
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023 1257

Spectral Clustering Super-Resolution Imaging
Based on Multispectral Camera Array

Feng Huang , Yating Chen, Xuesong Wang, Shu Wang , and Xianyu Wu

Abstract— Although multispectral and hyperspectral imaging
acquisitions are applied in numerous fields, the existing spectral
imaging systems suffer from either low temporal or spatial
resolution. In this study, a new multispectral imaging system—
camera array based multispectral super resolution imaging
system (CAMSRIS) is proposed that can simultaneously achieve
multispectral imaging with high temporal and spatial resolutions.
The proposed registration algorithm is used to align pairs of
different peripheral and central view images. A novel, super-
resolution, spectral-clustering-based image reconstruction algo-
rithm was developed for the proposed CAMSRIS to improve
the spatial resolution of the acquired images and preserve the
exact spectral information without introducing false information.
The reconstructed results showed that the spatial and spectral
quality and operational efficiency of the proposed system are
better than those of a multispectral filter array (MSFA) based on
different multispectral datasets. The PSNR of the multispectral
super-resolution images obtained by the proposed method were
respectively higher by 2.03 and 1.93 dB than those of GAP-TV
and DeSCI, and the execution time was significantly shortened
by approximately 54.55 s and 9820.19 s when the CAMSI dataset
was used. The feasibility of the proposed system was verified in
practical applications based on different scenes captured by the
self-built system.

Index Terms— Snapshot multispectral camera array, computa-
tional imaging, hierarchical clustering, multiple local-geometric
transformations, spectral clustering super-resolution, adaptive
kernel.

I. INTRODUCTION

CONVENTIONAL color cameras only acquire images of
targets by using three broad spectral bandwidths (red,

green, and blue). Although these three spectral bandwidths are
sufficient to meet the needs of human vision, higher spectral
resolution images are needed to detect information that cannot
be directly observed by human vision. For example, multispec-
tral imaging can acquire dozens of spectral images of targets.
These are extensively used in biomedical imaging, medical
diagnostics, and remote sensing [1], [2], [3], [4], [5], [6]. Mul-
tispectral or hyperspectral imaging technologies can be catego-
rized into spatial-scanning or spectral-scanning spectrometers,
snapshot multispectral imaging systems, and computational
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multispectral imaging systems. Spatial-scanning multispectral
imaging systems collect all the spectral information from a
single point or a single spatial line of the target scene [7].
Spectral-scanning multispectral imaging systems were cre-
ated based on bandpass filter wheels or tunable filters, such
as liquid crystal tunable filters (LCTFs) and acousto-optical
tunable filters (AOTFs). Hence, the imaging quality of the
spatial-scanning and spectral-scanning spectrometers is time
sensitive [8]. Scanning-based multispectral imaging systems
require multiple exposures to capture complete multispectral
information of the target scene, thus hindering the appli-
cation of multispectral imaging systems to dynamic scenes
and high-speed targets [9], [10], [11]. To overcome the
shortcomings of the scanning-based multispectral imaging
techniques, snapshot multispectral imaging techniques and
computational spectral imaging techniques are proposed to
acquire the multispectral images of dynamic scenes. The
snapshot multispectral imaging systems includes snapshot
multispectral imaging sensors, multi-aperture multispectral
imaging systems, and a coded aperture snapshot spectral
imager. The coded aperture snapshot spectral imager com-
prises a binary coded aperture and a disperser based on a
single dispersive element and employs compressive sensing
methods to restore spectral images [12]. Arce’s group replaced
the traditional random binary coded apertures with colored
coded apertures to improve the compressive capabilities of
CASSI; this was achieved by optimizing the colored-coded
apertures to minimize the number of projections and maximize
the reconstruction quality [13], [14], [15]. The multi-aperture
imaging systems can be modified for spectral imaging by
using bandpass filters, band-stop filters, continuous variable
filters, or the linear variable spectral filter. Recently, Hubold
et al. placed a slanted linear variable spectral filter near the
entrance pupil of the microlens array, multi-aperture imaging
system to realize snapshot multispectral imaging [16]. The
aforementioned two types of snapshot multispectral imag-
ing consist of a dispersive element or variable filter, which
requires a sophisticated optical system to focus multi-bands
on a single focal plane array. Genser et al. built a multi-
aperture, camera array imaging system for multispectral imag-
ing using bandpass filters (CAMSI), wherein each aperture
was equipped with a separate sensor [17]. There no non-
redundant spatial motion information between images captured
by different apertures in the CAMSI. Therefore, the captured
multispectral images cannot be used for super-resolution image
reconstruction. Limited by the transmission bandwidth of the
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system, CAMSI is not conducive to multi-spectral imaging
with high spatial resolution. To align multispectral images
captured by different apertures, Genser et al. [17] proposed
a new registration and reconstruction algorithm based on the
spatial symmetry of the aperture layout and correlation of
different spectra. However, the registration algorithm requires
a system with superior assembly accuracy. The snapshot mul-
tispectral sensors directly capture multispectral images using
a division-of-focal-plane micro bandpass filter array. Geelen
et al. [18] and Kanaev et al. [19] demonstrated a 16-band, vis-
ible spectrum, snapshot multispectral sensor, and 9-band near-
infrared snapshot multispectral sensor, respectively. As the
spectral data captured by a snapshot multispectral sensor
are multiplexed onto a single imaging sensor, the spatial
resolution of each spectral image was low. To improve the
spatial resolution of the spectral image captured by snapshot
multispectral imaging sensors, dozens of demosaicking algo-
rithms have been proposed and demonstrated, including the
edge-sensing interpolation algorithm [20], adaptive residual
interpolation algorithm [21], [22], [23], [24], and compressed
sensing algorithms [25], [26]. However, when multispectral
imaging sensors are designed using a large number of spectral
bands, the reconstruction effectiveness and imaging quality
of most demosaicking algorithms become limited. This is
owing to the image mechanism of the snapshot multispectral
imaging sensors that result in low-spatial resolution, single-
band spectral images.

