within the feasible region. We model the magni-
tude of each operator in each augmentation layer following a
separate learnable normal distribution. Under this setting, the
augmented images are expected to have more variants that are
close to the one transformed with the mean magnitude, while
there still exist fewer variants having larger deformations.
However, when the standard deviation of magnitude has a
large value, the magnitude distribution becomes smoother. The
smoother distribution will generate diverse transformations,
which may increase the number of over-transformed images.
To alleviate the over-transformation raised by the uncontrolled
sampling from normal distribution, we minimize KL diver-
gence that measures the distance between the distributions
of augmented samples and the original ones during policy
parameter learning, which is discussed in Section III-C. The
magnitude in our method can be denoted as

md
o ∼ N

(
µd

o , σ d2

o

)
, (4)

where µd
o and σ d

o are the mean and standard deviation of the
magnitude of the oth operation in the d th augmentation layer,
respectively. We emphasize that the design of magnitudes fol-
lowing normal distributions is the core idea of our work, which
is different from previous works such as fixed magnitudes in
RA or learnable magnitudes in Faster AA and DADA.

In our search space, we have weight parameters, means of
magnitudes, and standard deviations of magnitudes that are
learnable. These learnable parameters are called policy param-
eters in this paper. Note that the probability pd of applying
the operator in the d th augmentation layer is not in our search
space, which reduces the number of learnable parameters and
further eases the burden of the search algorithm. The total
number of learnable policy parameters is 3 × D × N .

B. Estimate Gradient of Policy Parameters

1) Relax Weight Parameters: Since sampling is not differ-
entiable w.r.t. weight parameters, relaxation is conducted in
the backward propagation to make weight parameters differ-
entiable. In the relaxed setting, Gumbel-Softmax [40], [41]

XIAO et al.: DRA: LEARNING SELECTING WEIGHTS AND MAGNITUDE DISTRIBUTIONS OF IMAGE TRANSFORMATIONS 2417

estimator is introduced and (1) becomes

Xd
=

∑
o∈O

o
(

Xd−1
)

· ĉd
o , d = 1, 2, · · · , D, (5)

where

ĉd
∼ RelaxCategorical

(
wd , τ

)
(6)

and

ĉo
d

=
exp

((
wd

o + gd
o
)
/τ

)∑
o′∈O exp

((
wd

o′ + gd
o′

)
/τ

) . (7)

Here, ĉd
=

[
ĉd

1 , ĉd
2 , . . ., ĉd

N
]

∈ RN that makes wd
o differen-

tiable denotes the relaxation of cd , gd
o = −log (−log (u))

where u ∼ U (0, 1), and τ > 0 is the temperature to
control how similar the relaxed distribution is to the expected
value. Smaller τ results in a more one-hot-like relaxation. The
relaxed equation is calculated in the backward. While in the
forward, we adopt calculations following GDAS [36], where
the equations are

Xd
=

∑
o∈O

o
(

Xd−1
)

· hd
o , d = 1, 2, · · ·, D, (8)

hd
= H

(
arg max

o
ĉd

)
. (9)

Here, hd
=

[
hd

1 , hd
2 , . . ., hd

N
]

∈ RN , and H is a one-
hot operation. The one-hot processing makes the forward
consistent with the original sampling, meanwhile avoiding the
calculation of operators with a small weight in (5) to reduce
memory consumption.

2) Learn Magnitude Distributions: Unlike optimizing wei-
ght parameters, the gradient of magnitude parameters needs
approximation, because some operators (e.g., posterize, solar-
ize) are not differentiable w.r.t. magnitudes. Thus, we use
the straight-through estimator [42] to evaluate the gradient of
magnitudes. The straight-through estimator can be denoted as

∂O Po
(
Xd−1, md

o
)

∂md
o

= 1, (10)

when assuming each pixel in the image is independent. Here,
O Po

(
Xd−1, md

o
)

∈ RH×W is the augmented image of Xd−1

by operator o in the d th augmentation layer with a magnitude
md

o . Equation (10) means the gradient of magnitude w.r.t. each
pixel of the augmented image is 1.

To pass the gradient of magnitudes in the back propagation,
magnitudes are specially calculated in the forward and the
original Xd−1 becomes

X̂d−1
= Xd−1

+ md
o − StopG(md

o), d = 1, 2, · · · , D,

(11)

where ∂ Xd−1/∂md
o = 0 and 0 ∈ RH×W is a matrix with the

same shape as Xd−1 and all elements have a value 0, and
StopG (·) is the stop gradient operation that gets the value of
the input without passing the gradient, which is a constant in
(11). Note that we do not stop the gradient of Xd−1 to pass the
gradient of operator w.r.t. Xd−1. A reasonable update strategy

is to only update the magnitudes of sampled operators in the
forward path, thus (3) becomes

o
(

Xd−1
)

=

1, i f hd

o = 0

O Po

(
X̂d−1, md

o

)
, i f hd

o = 1 and p < pd

Xd−1, otherwise
(12)

As mentioned in Section III-A, the magnitude of each
operator in each augmentation layer of DRA follows a normal
distribution. However, the sampling operation is not differ-
entiable w.r.t. magnitude parameters. Therefore, we use the
reparameterization trick [43] to make magnitude parameters
differentiable. Reparameterization can be denoted as

m̂d
o = µd

o + ϵ · σ d
o , ϵ ∼ N (0, 1) , (13)

which shifts the sampling operation to a standard normal
distribution and makes magnitude parameters differentiable.

Note that when using magnitudes following normal dis-
tributions, RA can be seen as a special case of DRA, with
equivalent w and µ for each operator, and σ of a value equal
to 0 for each operator. However, RA is not in our search space
if not using the expanded transformation range, due to the
over-range of magnitudes of RA with a maximum magnitude
level of 30 rather than 10, where 10 indicates the border of
the transformation range.

3) Use the Operator Gradient: Data augmentation is usu-
ally decoupled with model training (e.g., augmentation based
on Pillow2), which introduces the straight-through gradient
estimator to policy parameters if not editing the backward
process. However, the straight-through estimator is biased.
To reduce the impact of this bias, Hataya et al. [10] uses
operators in Kornia [44], a PyTorch-based [45] differentiable
computer vision library, to augment data and calculate the
operator gradients w.r.t. the input of the operator. Similarly,
we rewrite the operators using TensorFlow [46] and encapsu-
late them into differentiable layers. For operators that are not
differentiable to the input (e.g., posterize, equalize), we use
the straight-through estimator to pass the gradient directly.

C. Revisit the Optimization Objective in the Differentiable
Data Augmentation Search

Bi-level optimization becomes the standard and widely
applied optimization objective for differentiable learning.
It separates the training dataset into two equal subsets for
alternatively updating model parameters to the optimal (the
inner loop) and one iteration of architecture parameters (the
outer loop) to achieve the minimum loss w.r.t. architecture
parameters. As proposed in DARTS [35], the one-step gradient
update can reduce the expensive inner optimization cost in
bi-level optimization, which uses the results of one iteration
in the inner loop to approximate the optimal model param-
eters. In differentiable automatic data augmentation, policy
parameters show similar functions to architecture parameters.
As a result, policy parameters can be optimized using the same
strategy. However, we revisit the optimization objective of the

2https://python-pillow.org

2418 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

differentiable data augmentation search and find an inconsis-
tency between the outer optimization and inner optimization.
Specifically, the optimization objective of the differentiable
data augmentation search can be written as

min
T

Lval
(
θ∗

)
s.t. θ∗

= arg min
θ

L train (θ, T) , (14)

where Lval and L train denote validation and training loss,
respectively. Note that the training loss and validation loss
in (14) are calculated on the two halves of the proxy
dataset rather than on the target dataset. θ denotes the
model parameters, and T denotes policy parameters. However,
T is not included in the calculation of the loss of the
outer loop Lval , which makes T indifferentiable in outer
optimization. An approximation uses Lval (θ∗, T) instead of
Lval (θ∗), which introduces a gap between the real target and
approximation.

Recently proposed contrastive learning focuses on the dis-
tributions of augmented views using contrastive loss, with the
aim of maximizing the agreement of similar images while
expanding the differences between views from different inputs
[25], [26], [27]. Inspired by the idea, we hypothesize that to
achieve good performance, the augmented images should have
similar logits after Softmax to the original ones, meanwhile
keeping the validation loss low. Therefore, a metric to measure
the similarities and distances between augmented images and
original images after inference is required to achieve the
expectation. This idea is consistent with the previous viewpoint
that data augmentation is a process to fill in the missing points
of the original data distribution through density matching
[10]. KL divergence, which is the most widely used metric
to measure the differences between two distributions [47],
is selected in our setting. It has also been used in adaptive
knowledge distillation for different training samples, which
shows a similar nature to our DRA [39], [48]. To reduce
the gap between the original optimization objective and the
approximation, we add KL divergence to the loss function.
Thus, the optimization objective becomes

min
T

Lval
(
θ∗, T

)
+ λ · K L(pori

||paug)

s.t. θ∗
= arg min

θ
L train (θ, T) , (15)

where pori denotes the logits of the original image after
Softmax, paug denotes the logits of the augmented image
after Softmax, and λ controls the weight of KL divergence.
The proposed loss is expected to reduce the gap between the
augmented image space and the original one, achieving density
matching to yield better performance. Meanwhile, the usage of
KL divergence to measure the differences between the original
and augmented image from the same one also reduces the
general risk of over-transformation.

D. The Relationship to DADA, DDAS, and Faster AA

Prior offline works DADA, DDAS, and Faster AA share
similar spirits to DRA, all of which use differentiable learning
to estimate the policy parameters. Apart from the learnable

magnitude distributions specially proposed in DRA, various
designs between these works are different as well. To highlight
innovations of DRA, we list some key differences here.

DADA adopts AA-based search space that uses separate
sub-policies to augment images. It uses the RELAX estimator
with second order gradient estimation to learn a more accurate
policy. In contrast, DRA uses RA-based search space that
shares operators in each augmentation layer to reduce the
number of learnable parameters. The gradients are estimated
directly through back propagation without second order gradi-
ent estimation. Meanwhile, DRA uses KL divergence to reduce
the impact of biased straight-through gradient estimation for
a more accurate policy.

DDAS directly uses the expectation of the training loss
to derive the formulas of policy parameters without gradient
estimators. It adopts a repeated augmentation strategy for the
same minibatch to estimate loss expectation. The same opera-
tor with different magnitudes is treated as different candidate
operators for training to avoid the estimation of indifferentiable
magnitudes. In contrast, DRA only requires augmenting the
same minibatch once to reduce the search cost when applying
the operator requires much calculation. In addition, gradient
estimators are kept to learn the magnitudes for more flexible
policies.

Faster AA also adopts RA-based search space to learn
policy parameters. It passes the weighted sum of transformed
images in each augmentation layer to estimate the gradients
during search, which is very close to the design in DARTS for
feature aggregation to pass the information flow between inner
nodes. Besides, it adopts adversarial learning through Wasser-
stein GAN to estimate the distance between the augmented
images and original images to achieve density matching,
where the estimation of the distance is based on two different
minibatches from the training dataset. This design avoids the
nested loop in bi-level optimization, where the outer loop has
no gradient for the policy parameters in the basic design.
In contrast, DRA uses one-hot relaxed categorical sampling
for the operators in each augmentation layer in the forward
that only transforms the image once, which reduces the
computation time, especially on the large dataset ImageNet.
Besides, it adopts the bi-level optimization strategy with an
approximation to estimate the gradient of policy parameters,
solving the problem in the outer loop. KL divergence is also
adopted to achieve density matching without any additional
model to estimate the distribution distance.

IV. EXPERIMENTS

In this section, we conduct classifications on CIFAR-10/100
and ImageNet, and compare the performance of DRA and
some other augmentation methods. The results of these com-
pared methods are from the original papers, if not specifically
mentioned. These results are expected to be excellent, since
the authors usually tuned the settings to adapt to the proposed
methods. Thus, the comparison with DRA is relatively fair
and acceptable. Since RA is the most concerned method
that has a similar augmentation pipeline of DRA, we also
re-implemented RA under our settings for comparison. Note
that the original RA has only 14 operators in the search

XIAO et al.: DRA: LEARNING SELECTING WEIGHTS AND MAGNITUDE DISTRIBUTIONS OF IMAGE TRANSFORMATIONS 2419

TABLE I
TYPE, NAME, AND TRANSFORMATION VALUE RANGE OF EACH

OPERATOR IN DRA USING TENSORFLOW. VALUES BEFORE AND
AFTER “/” INDICATE CIFAR AND IMAGENET RANGE,
RESPECTIVELY. FOR COLOR BLENDING OPERATORS,

VALUE 1.0 INDICATES ORIGINAL IMAGE, WHILE
0.1 AND 1.9 INDICATE MAXIMUM TRANSFORM

space, while there are 16 operators in the re-implemented RA
and our DRA. Our DRA shows superior performance com-
pared with other methods, especially on ImageNet. To further
demonstrate the generalization ability of DRA in downstream
tasks, we conduct transfer learning on COCO and compare
the performance of RetinaNet [49] and GFLV2 [50] with
different pre-trained backbones based on basic settings, RA,
and DRA. We also visualize the changes of policy parameters
during the search process and the searched results for a better
understanding of DRA.