In this study, camera array based multispectral super res-
olution imaging system (CAMSRIS) is proposed; this sys-
tem adopts bandpass filters to capture spectral information
and exploits nonredundant spatial motion information among
apertures to reconstruct super-resolution images. CAMSRIS
can simultaneously achieve multispectral imaging with high
temporal and spatial resolutions. The flexibility of the system
in bandpass filter and focal plane array selection is suitable
for the realization of low-cost CAMSRIS. Given that the geo-
metrical rectification between pairs of apertures is expressed
by multiple local-geometric transformations, and given that
different band images have different texture structures in
real scenes, the coarse-to-fine registration algorithm based on
the hierarchical clustering of feature points (Crab-HFP) is
proposed to achieve fast global subpixel registration between
pairs of different band images. Although many demosaicking
algorithms have been proposed, they are not suitable for
CAMSRIS, because most of these methods are specially
designed for multispectral filter array patterns. Because the
spectral information captured by the apertures is different
from each other, the conventional multi-image super-resolution
reconstruction algorithms [27], [28], [29], [30] are not appli-
cable for the proposed CAMSRIS. To the authors’ best knowl-
edge, image super-resolution algorithms for camera array
based multi-spectral imaging systems have not been published.
In this study, a novel super-resolution image reconstruction
algorithm for the proposed CAMSRIS is developed in which
the spectral clustering based super-resolution reconstruction
algorithm (SCSR) can improve the spatial resolution of the
acquired images and preserve the exact spectral information
without introducing false information. Simulations and field

tests are conducted to generate multispectral super-resolution
imaging for verification.

In Section II, the principles and observation model of
the proposed CAMSRIS are introduced. Section III presents
the prototype CAMSRIS built for demonstration. The spe-
cific implementation process of Crab-HFP is elaborated in
Section IV. In Section V, the proposed SCSR for the
CAMSRIS prototype is introduced. In Section VI, the pro-
posed Crab-HFP and SCSR algorithms are verified based on
simulations, indoor experimentation, and field tests; experi-
mental results are then compared with the multispectral images
reconstructed by the state-of-the-art demosaicking algorithms
based on multispectral filter array (MSFA) (e.g., BTES, GAP-
TV, and DeSCI) both qualitatively and quantitatively.

The main contributions of the paper are as follows: (1)
A novel multispectral camera array-based, spatial super-
resolution imaging system is proposed. (2) A complete pro-
cessing chain is provided ranging from the system design,
image rectification, super-resolution reconstruction, and the
final qualitative and quantitative indices. (3) The proposed
Crab-HFP is used to solve the geometrical rectification prob-
lem between apertures in the form of multiple local-geometric
transformations. (4) The spatial resolution of images captured
by the multispectral camera array is improved based on the
proposed SCSR algorithm according to the characteristics of
the nonredundant spatial motion information among apertures.
Furthermore, the SCSR algorithm achieves faster and higher
quality reconstruction outcomes than existing methods in the
spatial and spectral domains.

II. PRINCIPLE AND MODEL FOR SUPER-RESOLUTION
IMAGING IN A MULTISPECTRAL CAMERA ARRAY

A. Super Resolution Imaging in a Camera Array

The proposed CAMSRIS consists of a camera array and
an array of bandpass filters and can be modeled as a planar
compound-eye imaging system, as shown in III. The sampling
deviation 1d between adjacent apertures can be calculated
using

1d =
S · f
P · R

(1)

where f denotes the focal length, S denotes the interval
between adjacent apertures, P is the pixel size of the detector,
and R is the object distance. Equation (1) shows that the
sampling deviation between adjacent apertures varies with the
object distance. Multi-aperture super-resolution reconstruction
requires that the sampling deviation is at the subpixel level
to achieve nonredundancy between apertures. During camera
array assembly, errors of optical axis parallelism are inevitable.
This random error guarantees that the sampling deviation is a
random subpixel deviation unaffected by the object distance
and avoids excessive redundancy between apertures [31].
This demonstrates that the multi-aperture imaging system has
practical super-resolution imaging capability when the non-
redundant spatial information provided by the captured image
sequence is used.
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The observation model of the camera array can be expressed
as,

In
L = DWn I H + en (n = 1 . . . N ) (2)

where, In
L ∈ Rm×1 is a lexicographically ordered vector of

the acquired image of camera n, I H ∈ Rm N×1 is the high-
resolution scene to be estimated, Wn is the warping matrix
defined by the geometrical transformation relating the image
recorded by camera n with the reference image, en is noise,
en ∈ Rm×1 is the number of each camera, N is the number of
apertures, and D is the bi-dimensional downsampling operator
for the imaging focal plane arrays which captures blur due to
pixel integration. Typically, Gaussian or bicubic downsampling
operators are used. In this study, the implemented image super-
resolution method utilized the aliased high-frequency informa-
tion of the input low-resolution images. There is no usable high
frequency information beyond the optical cutoff frequency due
to spectral decay imposed by optical blur [32], [33]. So the
observation model of the camera array based super resolution
imaging system in this paper does not contain optical blur.
The sensing matrix of the CAPSRIS is defined as follows:

M =


DW1
DW2

...

DWn

 (3)

(2) can also be written as:

I L = M I H + e (4)

where I L ∈ Rm N×1 and e ∈ Rm N×1 are the concatenation of
all In

L and en respectively. M ∈ Rm N×m N is a sparse matrix.
The super-resolution reconstruction process of the camera

array is to reconstruct
√

N ×
√

N images into a higher-
resolution image [31]. The cutoff angular frequency of a single
aperture in a camera array is the Nyquist angular frequency
[34]. The frequency response greater than the Nyquist angu-
lar frequency is the response of the aliasing signal, which
appears as an artifact on the image. The essence of super-
resolution reconstruction is to disentangle the high-frequency
information aliased in low resolution images; that is, to restore
the frequency components greater than the Nyquist angular
frequency [31], [35], [36], [37], [38]. The spatial resolution of
the reconstructed image is

√
N times that of a low-resolution

image if all images captured by the camera array are com-
pletely non-redundant. The non-redundancy among apertures
depends on the relationship between diffraction limit fre-
quency, Nyquist frequency and the number of apertures [34].

The diffraction limit angular frequency is defined as:

fdi f f raction =
A

1.22λ
(5)

and the Nyquist angular frequency is defined as:

fN yquist =
f

2P
(6)

Without considering factors such as registrational accuracy
and optical aberration, the theoretical super-resolution magni-

Fig. 1. Schematic of the proposed multispectral multi-aperture imaging
system. The field-of-views of the images acquired by different apertures are
not the same owing to the offset of each camera position, machining accuracy
of the mechanical parts, and the assembly error of the optical system.

fication can be expressed as:

rS R = min
(

fdi f f raction

fN yquist
,
√

N
)

= min
(

2AP
1.22λ f

,
√

N
)

(7)

where A is the aperture diameter of the lens, and λ is the
wavelength.