A. Implementation Details

Our search is conducted on the proxy task using a split from
the original training dataset with fewer search epochs, without
using the original validation dataset to update any learnable
parameter. The proxy task greatly decreases the search cost in
a widely affordable manner, especially on large-scale datasets
like ImageNet. Half of the proxy dataset is used for updating
policy parameters, while another half is used for updating
model parameters. Note that unlike previous methods, we do
not use a proxy model to search for policy parameters.

We have 16 operators in our candidate operator set O , which
generally follows the implementation of RA in TensorFlow
models. The names and transformation ranges of operators
are listed in Table I. We group these operators into two parts:

- Geometric Operators. Geometric shape or the position
of the image are transformed. (e.g., TranslateX, ShearY,
Rotate)

- Color Operators. The general geometric shape of the
image remains unchanged, while the pixel values of
part of the image or the whole image are transformed
(e.g., Solarize, Sharpness, Equalize).

Note that the ranges for translate operators use pixels
instead of the ratios in DRA. We use WRN-28-10 [51]
and PyramidNet+ShakeDrop [52], [53] to evaluate DRA on
CIFAR, while ResNet-50 [54], ResNet-200, and vision Trans-
former DeiT-Tiny-16-224 [17] without distillation on Ima-
geNet. Detailed hyperparameter settings for all classification
experiments are listed in Supplementary Materials Table SIII.
Note that we tune the initial value of µ to 1.5 when using
ResNet-200, since the model has a stronger ability to capture
features compared to ResNet-50. The transformation range is
also extended to [0, 3], where the magnitude m = 3.0 in DRA
is equivalent to the magnitude level MR A = 30 in RA. The
range of the sampled magnitude is truncated to [0.0, 1.0] or
[0.0, 3.0], except the magnitudes of shear, translate, rotate and
color blending operators (including brightness, color, sharp-
ness, and contrast) that have 50% probabilities to be negative.
This is because we use 0-1 normalized transform intensity,
where 0 means no transformation applied and 1 means the
maximum transformation in the range. Besides, to reduce the
memory consumption of large batches on ImageNet settings,
we use the Inplace-ABN technique [55] during training to save
memory without obvious influence on model performance.
All Transformers are trained from scratch. The warmup of
learning rates starts from 0 for all training processes. We use
TensorFlow-based operators with a gradient for the differen-
tiable search, while operators without gradient are used for
fast training.

For object detection, we select ResNet-50 as the backbone,
and apply transfer learning that only uses different pre-trained
weights for backbones. For RetinaNet, we use the horizontal
flip as the augmentation, and set the batch size to 32, weight
decay to 1 × 10−4, epochs to 24, and randomly pad the input
to a resolution of 896 × 896. We use SGD with a multistep
learning rate schedule that is warmed up for 500 iterations to
a learning rate of 0.02, and divide it by 10 after 16 and 22
epochs. For GFLV2, since the detection head has a stronger
ability to capture features in the input, we adopt augmented
settings to train it. We use horizontal flip and random resized
crop from a range of 0.1 to 2.0 to augment the input, and
set the batch size to 64, weight decay to 0.05, epochs to 50,
and crop the input to a resolution of 1024 × 1024. We use
AdamW for faster convergence with a learning rate warmed
up for 1 epoch from 0 to 8×10−4 followed by a cosine learning
rate schedule completed at 0. We compare three augmentation
settings for pre-training the backbones including the basic, RA,
and DRA. The pre-training settings are the same as mentioned
in the ImageNet classification experiments, except that we
do not use Inplace-ABN and only train the basic one for
120 epochs.

We implement our experiments on TensorFlow 2.3 and
Python 3.7. All search experiments are conducted on a single
Tesla P100, and other experiments are conducted on TPU v2
(8 Cores).

B. Results on CIFAR-10/100

CIFAR-10 and CIFAR-100 are two small datasets with
balanced class distributions. They both have a resolution of

2420 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

TABLE II
ACCURACY (%) OF DIFFERENT AUGMENTATION METHODS ON CIFAR-10/100. RESULTS OF MEAN ± STD ARE REPORTED ON THE AVERAGE

OF THREE RUNS. PYRAMIDNET IS SHORT FOR PYRAMIDNET+SHAKEDROP. BEST RESULTS ARE IN BOLD

TABLE III
SEARCH TIME (GPU HOUR) OF DIFFERENT AUGMENTATION METHODS ON DIFFERENT DATASETS

32×32, with 50,000 images in the training dataset and 10,000
in the test set. For both CIFAR-10 and CIFAR-100, we follow
previous works and conduct the search on 4,000 randomly
split samples from the training dataset. The basic augmentation
includes random cropping and random horizontal flipping.
DRA is applied after basic augmentation and before Cutout.
Table II and Table III compare the performance and search cost
of DRA and other data augmentation methods, respectively.
We run each experiment three times and report the mean and
standard deviation of the accuracy. Note that we re-implement
RA under our framework for a fair comparison. Besides, since
the original RA does not report the hyperparameter settings
and performance of PyramidNet+ShakeDrop on CIFAR-100,
we use the same hyperparameter settings as CIFAR-10 with
the number of operators in one sub-policy NR A = 3 and
magnitude for all operators MR A = 7.

As shown in Table II, DRA improves the accuracy on
both CIFAR-10 and CIFAR-100 compared with RA and
other methods. We note that the re-implemented WRN-28-10
using RA under our settings has an obvious performance
increase compared with the reported one on CIFAR-100,
which may arise from the operators that are only in the
search space of DRA working well on CIFAR-100. We also
notice that DRA performs slightly worse than AA on
CIFAR-100 using PyramidNet+ShakeDrop, while better using
WRN-28-10. The inconsistency may arise from two aspects.
PyramidNet+ShakeDrop benefits more from the separate sub-
policies in AA on CIFAR-100 that consider the detailed impact
of previous transformations for PyramidNet+ShakeDrop to
distinguish from. In contrast, WRN-28-10 benefits less due to
its limited ability to distinguish the detailed changes. Besides,
different policy models have different impact on DRA, where
PyramidNet+ShakeDrop benefits less from DRA compared

with WRN-28-10. Further analysis of the impact of different
proxy model structures on DRA is shown in the Section V-F.

The search costs of different augmentation methods are
shown in Table III. We notice that DRA has a smaller search
time difference between CIFAR and ImageNet compared with
other methods. The reasons are from two aspects.

On one hand, ImageNet has a resolution of 224×224 during
the search, resulting in a longer time for transformations. DRA
adopts RA-based search space that has fewer policy parameters
to learn compared to AA-based search space, resulting in
less search time. Meanwhile, DRA uses one-hot sampling for
the operators in each augmentation layer in the forward that
only transforms the image once, which is more efficient than
Faster AA that uses a weighted sum of all transformations.
While compared with DDAS, DRA does not require repeated
augmentation for the same minibatch. As a result, DRA is
more efficient on ImageNet.

However, DRA uses WRN-28-10 as the proxy model, while
the counterparts adopt WRN-40-2. Since the proxy dataset
from CIFAR is small, the efficiency of DRA is not obvious,
while the influence of a larger proxy model dominates the
search time. Although the search time of DRA is slightly
longer than other differentiable methods, it is still within
0.5 GPU hours, which is short and affordable for wide
applications.

C. Results on ImageNet

ImageNet is a large-scale dataset with an almost balanced
class distribution. It has 1.3 M images in 1,000 classes from
daily life, which is totally different from the ones in CIFAR.
As mentioned by DeVries and Taylor [1] and Cubuk et al. [7],
augmentation that performs well on one dataset may not work

XIAO et al.: DRA: LEARNING SELECTING WEIGHTS AND MAGNITUDE DISTRIBUTIONS OF IMAGE TRANSFORMATIONS 2421

TABLE IV
ACCURACY (%) OF DIFFERENT AUGMENTATION METHODS ON IMAGENET. RESULTS OF MEAN±STD ARE REPORTED

ON THE AVERAGE OF THREE RUNS. BEST RESULTS ARE IN BOLD

well on another with different data distributions. Thus, directly
conducting a search on the task dataset is a proper choice.
Thanks to the efficiency of DRA, we can directly search on the
proxy of ImageNet rather than transferring the policy searched
on CIFAR. Following AA, we randomly sample 120 classes
from 1,000 classes in the training dataset of ImageNet with
50 images per class as the proxy dataset, and search for the
policy parameters on it. The Top-1 and Top-5 accuracy of
DRA and other augmentation methods are shown in Table IV,
which is also evaluated on three runs. Similar to experiments
on CIFAR, we reimplement RA under our framework for a
fair comparison. Note that the original training hyperparameter
settings of RA are different from other works, so we re-select
the value of RA hyperparameters and use NR A = 2 and
MR A = 10 in the following experiments as the baseline. This
setting is similar to the one in the original paper (NR A = 2,
MR A = 9), and has been adopted in other works [56], [57].
We also report the mean and standard deviation under three
runs.

As shown in Table IV, DRA has the best accuracy compared
with other methods with obvious improvement up to 0.28%
Top-1 accuracy over the re-implemented RA on ResNet-50.
Even the re-implemented RA has great improvement over
the original one, which attributes to the longer training time
for the model to converge with augmented images. Note that
the re-implemented RA under our settings shows competitive
Top-1 performance to the re-implemented one reported by
Liu et al. [9], demonstrating that the result is reasonable.
DRA also achieves the best performance on ResNet-200,
demonstrating the capability of DRA to adapt to different
target models. With DRA, the model learns more solid features
that yield better performance. However, the improvement over
RA on ResNet-200 is not as obvious as the one on ResNet-50.
We guess that this is due to the stronger ability of ResNet-200
to capture features in the input data, which may prefer larger
variances of the magnitudes of operators. With a larger value
of the initial standard deviation of magnitude σ of DRA, the
performance of ResNet-200 may further increase.

To further evaluate the effect of DRA on non-convolutional
neural networks, we conduct experiments on vision Trans-
former DeiT-Tiny with a patch size of 16, which is denoted
as DeiT-Ti-16 in Table IV. No distillation is applied during
training. The input resolution is set to 224. We reimplement
DeiT-Ti-16 with the same training hyperparameters except
for three augmentation settings, including the basic, RA,
and DRA. Since the comparison is designed to reveal the
power of DRA compared with RA on Transformers, other
augmentations apart from the basic random resized cropping
and horizontal flipping are not applied. The hyperparameter
settings generally follow the original DeiT-Basic. Note that
for RA we set NR A = 2 and MR A = 9, with a magnitude
standard deviation σ = 0.5. Apart from the additional usage
of a standard deviation that follows the setting in DeiT rather
than the original RA, we also set RA with a random applying
probability pt

∼ U (0.2, 0.8) for each operator during each
iteration to be consistent with DRA. The models are trained
from scratch, where each experiment is evaluated on three
runs.

As shown in Table IV, DRA also achieves the best per-
formance on ImageNet compared with the basic and RA,
with 0.16% Top-1 performance improvement. We also notice
a significant performance improvement is achieved in our
reimplemented version compared with the original one in [17],
which may arise from more candidate operators in DRA.
We also evaluate the performance of RA without the random
applying probability to be consistent with the setting in [17]
and the implementation without standard deviation as the
original design of RA, where the Top-1 accuracy is only
73.21% and 72.84% (not shown in Table IV), respectively. The
results demonstrate the generalization of DRA to be integrated
into more types of neural network structures, indicating bright
prospect for wide applications.

D. Transfer Learning on Object Detection

Using ImageNet pre-trained backbones is a common strat-
egy in object detection for fast convergence [58]. To evaluate

2422 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

TABLE V
OBJECT DETECTION RESULTS EVALUATED ON COCO MINIVAL.

DIFFERENT AUGMENTATION PRE-TRAINED BACKBONES ARE
USED FOR TRANSFER LEARNING. RESULTS OF AP (%) ARE

REPORTED ON THE AVERAGE OF THREE RUNS.
BEST RESULTS ARE IN BOLD

whether the backbone network trained with our DRA has a
stronger ability to help extract features in object detection,
we conduct experiments on the COCO dataset with pre-
trained backbones under three different settings, including
the basic, RA, and DRA. We test two single-stage detection
networks, RetinaNet and GFLV2, to better understand the
influence of pre-trained backbones on the performance where
detection heads have either weak or strong feature extraction
capability. We compare the mean bounding box Average
Precision (AP) to evaluate the performance. The results are
shown in Table V on the average of three runs. Models using
backbones pre-trained with DRA generally outperform the
basic and RA. In particular, DRA mainly helps to capture
features of medium-sized objects, while slightly sacrificing
the ability to capture those of smaller-sized objects. DRA
also helps to detect the coarse location of objects. These phe-
nomena are shown in both simplified settings and augmented
settings, which may explain how DRA helps models to extract
semantic features in the images.