B. Observation Model for the Multispectral Camera Array

Each aperture corresponds to a unique bandpass filter in III;
the observation model can be expressed as,

In
L = DWn Sn I H + en (n = 1 . . . N ) (8)

where Sn is a spectral operator that is related to the filter prop-
erty such as the filter bandwidth and the spectral signatures
of the imaged scene, so it cannot be determined a priori [19].
The high-resolution kth band scene to be estimated, is defined
as Ik

H = Sk I H , Ik
H ∈ Rm N×1. The observation model of the

CAMSRIS can be written as follows:

In,k
L = DWn Ik

H + en (n = k, k = 1 . . . N ) (9)

where k is the number of each band, and
{

In,k
L ∈ Rm×1

}N

n=1
is the low-resolution multi-aperture images of the k-th band.
The image only, i.e., the case wherein n = k, is captured by

the CAMSRIS within
{

In,k
L

}N

n=1
. Therefore, to create images

of other apertures in the k-th band, this paper proposes SCSR.
The images generated by the proposed SCSR algorithm are
utilized to reconstruct the high-resolution image of the kth
band. Thus, (9) can also be modified as follows:

In,k
L = DWn Ik

H + en (n = 1 . . . N , k = 1 . . . N ) (10)

Ik
L = M Ik

H + e (k = 1 . . . N ) (11)

where Ik
L ∈ Rm N×1 are the concatenation of all In,k

L of the
k-th band.
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Fig. 2. Super-resolution reconstructed results of WNNM and LR-GSC using simulated data of CAMSRIS. The size of the reconstructed image is 1500×1098.
(a) Ground truth color image. (b) and (c) are the reconstructed results of color target objects (model car, flower) obtained by WNNM and LR-GSC, respectively,
and (d) and (e) are the reconstructed results of colorless target objects (resolution test chart, alphabet) in the red box.

III. CONSTRUCTION OF THE MULTISPECTRAL CAMERA
ARRAY SYSTEM

As long as fdi f f raction > fN yquist , the images acquired
by this optical system have the potential for super-resolution
processing. To ensure the requirement of nonredundancy
among apertures for image super-resolution processing, we set
fdi f f raction ≥

√
N · fN yquist . This is done to consider

the influence of the optical imaging system manufacturing
error, aberration, and image registration error, thus letting
fdi f f raction

/
fN yquist be larger than

√
N . The CAMSRIS

developed in this study consists of nine imaging apertures.
According to (7), the value of fdi f f raction

/
fN yquist is affected

by the focal length, F-number of the lens, and the pixel size
of the camera. Hence, the Basler C125-2522-5M-P lens (with
a fixed focal length of 25 mm, F2.2) and Hikvision MV-
CA004-10UM camera (Sony IMX287, pixel size 6.9 µm ×

6.9 µm) are used to build the CAMSRIS prototype, as shown
in Fig. 2 (c). According to (7), at the central wavelength
of the imaging sensor of the selected camera at 550 nm,
we have fdi f f raction

/
fN yquist ≈ 9.348 ≫ 3, hence, rS R =

√
9 = 3. At the central wavelength of the selected band, the

corresponding fdi f f raction
/

fN yquist value is also greater than
three. Therefore, the optical imaging system of the CAMSRIS
prototype achieves a super-resolution factor of three. All the
cameras are synchronized by software triggering to ensure that
they simultaneously capture the target images. The spectral
response curve of sensor is shown in Fig. 2 (b). The bandpass
filters implemented in the prototype are Thorlabs bandpass
filters (FB440-10, FB470-10, FB500-10, FB530-10, FB550-
10, FB580-10, FB620-10, FB660-10, FB700-10), and their
corresponding wavelengths are all within the spectral response
region of the sensor, as shown in Fig. 2 (a). The intervals
between the central wavelength of the bandpass filters are
selected to be approximately equally distributed.

IV. COARSE-TO-FINE REGISTRATION ALGORITHM BASED
ON THE HIERARCHICAL CLUSTERING OF FEATURE POINTS

Each aperture in the camera array proposed in this study is
equipped with an independent detector. Owing to the differ-
ence in the imaging perspective between the apertures, there

is a geometrical transformation between the images captured
by the apertures denoted by Wn in (7). The warping matrix
Wn must be solved before super-resolution reconstruction. It is
impossible to achieve a global registration only based on the
3×3 homograph matrix in a complex three-dimensional scene.
Given these issues, the traditional method is used to divide
the image into several sub-blocks, and to perform registration
between the sub-blocks independently. The traditional algo-
rithm has two fundamental problems. The first problem is that
the size of the sub-block is difficult to determine [39]. The
second problem is that the regional registration algorithm used
by the sub-block is associated with an increased multispectral
image mismatch rate. In addition, the classic stereo-matching
algorithm SGM [40] and its derivatives can also achieve global
registration, but they are only limited to one-dimensional
translational transformation between images after camera cal-
ibration; furthermore, the offset of all pixels needs to be
calculated, thus resulting in many mismatched pixels. The
stereo calibration approach [41] is capable of achieving row
alignment and also transforms the reference aperture image.
Pinggera et al. [42] verified that the matching accuracy based
on gradient features is higher than those of other registration
methods such as those of the normalized cross-correlation and
mutual information in multispectral images. Therefore, the
coarse-to-fine registration algorithm is proposed; this is based
on the hierarchical clustering of the feature points of interest
and the use of the gradient feature descriptor. The specific
flowchart is shown in Fig. 3. The geometrical rectification of
most scenes is accomplished based on coarse registration. Only
the offset of the feature points of interest is calculated in the
fine registration stage, and the offset of matching pixels can
be any two-dimensional translation. The registration algorithm
of hierarchical clustering improves the matching accuracy of
feature point pairs.

There are not only differences in illumination between
images acquired through different apertures in the multispec-
tral camera array, but also nonlinear luminance differences
due to the different spectral signatures of target objects with
different colors and materials [42], [43], [44], [45]. The nonlin-
ear luminance difference affects the pixel gradient amplitude
and gradient direction. Therefore, the mentioned descriptor
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Fig. 3. Flowchart of the proposed coarse-to-fine registration algorithm based
on the hierarchical clustering of feature points (Crab-HFP).

with lower computational complexity in [46] is adopted as the
descriptor of feature points in the multispectral camera array.
The registration algorithm that uses the SIFT feature points in
conjunction with the descriptor described above is known as
the GOM-SIFT.

A. Uniformly Distributed Corner and Subpixel Edge Feature
Points

In coarse registration, GOM-SIFT is used to eliminate the
obvious scale, rotational, and translational differences between
apertures and complete rough rectification. Based on coarse
registration, fine registration is adopted to achieve global
and accurate rectification. The feature points of interest are
detected first during the process of fine registration. The
Harris corner detector is selected because its performance
is more stable than other feature-point detectors [47]. The
traditional corner extraction method is performed by setting
a threshold for the entire image. However, the extracted
corners are unevenly distributed. To achieve global image
registration, it is necessary to extract image corners that are
evenly distributed throughout the image. Moreover, because
the thresholds are different for different band images and
different scenes, we adopt a divided block and threshold-
free method; specifically, we divide the image into M × M
sub-regions, and extracted the top k points with the highest
response values from each sub-region [48].

The location at which the local-geometrical transforma-
tion changes is at the object’s edge. Therefore, edge points
also serve as feature points of interest in fine registration.

The Canny algorithm requires two thresholds that can be
acquired directly from the image information without being
set. In this way, edge points can be detected [49]. If the
edge detection is performed directly on the entire image,
the detected edge feature points will be unevenly distributed.
Divided block detection, like the Harris corner detection,
is adopted to obtain uniformly distributed edge-feature points.
Because the edge-feature points are dense-feature points, and
the edge-feature points located on the same edge (usually
in local regions) have similar geometrical transformational
properties, local nonmaximum suppression is performed to
reduce the calculation amount. The super-resolution recon-
struction requires the registration algorithm to achieve sub-
pixel accuracy; therefore, after the extraction of the edge-
feature points of the entire pixel, the Zernike orthogonal
moments are calculated for the edge-feature points to obtain
the sub-pixel location [50]

B. A One-to-Many Bidirectional Matching Strategy

After the detection of the feature points of interest, the
descriptor of the extracted corner and edge feature points is
constructed based on the descriptor of GOM-SIFT. Although
GOM-SIFT has been improved by modifying the gradient
direction, there are inconsistencies in texture information due
to the spectral signatures differences in different spectral
images. This results in lower descriptor distinguishability for
some feature points. If the matching strategy in SIFT is
adopted, the correct matching point pairs will be erroneously
removed. Therefore, a one-to-many bidirectional matching
strategy is adopted in which a feature point selects the k-
matching feature points with the smallest distance metric, and
the matching feature point pairs are screened out by the bidi-
rectional matching method [51]. Assuming that the descriptors
of feature points in the reference image are P i

q , i = 1 . . . Nq ,
descriptors of feature points in the preregistered image are
P j

t , j = 1 . . . Nt , set of k feature points in the preregistered
image closest to the reference image feature point is C1 [as
shown in (12)], and the set of k feature points in the reference
image closest to the feature point of the preregistered image
is C2 [as shown in (13)], then the final matching result is
C1 ∩C2. When multiple feature points match the same feature
point after screening, the matching feature point pair with the
smallest distance metric is selected. The mink of (12) and (13)
returns the smallest k elements from the set.

P j
t ∈ C1 = mink

(∥∥∥P i
q − Pm

t

∥∥∥)
(m = 1 . . . Nt ) (12)

P i
q ∈ C2 = mink

(∥∥∥P j
t − Pn

q

∥∥∥) (
n = 1 . . . Nq

)
(13)

C. Hierarchical Clustering of Multiple Local-Geometrical
Transformations

The homograph matrix automatically selects the matrix
that satisfies most of the image information. However, the
geometrical rectification of the homograph matrix is limited
to a plane [52]. The term “plane” is not a plane object
in the actual scene, but an approximate plane composed of
multiple targets. For the complex three-dimensional scene,
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a single homograph matrix cannot satisfy the global rectifi-
cation requirements. Therefore, this study adopts the multiple
transformation matrices mentioned in [53] to achieve global
rectification. The pixel offset of the target object between
the apertures varies as a function of the imaging distances
owing to the foreshortening effects of the lens. Translational
transformation is the main transformation in fine registration.
However, considering that there are still a few other types
of transformations, the local transformation in fine registra-
tion adopts the similarity transformation. In Section IV-B,
the matching relationship between the feature points of the
preregistered and reference images is established. Based on
the constraints of the feature space and the local-geometrical
transformation, the initial matching feature point pairs are
divided into many clusters; each cluster corresponded to a
unique similarity transformation. The hierarchical K-means
method is used to cluster matching feature point pairs [54]
iteratively.

A feature space, which contains the position of the reference
image’s feature points and the translation of the associated
matching feature point pair, denoted as

[
xq , yq , δx, δy

]
, is

established. As stated, translational transformation is the main
transformation in fine registration, but clustering based only on
the translation of matching feature point pairs may lead to the
intersection of clusters. Because adjacent pixels have similar
transformational characteristics, the positional parameters are
included to assure increased clustering accuracy and avoid
clustering intersection. To eliminate mismatched feature point
pairs, a four-dimensional histogram is established. The four
dimensions are

[
xq , yq , δx, δy

]
, and the unit width of the

histogram is
[
col/4, row/4, col/4, row/4

]
, where col and

row are the columns and the rows of the image, respectively.
The feature points are assigned to the corresponding histogram
bins. The histogram is counted, and the feature point pairs
under the histogram bins with three or fewer votes are deleted
[55]. Matching feature-point pairs that have an offset smaller
than the threshold are removed. They are not needed for
subsequent hierarchical clustering, and they are removed by
similarity space clustering. This is performed to reduce the
calculation load and to not destroy the registered areas in
coarse registration.

According to the established feature space, the K-means
algorithm is used to divide the matching point pairs within the
node into k clusters. In different depth layers of hierarchical
clustering, the contributions of parameters in the feature space
are different. Therefore, the weight in [53] is adopted.