E. Visualization

1) Visualize the Search Process: To better understand how
DRA works during the search, we visualize the changes of
the mean magnitude µ and selecting weights w of different
augmentation layers during the search process on CIFAR-10
and ImageNet using WRN-28-10 and ResNet-50, respectively.
The results are shown in Fig. 2.

As shown in Fig. 2 (a), DRA prefers a larger transform
intensity of geometric transformations while less for color
blending operators on CIFAR-10. Changes of µ of the same
operator in different layers are almost consistent, while they
are more severe for geometric transform operators in the
deeper augmentation layer.

For ImageNet shown in Fig. 2 (b), µ generally sharply
changes compared with CIFAR-10, indicating that ImageNet
requires stronger augmentations to yield better results. Geo-
metric transformation operators require larger magnitudes,
while color blending operators require smaller ones. Since µ

of some operators quickly reaches the upper bound of DRA,
we hypothesize that extending the range of these operators can
yield better performance.

We also notice that the changes of w on both CIFAR-10 and
ImageNet are not obvious compared with the initial values.
These small changes bring slight disturbance to uniform
sampling, allowing operators that are more favorable to the
dataset to be sampled at a higher frequency, while ensuring
increased diversity of augmented inputs. However, the small
disturbance may also explain why the improvement of only
learning the selecting weight of RA is not obvious on complex
models and datasets, as reported by both Cubuk et al. [5] and
in our experiments in the discussion section.

2) Visualize the Searched Results: We also display the final
searched magnitude parameters of both the mean and standard
deviation of magnitudes on CIFAR-10 and ImageNet in Fig. 3
with WRN-28-10 and ResNet-50, respectively. Note that the
sampled magnitudes of DRA should be within range [0, 1]

despite the distributions, thus the values out of the range
should be clipped. We show the complete ranges of µ ± σ

learned by DRA to give a more accurate description of the
sampled results of magnitudes after clipping, especially when
the learned range has a part out of [0, 1]. Both CIFAR-10
and ImageNet prefer large mean magnitudes for geometric
transformations, while the mean magnitudes for color transfor-
mations vary from different operators. The learned mean mag-
nitudes of ImageNet are generally larger than CIFAR-10 on the
1st augmentation layer, indicating a stronger ability of models
to learn features from images with heavier transformations on
ImageNet. However, it is not the case for the 2nd augmentation
layer. We find that the difference may be due to the influence of
the operator gradient during the search, which only affects the
estimation of policy parameters in augmentation layers except
for the deepest one. This is because the operator gradient is
passed through adjacent augmentation layers, thus the policy
parameters in the deepest layer have no operator gradient
passed. We also notice that the operator Cutout prefers to
have a larger standard deviation, which allows the generated
images to have different sizes of masked blocks. The learned
policy parameters are reasonable to understand. In general,
CIFAR-10 and ImageNet prefer different distributions of the
policy parameters, while the policy parameters in different
augmentation layers of the same dataset do not vary severely.
Detailed values for all searched policy parameters are listed
in Supplementary Materials Tables SI and SII.

3) Visualize the Loss Curves: To reveal the impact of DRA
on training the target model, we further analyzed whether
DRA makes training easier or harder. The loss curves during
training on ImageNet are used to measure the difficulty, which
is shown in Fig. 4. DRA has a larger augmented image
space compared with RA, which is expected to increase the
difficulty of training. Surprisingly, the results show that DRA
has both a smaller training and validation loss at the end
of the training. Meanwhile, the loss gap of DRA between
training and validation is also smaller. These results indicate
that DRA makes samples easier to be trained compared with
RA. We analyze that the reasons are from two aspects. For
one thing, DRA has a smaller average magnitude compared
with RA, which makes models easier to extract features
from variants of the original image. For another, since DRA
has a standard deviation that makes the sampled magnitudes

XIAO et al.: DRA: LEARNING SELECTING WEIGHTS AND MAGNITUDE DISTRIBUTIONS OF IMAGE TRANSFORMATIONS 2423

Fig. 2. Visualization of the search process for mean magnitudes µ and selecting weights w (after Softmax δ) in different augmentation layers. a) CIFAR-10
using WRN-28-10. b) ImageNet using ResNet-50.

Fig. 3. Visualization of the searched results of mean magnitudes µ and
standard deviations σ on CIFAR-10 (WRN-28-10) and ImageNet (ResNet-50).
The colored area shows the valid range for sampled magnitudes.

Fig. 4. Training and validation loss curves of ResNet-50 on ImageNet, which
are evaluated on three runs. Colored areas show the range of the loss while
lines show the average results.

different for the same operator, the same image has many
variants that show gradual deformations. These gradual defor-
mations fill the missing points in the original image space,
making the space smoother to be learned for the target model.

The easier training may explain why DRA has a better
performance compared with RA.

DRA slightly increases the performance while reducing the
training difficulty, which achieves a good balance between
the optimization of accuracy and diversity. It demonstrates a
balanced augmentation design between good performance and
randomness may exist in an adaptive policy to the target task.
We hope our DRA can enlighten future works for better design
of data augmentation that can further promote the accuracy,
with tricks such as augmentation customization or hard sample
mining.

V. DISCUSSION

DRA achieved admirable results compared with RA with
only a small search cost. To explore how DRA improves classi-
fication performance, we conduct ablation and hyperparameter
studies on ImageNet with ResNet-50. We also discuss the
influence of KL divergence and proxy task in our DRA in
this section. Hyperparameter settings are the same as the ones
in Section IV-A if not mentioned.

A. Components of DRA

The components of our DRA can be summarized as four
parts: learnable magnitude distributions, learnable selecting
weights, usage of operator gradients, and modification of the
outer optimization objective in bi-level optimization. The latter
two provide a more accurate estimation of the gradient for the
learnable policy parameters. To further understand how these
components affect the performance, we explore the gradual
impact of these components and list the ablation results in
Table VI, focusing on the improvement of Top-1 accuracy
on ImageNet with ResNet-50. Results are evaluated on the
average of three runs.

We find that the proposed components can gradually
improve performance, especially for the learnable magnitude
distributions and usage of KL divergence. The joint usage of
the learnable policy parameters and optimization for gradient
estimation obviously contribute to performance improvement.