RANSAC [56] is used to estimate the similarity transforma-
tion of each node. A nonparametric outlier detection technique
is used to delete feature point pairs with a large backprojection
error. These feature point pairs are mismatched or incorrectly
clustered. The statistical distribution of backprojection errors
is used to set the threshold to τγ = q3 + γ (q3 − q1),
where qi denotes the ith quartile of back projection errors of
feature point pairs. The feature point pairs larger than τγ are
then deleted. By adjusting γ , deleting incorrectly clustered
but correctly matched feature-point pairs can be avoided.
As the number of layers increases, the number of clusters also
increases, and the probability that a high-backprojection error

causes incorrect clustering decreases; thus, γ can also be set
to smaller values.

γ = max (γ0 − ε (tree_depth − 3) , 0) (14)

where γ0 is the initial value, tree_depth is the layer’s serial
number of the tree structure where the node is found, and ε is
the step length. The serial number of the layer at the beginning
of clustering is the third layer.

The ratio of inliers and the number of outliers is used to
determine whether a node is a leaf node. When the ratio of
inliers is above a threshold, i.e., ρi = Mi/ (Mi + Oi ) > τρ ,
and when the number of outliers is below a threshold Oi < τo,
the node is deemed a leaf node. Herein, Mi is the number of
inliers, Oi is the number of outliers, and τρ and τo are the
threshold constants.

In the correction phase, linear discriminant analysis is used
to reassign outliers to other clusters. Clustering is repeated,
the similarity transformation is estimated, and corrections are
made until all nodes are leaf nodes.

Counting the inliers in all the leaf nodes, the offsets of other
pixels are obtained by linearly interpolating the inlier offsets.
Multiple mesh-to-grid resampling steps degrade image quality.
Therefore, although a double-registration algorithm is adopted,
only one resampling procedure is conducted [17].

V. SPECTRAL CLUSTERING SUPER-RESOLUTION
RECONSTRUCTION ALGORITHM

The target object shows different spectral signatures in
different bands, affected by color, material, and other factors.
The difference between spectral signatures is manifested in
two ways: first, although the texture structural information is
consistent, the gray values are different. This emerges as a
linear luminance difference [21]. Second, the texture structure
information is inconsistent or even vanished, and this manifests
itself as a nonlinear luminance difference [24]. As described
in Section II-B, every aperture needs to provide a multispec-
tral data cube to achieve multispectral camera array super-
resolution. However, in actual imaging, each aperture captures
only a single-band image. The spectral information of eight
band images of other apertures is exploited to simulate the
corresponding band images subject to the imaging perspective
of the aperture in question. The proposed SCSR algorithm
maintains the spectral signatures of a simulated band and the
nonredundant spatial information of the original image during
the process of simulation. The specific flow chart is shown
in Fig. 4. ”Spectral clustering” is a new definition proposed
in this study for simplicity compared with its meaning in the
traditional sense [57]; it means that pixels with the same or
similar spectral signatures are grouped in this study.

A. Spectral Clustering

For the luminance difference only in the first listed
case above, we can directly classify the pixels with the
same or similar spectral signatures into a cluster by
K-means [58], [59], [60]. However, there is inconsistency in
texture structure information between different band images
during imaging [24]. K-means must give a certain number of
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Fig. 4. Scheme of the proposed spectral clustering based super-resolution reconstruction algorithm (SCSR) for the proposed camera array based multispectral
super resolution imaging system (CAMSRIS). Low-resolution images are acquired using the CAMSRIS prototype. The fields-of-view of the nine monochromatic
images collected in different spectral bands are not consistent. The proposed Crab-HFP algorithm is used to register and align images in the different spectral
bands. Spectral clustering and spectral modification are performed on the aligned multispectral data cube; therefore, multispectral data cube for each aperture
can be constructed after rearrangement. PCA transform is used to obtain the main, secondary, and noise components of each aperture. The adaptive kernel
maximum likelihood estimation algorithm is used for the super-resolution reconstruction of the main components. Finally, high-resolution multispectral images
are generated using PCA inverse transformation.

clusters, while the inconsistent texture structure information is
usually only a tiny local area, and it is difficult to count its
number. Therefore, the ISODATA algorithm [61] is added to
K-means.

With the fifth aperture as the reference image, other aperture
images are geometrically rectified. The multispectral data
cube is constructed from the rectified multi-aperture images,
and each sample represents the gray value of nine bands at
the same spatial position. The K-means ++ algorithm [62]
selects k clustering centroids as the initial clustering centroids
of K-means. Based on the K-means clustering results, the
ISODATA algorithm is adopted. To identify localized small
region clusters with large variance, a novel split metric method
is proposed to replace the variance metric in the ISODATA
algorithm, as follows:

(1) Delete the clusters whose sample number is less than
the threshold and reassign the samples of these clusters to the
remaining clusters.

(2) The samples of cluster i are denoted as X i . Screen
out the sample sets

{
X1

i , · · · , Xk
i , · · · , X N

i
}

in N dimensions
where the samples of each set are the distances to the centroid
of cluster i in the k-th dimension that are greater than the
standard deviation threshold τσ . Count the number of samples
in

{
X1

i , · · · , Xk
i , · · · , X N

i
}

and select Xk
i according to the

maximum number of samples nmax. If nmax ≥ Nmin, then split
cluster i into two clusters. The centroids of the two clusters are
respectively m(+)

i (k) = Xk
i (:, k) and m(−)

i (k) = Xi\Xk
i (:, k).

This operation traverses all clusters. If splitting is performed,
the samples are reassigned according to the current centroids.

(3) Calculate the distance between the centroids of two
clusters and merge the clusters where the distance is less than
the threshold. The combined centroids are calculated according

to [61]. If merging is performed, the samples are reassigned
according to the current cluster centroids.

(4) Repeat steps (2) to (3) until the centroids of clusters
remain unchanged or reach the maximum number of iterations.

For simplicity of description, we refer to this algorithm
as K-means+ISODATA. When there is a large number of
clusters, calculating the distance between each sample and
the centroids of all clusters and then picking out the cluster
with the shortest distance, requires numerous calculations. The
hierarchical tree structure in Section IV-C is adopted to reduce
the calculation amount so that each sample point only needs
to calculate the distance to the centroids of clusters within
its affiliated node instead of calculating the distance to all
the cluster centroids. This process is described as follows:
First, the initial clusters are obtained by K-means. Second,
whether or not the node needs to be split is decided by
two conditions pertaining to the splitting criteria of (2) in
the K-means+ISODATA algorithm; furthermore, it is also
decided whether the number of samples within a node is
more than 2Nmin. When the two conditions are true, the
K-means+ISODATA algorithm is applied, where K = 2.
Otherwise, the node is a leaf node. Third, repeat step 2 until all
nodes are leaf nodes or until they reach the maximum number
of iterations.

B. Spectral Modification

Histogram matching is used to process the image with the
specified histogram. The histogram shape of the processed
image is similar to the specified histogram shape but retains
the original image’s spatial information. Therefore, histogram
matching is used to rectify spectral differences. Spectral
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Fig. 5. Schematic of the spectral modification process for nine aligned,
single-band, monochromatic spectral images. Using the image of the first
band as the reference image and traversing all the clusters to correct image
spectral differences in the other bands enables the acquisition of the first-band
images by other N - 1 cameras with different aperture positions. Note that
the images of the first band collected by the remaining N - 1 apertures are
obtained by calculation and not by actual shooting.

clustering is performed on the multispectral data cube, and
c clusters are obtained. Select the kth band image as the
reference band image (k = 1 . . . N ), and repeat these steps:

(1) The histogram matching algorithm is adopted to modify
the spectral signatures of images with other apertures captured.
The histogram shape of the reference band image is used as
the specified histogram in cluster i so that the gray value of
the modified image tends to be consistent or close to that of
the reference band image.

(2) Repeat step 1 to traverse all the clusters and reassemble
all the modified clusters into the kth band multi-aperture

images sequence
{

In,k
L_reg

}N

n=1
.
{

In,k
L

}N

n=1
can be obtained by

the inverse transformation of Wn .
The process of spectral modification and reconstruction

of other band images in the first band image (used as the
reference band image) is described in Fig. 5.

C. Adaptive Kernel Maximum Likelihood Estimation

After
{

In,k
L

}N

n=1
is established, the high-resolution image of

the kth band can be reconstructed according to (9). If the super-
resolution reconstructions of the nine bands are performed
independently, the computational load will be heavy. There-
fore, the PCA algorithm is adopted to obtain the main, sec-
ondary, and noise components of the multispectral image [63].
Therefore, super-resolution reconstruction of the main compo-
nents can thus be performed.

The objective function of the super-resolution reconstruction
of the main components is described as follows:

Ck
H = arg min

Ck
H

∥∥∥MCk
H − Ck

L

∥∥∥2

2
(k = 1 . . . P) (15)

where Ck
L ∈ Rm N×1 is the concatenation of all Cn,k

L ∈

Rm×1 of the k-th main component, P is the number of main
components, and Ck

H ∈ Rm N×1 is the k-th high-resolution
main component to be estimated.

The adaptive kernel maximum likelihood estimation algo-
rithm is proposed for the super-resolution reconstruction of

Fig. 6. Schematic of the forward warping process. The pixels of images
captured by the other apertures are mapped onto the high-resolution mesh
of the reference image, and interpolated to the grid by the adaptive spatial
support of the sampling kernel. Then the pixel values are aggregated on the
grid.

the main components. The reasons for selecting the maximum
likelihood estimation are that a) thanks to the layout of the
camera array, the offsets among all apertures are uniformly
distributed in a disk, which makes the super-resolution recon-
struction problem of the camera array well-posed [32]. b) the
super-resolution reconstruction performed based on the camera
array aims to recover the high-frequency information from
the image; moreover, there may be a small amount of noise
within the acceptable degree of human vision. c) Although the
the state-of-the-art denoising prior model has a considerable
effect on denoising and can preserve the edge and suppress
the noise, the calculation time is too long and the prior terms
and data guarantee terms need to be balanced. The denoising
prior still has certain smoothing side effects on the edge
and in the texture region [27], [28], [29], [30], [31], [64].
d) The maximum likelihood estimation algorithm is based
on the nonprior Bayesian model associated with increased
calculation speed and is similar to a Lucy–Richardson iterative
deconvolution. Considering that the proposed system is a
bandpass multispectral imaging system, wherein the signal-to-
noise ratio (SNR) of the image is low and the noise is amplified
by the iteration process, an adaptive kernel is used to establish
the sensing matrix M; that is, the kernel is adaptively selected
according to the characteristics of the image to reduce the
noise of the reconstructed image and to ensure the sharpness
of the edge [31].

The objective function (15) is iteratively solved based on
the maximum likelihood estimation algorithm according to

Ck,i+1
H = diag

(
Ck,i

H

)
MT

(
diag

(
MCk,i

H

))−1
Ck

L (16)

where Ck,i
H is the i-th approximation result of the k-th main

component of the high-resolution scene to be estimated, and
diag

(
Ck

H
)

is the diagonal matrix with elements of vector Ck
H .

For initialization, Ck,0
H = MT Ck

L .
To utilize the subpixel information of spatial motion more

effectively, forward warping is used to construct the sensing
matrix. That is, the pixels of images captured by the other
apertures are mapped onto the high-resolution mesh of the
reference image and then interpolated to the grid by the
adaptive spatial support of the sampling kernel. Subsequently,
the pixel values are aggregated on the grid, as depicted in
Fig. 6. The large sparse matrix constructed based on the above-
mentioned steps is the transpose of the sensing matrix M.
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The type of chosen kernel function has little influence on
the reconstruction result [65]; therefore, the Gaussian function
with lower computational complexity is selected as the kernel
function. However, if the same Gaussian function is utilized
for all samples, the denoising effect of the small kernel space
support is insignificant, while the large kernel space support
will cause blurred edges. Based on the above problems, the
anisotropy Gaussian kernel [66] is employed to adjust the
sampling kernel shape according to the gradient structure
tensor of the sample.

Given that the fuzzy edge of the low-resolution image
reduces the detection accuracy of the edge direction, the
isotropic Gaussian kernel with a fixed size can be used to
reconstruct the higher-resolution image first to detect the edge
direction more accurately, and the adaptive kernel of all pixels
in the lower resolution image sequence is then calculated from
the higher-resolution image.

VI. RESULTS AND ANALYSIS

A. Parameter Setting

In the spectral clustering stage, the initial standard deviation
threshold τσ is set to 50; its value decreases layer-by-layer
according to the step size, which is set to 10. To avoid
excessively small τσ values at deep levels, the minimum τσ

values are set within the range of 10–25 as the merging
threshold dmin. Nmin depends on the image size. The maximum
number of layers in the tree structure is set to 10. The
maximum number of iterations for the K-means+ISODATA
method is set to 15. The number of iterations of the adaptive
kernel maximum likelihood estimation is 5. The number of
image blocks of the quality index Q [67] in the spectral
distortion index [68] is set to 3 × 3. The aforementioned
parameters are configured for 28 bit-depth images.