2424 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

TABLE VI
ABLATION STUDY OF DRA ON IMAGENET

TABLE VII
IMPACT OF MAGNITUDE PARAMETERS OF DRA ON IMAGENET

Besides, accurate gradient estimations for differentiable meth-
ods also contribute to good results.

B. Magnitude Distribution

We further explore the impact of magnitude distributions
that improve performance of DRA. We compare the perfor-
mance of six cases to explore the detailed impact of magnitude
parameters, including fixed magnitudes, learnable magnitudes,
magnitudes following fixed distributions, learnable magnitude
distributions with a fixed standard deviation, learnable magni-
tude distributions with a fixed mean, and learnable magnitude
distributions. The results are shown in Table VII, which are
evaluated on three runs.

Learning both the mean magnitudes µ and the standard
deviation of the magnitude distribution σ yields the best
performance compared with other settings. Different values
of learnable µ indicate the preferences of different operators
on the dataset. Meanwhile, different values of learnable σ

provide more chances for operators to sample magnitudes m
within a range, where the range depends on both the character
of the operator and the dataset. Even learning µ alone can
slightly improve performance compared with using a fixed µ.
However, magnitude following distribution alone does not
obviously improve model performance. These results demon-
strate that learnable distributions, rather than using magnitudes
following distributions, account for major improvement in
performance. Another interesting finding is that learnable mag-
nitude distributions with fixed µ and learnable σ even slightly
hurt performance compared to the ones with both fixed µ

and σ . This is due to random factor ϵ in the reparameterization
trick (as shown in Equation (13)) that severely influences σ .
The influence becomes obvious when only σ is learnable.

C. KL Divergence

KL divergence is used to measure the differences between
the two distributions. It has been adopted in automatic data
augmentation to avoid outliers caused by the removal of part of

Fig. 5. Impact of some hyperparameters on ImageNet evaluated with
ResNet-50. a) The ratio of KL divergence during searching. b) The total
number of augmentation layers.

the semantic information when applying heavy augmentations
[39]. Inspired by the idea, we also introduce KL divergence
to refine the searched policy parameters in our DRA to avoid
generating various outliers.

To explore the impact of KL divergence in DRA, we choose
a group of λ and evaluate the performance of the models with
different λ . Results are evaluated on three runs. As shown
in Fig. 5 (a), with the increase of λ , the performance first
decreases, then increases, and then decreases, which reaches
the peak when λ = 1.0. We analyze that DRA benefits from
the suitable ratio of KL loss, which not only helps the model
to learn policy parameters that can train models to deviate
from the local optimum, but also avoids severe degradation of
augmented images to original ones.

Although more values of λ is worth trying and a care-
ful selection might further increase model performance,
we choose λ = 1.0 in our experiments for simplicity.

D. Augmentation Depth

With more augmentation layers, the transformation of the
input image is expected to be more obvious and severe, which
will increase the diversity of the input dataset. However,
more augmentation layers may also introduce outliers that
lose important semantic information and hurt model perfor-
mance. To explore the impact of augmentation depth for DRA,
we conduct experiments with different total augmentation
depths D ranging from 1 to 4. Results are illustrated in
Fig. 5 (b), which are evaluated on three runs. The performance
first increases and then gradually decreases with the increase
in D. We analyze that the increase is due to inadequate
transformations when the augmentation depth is too shallow
(D = 1). However, when D goes up to 3, the augmented
data will be placed into a complex image space for the model
to learn from, which increases the difficulty of the model to
converge. Besides, semantic information of the original images
might be severely corrupted due to the combo of different
operators. Moreover, we also notice that our finding is different
from the one reported by Hataya et al. [10], because we find
the number of sub-policies in Faster AA is 10, which only has
a total of 2D

×10 variants after augmentation. This augmented
space is too small for ImageNet, which limits the model to
reach better performance.

In our experiments, we select D = 2 that not only achieves
the best performance compared with other augmentation depth

XIAO et al.: DRA: LEARNING SELECTING WEIGHTS AND MAGNITUDE DISTRIBUTIONS OF IMAGE TRANSFORMATIONS 2425

Fig. 6. Decrement of performance on ImageNet using ResNet-50 with each
operator removed from the candidate operator set. Results are reported on the
average of three runs. The policy parameters are searched from scratch after
the removal of operators.

settings, but is also consistent with other differentiable meth-
ods for a fair comparison.

E. Operators

Operators transform images into different variants that
provide deformations to the input dataset to improve the
robustness of the trained models. However, the improper use of
operators may hurt performance. As reported by Cubuk et al.
[5], not all operators are beneficial to performance. To get a
sense of the influence of each operator, we separately remove
each operator in the candidate operator set of DRA and
evaluated the performance.

In particular, we remove one operator from the candidate
operator set and search for new policy parameters on the
remaining ones to evaluate the performance decrement. The
results are shown in Fig. 6 on the average of three runs.
We group the operators into three groups, including geomet-
ric transformations (left), color transformations with magni-
tudes (middle), and color transformations without magnitudes
(right). Removing any of the operators causes performance
to decrease. We also find rotation is the most important to
the classification on ImageNet. Besides, transformations in the
x-axis contribute more to performance compared with those in
the y-axis in geometric transformations. Color transformations
with magnitudes contribute similarly to performance. For color
transformations without magnitudes, the contributions vary
significantly, with invert showing poor contribution compared
with contrast changing operators.

The results show that ImageNet prefers variants generated
from both geometric and color transformations, demonstrating
the complexity of the dataset that requires abundant transfor-
mations during training for better generalization. Experiments
with more operators in the candidate set are worth evaluation
in the future, which we believe will further improve perfor-
mance of DRA on ImageNet.

F. Proxy Task

1) Reasons to Use the Proxy Task: Differentiable automatic
augmentations generally use the proxy task to reduce the

TABLE VIII
IMPACT OF THE DESIGN OF PROXY TASK FOR

DRA EVALUATED ON CIFAR-100

search cost, which sacrifices the precision of gradient esti-
mation and slightly decreases the performance as reported by
Lim et al. [31]. To better estimate the loss in the outer loop of
bi-level optimization, RA searches the policy parameters
directly on the target task [5]. However, it also introduces
heavy constraints to reduce the size of the search space, thus
the flexibility is also constrained. The search cost of RA is also
limited by the scale of the target dataset, which is difficult to
reduce further.

Considering both the advantages and disadvantages, our
DRA adopts the proxy task with several tricks for better
estimation of the gradient, which strikes a balance between
the search cost and performance. The search strategy based on
the proxy task works well, thus we believe DRA is practical
and worthwhile for wide applications. In the future, we will
try to apply DRA directly on the target dataset, which is in
theory more precise for gradient optimization.