B. Simulation Results and Analysis

To evaluate CAMSRIS, we apply it to the CAVE [69]
and CAMSI [23] datasets to validate its feasibility in the
cases of visible and visible and near-infrared spectra. The
CAVE dataset has a band in the range of 400–700 nm and
contains 31 band images at 10 nm intervals (image size =

512 × 512). Take a sample every three bands from the CAVE
dataset to simulate a nine-aperture multispectral camera array.
The selected bands are 430, 460, 490, 520, 550, 580, 610,
640, and 670 nm. The CAMSI dataset contains the nine-band
images with central wavelengths at 400, 450, 470, 500, 524,
660, 750, 850, and 950 nm (image size = 1500 × 1100).
The proposed SCSR algorithm is compared with state-of-
art multiple image super-resolution reconstruction algorithms,
namely WNNM [29], [64] and LR_GSC [30], to highlight the
superiority of SCSR. WNNM is a maximum posterior proba-
bility algorithm based on low-rank attributes of images, while
the LR_GSC is a maximum posterior probability algorithm
combining low-rank and sparse image attributes. CAMSRIS is
also compared with the current advanced multispectral imag-
ing technology MSFA to analyze its performance. To make
the comparison effective, it is required that the same number
of bands and total number of pixels are used. The current

multispectral demosaicking algorithms are primarily based on
filter arrays with 4- or 5-band arrays [21], [22], [23], [24],
which are not suitable for 9-band reconstruction. Therefore,
the demosaicking algorithms adopt more general methods,
such as the BTES [20] and the compressed sensing algorithms,
which are GAP-TV [25] and DeSCI [26]. According to [70],
the reconstruction results of the BTES and the compressive
sensing algorithms based on the binary tree filter pattern are
better than the random and regular models. The optimal model
for MSFA is adopted to emphasize the benefits of CAMSRIS.

The low-resolution multispectral image sequence is simu-
lated with the ground truth multispectral dataset based on the
observation model of the multispectral camera array described
in Section II-B. The ground truth multispectral images are
degraded into low-resolution multispectral images after geo-
metrical transformation (random offset, rotation, and scale
transformation), downsampling, and noise interference. The
downsampling factor is equal to three, and the Gaussian
weight function is used during the downsampling operation.
The noise interference is Gaussian white noise. For MSFA,
the ground truth multispectral dataset is sampled based on
binary tree filter patterns to obtain a multispectral mosaic
image with the same noise as CAMSRIS. The reconstruction
results are compared qualitatively and quantitatively. The
quantitative methods include PSNR, MultiSSIM [71], and
BRISQUE [72]. A smaller BRISQUE indicates a better image
quality. Considering the practicability and feasibility of the
system, we evaluate the execution time of the reconstruction
algorithms of the two imaging systems in MATLAB (version
xx, MathWorks, Natick, MA, USA) based on an Intel I5-9500
processor (3.00 GHz) and 16 GB of memory. DeSCI imposes
heavy requirements on running memory; thus, the 16 GB of
memory is insufficient to meet its requirements. Therefore, the
DeSCI is executed on an Intel Xeon(R) Gold 5220R processor
(2.20 GHz × 96) and with 125.5 GB of memory; all other
experiments are executed based on the configuration discussed
earlier.

A high-resolution image is reconstructed using the multi-
frame super-resolution reconstruction algorithms. They are
applied to the degraded multispectral images of the CAMSI
dataset; these images are generated according to the image
formation model of the multispectral camera array as described
previously. The multiframe super-resolution reconstruction
algorithms are not appropriate for the multispectral camera
array, as illustrated in Fig. 7. Because of the luminance dif-
ference between the images of different bands, reconstructed
images not only lose the spectral signatures but also have an
obvious grid and spots for color or colorless target objects.

CAMSRIS and MSFA are compared based on the CAMSI
and CAVE datasets. The reconstructed results of the CAMSI
dataset are shown in Figs. 8 and 9; as shown, GAP-TV and
DeSCI produce spatial and spectral distortions. As shown
in Fig. 9, GAP-TV and DeSCI produce severe spectral dis-
tortions for the 400 nm band in both the background and
flower regions. As shown in Fig. 8, BTES, GAP-TV, and
DeSCI produce unexpected artifacts and deformation in the
spatial domain. These are manifestations of the disadvan-
tages of MSFA that become more obvious with more bands.
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Fig. 7. Super-resolution reconstructed results of WNNM and LR-GSC using
simulated data of CAMSRIS. The size of the reconstructed image is 1500 ×

1098. (a) Ground truth color image. (b) and (c) are the reconstructed results
of color target objects (model car, flower) obtained by WNNM and LR-GSC,
respectively, and (d) and (e) are the reconstructed results of colorless target
objects (resolution test chart, alphabet) in the red box.

Fig. 8. Comparison of the multispectral images reconstructed by BTES,
GAP-TV, DeSCI, and the method proposed in this study. The CAMSI dataset
is used for simulations (concentric circles). The images of three bands (400,
550, and 750 nm) in the reconstructed 9-band multispectral images are selected
for display. The selected images at these three different bands are used to
reconstruct pseudocolor images for comparison. In the simulation of the
three methods of BTES, GAP-TV, and DeSCI, the data collected by the
9-band snapshot multispectral imaging sensor is simulated first, and the three
methods are then used for demosaicking to restore the 9-band full-resolution
multispectral image.