2) Impact of the Proxy Model: DRA adopts the target
model as the proxy model to search the optimal augmentation
strategy. The idea is intuitive because the search on the target
model is expected to have a smaller gap to the target task com-
pared with the search on a smaller proxy model. To explore
whether the intuition is correct, we evaluate the impact of
proxy models on CIFAR-100. We compare the performance
of both WRN-28-10 and PyramidNet+ShakeDrop trained on
policies found on themselves and the smaller proxy model
WRN-40-2. We also compare the performance of WRN-28-
10 trained on the policy found on PyramidNet+ShakeDrop
that can be viewed as a larger proxy model. The results are
shown in Table VIII.

The usage of both smaller and larger proxy models
decreases performance of the target tasks, indicating the selec-
tion of the proper proxy model is important for proxy tasks.
The intuitive idea that directly using the target model as the
proxy model can reduce the gap between proxy tasks and
target tasks and promote the final performance.

Besides, the performance gaps between PyramidNet+
ShakeDrop with policies searched on different proxy models
are smaller than WRN-28-10, indicating that the impact of
proxy models on larger models is smaller. This finding may
support that DRA is more suitable for smaller models that
require more regularization to achieve better performance.

3) Impact of the Balanced Proxy Dataset: Following previ-
ous proxy-based automatic data augmentation methods, DRA

2426 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

randomly samples part of the images from the training dataset
of the class-balanced dataset CIFAR as the proxy dataset.
For CIFAR-100 that has many classes, the randomly sampled
small-scale proxy dataset may be unbalanced. We note that
previous works neglect the analysis of whether a randomly
sampled dataset or a balanced proxy dataset is better for the
proxy task on the balanced target dataset. To further evaluate
the impact, we compare the performance of DRA trained on
a randomly sampled proxy dataset and a stratified one from
the CIFAR-100 training dataset, respectively. Note that the
separation of the stratified proxy dataset to two halves for
proxy search is random, which is the same as in previous
experiments. The results show that a balanced proxy dataset
does not benefit the target task on the balanced target dataset.
Randomly sampling the proxy dataset is enough to yield
satisfactory performance.

G. Influence to Future Works

DRA increases the performance compared with RA. Mean-
while, it reduces the training difficulty, which achieves a good
balance between the optimization of accuracy and randomness.
It demonstrates that a balanced policy design may exist in
adapting the policy to the specific target task. We hope the idea
presented in DRA can enlighten future works for better design
of data augmentation that can further promote the accuracy.

A specific way that is worthwhile trying is online DRA
with techniques such as adversarial learning [59], hard sample
mining, or knowledge distillation [39]. With the improvement
in controlling the difficulty of generated samples or transform-
ing samples with adjustive policies, DRA may achieve better
performance. These prospections are also our future efforts.

Due to the simple design and offline characteristics, trans-
ferring DRA to existing training pipelines is easy to achieve
with almost no extra training budget, especially on applications
that use RA as an augmentation strategy. Besides, DRA may
promote model performance in cases with limited calculation
sources or large cost for new data collection, such as mobile
computing and medical image analysis [60]. It shows wide
prospectives to the community.

VI. CONCLUSION

In this work, we focus on the inflexibility and large search
cost of RandAugment (RA), and propose Differentiable Ran-
dAugment (DRA), a method that can automatically learn
the selecting weights and magnitude distributions of different
transformations. DRA generally outperforms RA with a small
search cost. It adopts the search space of RA and models
the magnitude of each transformation following a learnable
normal distribution, and uses relaxation and approximation to
differentiate learnable policy parameters. We also introduce
operator gradients and KL divergence to reduce the bias
in gradient estimation. Experiments on several datasets and
tasks demonstrate the efficiency and effectiveness of DRA,
especially on the classification of ImageNet. Our DRA is one
of the few to outperform RA on ImageNet under a similar
training budget. We believe this framework can be integrated
into more computer vision tasks, serving as a baseline for
subsequent research.

ACKNOWLEDGMENT

The authors would like to thank Weichen Yu, Qinglin Zhu,
Jiyang Guan, and Xinjian Wu for their help.

REFERENCES

[1] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” 2017, arXiv:1708.04552.

[2] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” 2017, arXiv:1710.09412.

[3] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and
B. Lakshminarayanan, “AugMix: A simple data processing method to
improve robustness and uncertainty,” 2019, arXiv:1912.02781.

[4] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “CutMix:
Regularization strategy to train strong classifiers with localizable fea-
tures,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6023–6032.

[5] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical
automated data augmentation with a reduced search space,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2020, pp. 702–703.

[6] J. Qin, J. Fang, Q. Zhang, W. Liu, X. Wang, and X. Wang, “ResizeMix:
Mixing data with preserved object information and true labels,” 2020,
arXiv:2012.11101.

[7] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“AutoAugment: Learning augmentation strategies from data,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 113–123.

[8] Y. Li, G. Hu, Y. Wang, T. Hospedales, N. M. Robertson, and
Y. Yang, “DADA: Differentiable automatic data augmentation,” 2020,
arXiv:2003.03780.

[9] A. Liu, Z. Huang, Z. Huang, and N. Wang, “Direct differentiable
augmentation search,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2021, pp. 12219–12228.

[10] R. Hataya, J. Zdenek, K. Yoshizoe, and H. Nakayama, “Faster AutoAug-
ment: Learning augmentation strategies using backpropagation,” in Proc.
Eur. Conf. Comput. Vis. Glasgow, U.K.: Springer, 2020, pp. 1–16.

[11] X. Zhang, Q. Wang, J. Zhang, and Z. Zhong, “Adversarial AutoAug-
ment,” 2019, arXiv:1912.11188.

[12] C. Lin et al., “Online hyper-parameter learning for auto-augmentation
strategy,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6579–6588.

[13] S. G. Müller and F. Hutter, “TrivialAugment: Tuning-free yet state-of-
the-art data augmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2021, pp. 774–782.

[14] T. C. LingChen, A. Khonsari, A. Lashkari, M. R. Nazari, J. S. Sambee,
and M. A. Nascimento, “UniformAugment: A search-free probabilistic
data augmentation approach,” 2020, arXiv:2003.14348.

[15] R. Hataya, J. Zdenek, K. Yoshizoe, and H. Nakayama, “Meta approach
to data augmentation optimization,” in Proc. IEEE/CVF Winter Conf.
Appl. Comput. Vis. (WACV), Jan. 2022, pp. 2574–2583.

[16] S. Mounsaveng, I. Laradji, I. B. Ayed, D. Vazquez, and M. Pedersoli,
“Learning data augmentation with online bilevel optimization for image
classification,” in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Jan. 2021, pp. 1691–1700.

[17] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jegou, “Training data-efficient image transformers & distilla-
tion through attention,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 10347–10357.

[18] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 10012–10022.

[19] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf

[20] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[21] T.-Y. Lin et al., “MicroSoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis. Zürich, Switzerland: Springer, 2014,
pp. 740–755.

[22] P. Chen, S. Liu, H. Zhao, and J. Jia, “GridMask data augmentation,”
2020, arXiv:2001.04086.

[23] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data
augmentation,” in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 7,
pp. 13001–13008.

XIAO et al.: DRA: LEARNING SELECTING WEIGHTS AND MAGNITUDE DISTRIBUTIONS OF IMAGE TRANSFORMATIONS 2427

[24] H. Zhang, Z. Xu, X. Han, and W. Sun, “Data augmentation using bit-
plane information recombination model,” IEEE Trans. Image Process.,
vol. 31, pp. 3713–3725, 2022.

[25] J.-B. Grill et al., “Bootstrap your own latent—A new approach to self-
supervised learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 21271–21284.

[26] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9729–9738.

[27] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 1597–1607.

[28] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” 2020,
arXiv:2004.13649.

[29] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
Presented at the NIPS Workshop Deep Learn. Unsupervised Feature
Learn., 2011.

[30] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, arXiv:1611.01578.

[31] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast AutoAugment,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–11.

[32] D. Ho, E. Liang, X. Chen, I. Stoica, and P. Abbeel, “Population based
augmentation: Efficient learning of augmentation policy schedules,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 2731–2741.

[33] X. Wang, X. Chu, J. Yan, and X. Yang, “DAAS: Differentiable archi-
tecture and augmentation policy search,” 2021, arXiv:2109.15273.

[34] K. Zhou et al., “DHA: End-to-end joint optimization of data augmenta-
tion policy, hyper-parameter and architecture,” 2021, arXiv:2109.05765.

[35] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” 2018, arXiv:1806.09055.

[36] X. Dong and Y. Yang, “Searching for a robust neural architecture in four
GPU hours,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1761–1770.

[37] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud, “Back-
propagation through the void: Optimizing control variates for black-box
gradient estimation,” 2017, arXiv:1711.00123.

[38] R. Wightman, H. Touvron, and H. Jégou, “ResNet strikes back: An
improved training procedure in timm,” 2021, arXiv:2110.00476.

[39] L. Wei, A. Xiao, L. Xie, X. Zhang, X. Chen, and Q. Tian, “Circum-
venting outliers of AutoAugment with knowledge distillation,” in Proc.
Eur. Conf. Comput. Vis. Glasgow, U.K.: Springer, 2020, pp. 608–625.

[40] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel–Softmax,” 2016, arXiv:1611.01144.

[41] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribu-
tion: A continuous relaxation of discrete random variables,” 2016,
arXiv:1611.00712.

[42] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” 2013,
arXiv:1308.3432.

[43] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[44] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski, “Kornia:
An open source differentiable computer vision library for PyTorch,”
in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2020,
pp. 3674–3683.

[45] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1–12.

[46] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Oper. Syst. Design Implement.
(OSDI), 2016, pp. 265–283.

[47] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

[48] J. Song, Y. Chen, J. Ye, and M. Song, “Spot-adaptive knowledge
distillation,” IEEE Trans. Image Process., vol. 31, pp. 3359–3370, 2022.

[49] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2980–2988.

[50] P. Ren et al., “A comprehensive survey of neural architecture search:
Challenges and solutions,” ACM Comput. Surv., vol. 54, no. 4, p. 76,
2021.

[51] S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2016,
arXiv:1605.07146.

[52] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5927–5935.

[53] Y. Yamada, M. Iwamura, T. Akiba, and K. Kise, “Shakedrop
regularization for deep residual learning,” IEEE Access, vol. 7,
pp. 186126–186136, 2019.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[55] S. R. Bulo, L. Porzi, and P. Kontschieder, “In-place activated BatchNorm
for memory-optimized training of DNNs,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5639–5647.

[56] M. Tan and Q. Le, “EfficientNetV2: Smaller models and faster training,”
in Proc. Int. Conf. Mach. Learn., 2021, pp. 10096–10106.

[57] I. Bello et al., “Revisiting ResNets: Improved training and scaling
strategies,” Presented at the Adv. Neural Inf. Process. Syst., 2021.

[58] K. He, R. Girshick, and P. Dollár, “Rethinking ImageNet pre-training,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 4918–4927.

[59] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le,
“Adversarial examples improve image recognition,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 819–828.

[60] J. Ying et al., “Two fully automated data-driven 3D whole-breast
segmentation strategies in MRI for MR-based breast density using image
registration and U-Net with a focus on reproducibility,” Vis. Comput.
Ind., Biomed., vol. 5, no. 1, p. 25, Oct. 2022.

Anqi Xiao is currently pursuing the Ph.D. degree
with the CAS Key Laboratory of Molecular Imag-
ing, Beijing Key Laboratory of Molecular Imaging,
Institute of Automation, Chinese Academy of Sci-
ences, under the supervision of Prof. Zhenhua Hu.
Her research interests include deep learning and its
application in medical images.

Biluo Shen received the master’s degree from the
Beijing Key Laboratory of Molecular Imaging, Insti-
tute of Automation, Chinese Academy of Sciences.
His research interests include deep learning, com-
puter vision, and neural architecture search.

Jie Tian (Fellow, IEEE) received the Ph.D. degree
from the Institute of Automation, Chinese Academy
of Sciences, Beijing, China. He is currently the Chief
Scientist of the CAS Key Laboratory of Molecu-
lar Imaging, Beijing Key Laboratory of Molecular
Imaging, Institute of Automation, Chinese Academy
of Sciences, and also with the Beijing Advanced
Innovation Center for Big Data-Based Precision
Medicine, School of Engineering Medicine, Beihang
University. His research interests include optical
multimodality molecular imaging technology devel-

opment and artificial intelligence (AI) in radiomics.

Zhenhua Hu (Senior Member, IEEE) received
the Ph.D. degree from Xidian University, Xi’an,
Shaanxi, China. She is currently a Professor with the
CAS Key Laboratory of Molecular Imaging, Beijing
Key Laboratory of Molecular Imaging, Institute of
Automation, Chinese Academy of Sciences. Her
research interests include Cerenkov luminescence
imaging and tomography, and fluorescence-guided
surgeries.