In contrast, as the number of bands increases, the number of
apertures also increases and the spatial resolution can thus be
improved within the diffraction limit for CAMSRIS. Fig. 9
shows the reconstructed multispectral images of CAMSRIS
and MSFA in the chart and the stuffed toy of the CAVE
dataset. It is clear from the concentric circle of Fig. 8 and the
resolution test chart of Fig. 10 that our proposed algorithm

TABLE I
AVERAGE PSNR, MULTISSIM, BRISQUE, AND CALCULATION TIME

CONSUMPTION OF THE MULTISPECTRAL IMAGE RECONSTRUCTION
RESULTS TO THE CAMSI AND CAVE DATASETS

Fig. 9. Comparison of the spectral profiles/signatures reconstructed by BTES,
GAP-TV, DeSCI, and the method proposed in this study. The CAMSI dataset
(artificial flower target) is used for simulations. The images of the three bands
(400, 550, and 750 nm) in the reconstructed 9-band multispectral images are
selected for display. The selected images at these three different bands are
used to reconstruct a pseudo-color image for comparison. In the simulations
of the three methods of BTES, GAP-TV, and DeSCI, the data collected by the
9-band snapshot multispectral imaging sensor are simulated first, and the three
methods are then used for demosaicking to restore the 9-band, full-resolution,
multispectral image.

can recover small-scale details, while the BTES, GAP-TV,
and DeSCI not only smooth out small-scale details but
also produce distortion and artifacts in large-scale contours.
By observing the spectral curves and spectral angle mapper
in Fig. 11, it can be inferred that the proposed algorithm has
higher spectral reconstruction accuracy.

The listings in Table I show that the PSNR and MultiSSIM
of our proposed algorithm perform better, wherein the PSNR
is 2.0 dB higher than the recently published DeSCI algorithm
on the CAMSI dataset, while BRISQUE and the execution
time are the lowest among all the algorithms. CAMSRIS is
superior to MSFA for all demosaicking algorithms and indices
in the CAMSI dataset. Considering the execution time, our
algorithm focuses on recovering high-frequency information.
The adaptive kernel has a good denoising effect, but it is not
as good as the low-rank regularization of DeSCI. Therefore,
our PSNR is slightly lower than for the DeSCI algorithm,
as shown in Table I.
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Fig. 10. Comparison of the multispectral images reconstructed by BTES,
GAP-TV, DeSCI, and the method proposed in this study. The CAVE dataset
(chart and stuffed toy) is used for simulations. The images of the tree bands
(400, 550, and 750 nm) in the reconstructed 9-band multispectral images are
selected for display. The selected images at these three different bands are
used to reconstruct a pseudocolor image for comparison. In the simulations
of the three methods of BTES, GAP-TV, and DeSCI, the data collected by the
9-band snapshot multispectral imaging sensor are simulated first, and the three
methods are then used for demosaicking to restore the 9-band, full-resolution
multispectral image.

Fig. 11. Reconstructed spectra of indoor scenes from the CAMSI dataset
and chart and stuffed toy from the CAVE dataset. (Left) Color images of the
scenes. The spectra of the three-color regions are shown on the right, where
the ordinate is normalized in all the cases (divided by the maximum value of
the samples in the selected region). The spectral angle mapper (SAM) of the
reconstructed spectral images calculated using BTES, GAP-TV, DeSCI, and
our methods are shown in the legends.

C. Real Data Results and Analysis of Super-Resolution
Reconstruction

As the ordinary indoor light sources, such as incandescent
lamps and light-emitting diode (LED) lamps, cannot provide
reliable and stable lighting in the visible spectrum, six spectral
tunable light sources (Thouslite, LEDCube) are used as light
sources to illuminate the indoor scenes. For the field tests, the
images are acquired on sunny days.

LSS [73], GOM-SIFT [46], and Crab-HFP are compared.
LSS and GOM-SIFT are the same except for the descriptor.
They both adopt the SIFT algorithm to extract feature points
and RANSAC to solve the transform matrix. Owing to the
nonlinear luminance differences between band images, it is
not suitable to use the difference between the reference and
the band image after geometric rectification to assess the
matching effect. Although all band images can be collected

Fig. 12. (a) The local results of checkerboard stitching in 440 nm band
images after geometric rectification and the 550 nm reference band image
(b) The local results of checkerboard stitching in 700 nm band images after
geometric rectification and the 550 nm reference band image.

TABLE II
BRISQUE OF DIFFERENT ALGORITHMS IN DIFFERENT SCENARIOS

at the reference aperture position by changing the filter for
the static scene; the camera array will shift slightly during
the change of the filter. Therefore, a checkerboard stitching
method is adopted. The reference band image and the rectified
band image are divided into 16 × 16 blocks, and their blocks
are spliced alternately. Fig. 12 shows the local results of
checkerboard stitching in the 440 nm and 700 nm band images
after geometric rectification and the 550 nm reference band
image. Fig. 10 shows that the LSS and GM-SIFT outcomes
are misaligned, while the proposed registration algorithm can
align the image to be registered with the reference image.

The feasibility of CAMSRIS in practical applications is
further verified by using actual data. We cannot compare
with MSFA (real data cases) because of the lack of ground
truth multispectral images. Therefore, this section will focus
on the comparison of the multispectral images obtained via
triangulation-based cubic interpolation (Tric) [74] and SCSR
with those acquired using the camera array. In real data
cases lacking ground truth multispectral images, three indices
are used to evaluate image quality. The first is BRISQUE.
The second is the super-resolution multiplication index (see
Section II-A), and the test card adopted sinusoidal Siemens
stars. The third is the spectral distortion index, which is
evaluated by calculating the difference between the inter-
band correlation of multispectral images before and after
reconstruction.

Three representative scenes were captured, namely the
indoor scene, the static building, and fast-moving traffic.
As shown in Figs. 13–16, block artifacts are generated in the
multispectral images captured by the apertures, while blurred
artifacts exist in the multispectral images after cubic interpola-
tion. The images after reconstruction by WNNM and LR-GSC
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Fig. 13. Comparison of the reconstruction results of the real indoor scene
using the constructed CAMSRIS described in Section III. (a) Global image.
(b) Reconstruction results of WNNM and LR-GSC related to the information
in the red box in (a). (c) Multispectral images captured by the apertures,
multispectral images after cubic interpolation, and after SCSR in the red boxes
of (a) for 440, 580, and 700 nm bands and pseudocolor images synthesized
by these three bands. The size of the reconstructed multispectral images after
SCSR is 2160 × 1620 × 9.

Fig. 14. Spectral profiles/signatures of the images acquired in an indoor
environment using the constructed CAMSRIS described in Section III (first
column), those processed using Tric (second column), and those reconstructed
by the proposed method (third column). The images in the three bands (440,
580, and 750 nm) from the reconstructed nine-band multispectral images are
selected for display. The selected images at these three different bands are
used to reconstruct a pseudocolor image for comparison.

not only lost spectral signatures but also produced obvious
grids and spots. The proposed algorithm could produce sharp
edges and eliminate image noise while preserving the exact
spectral information without introducing false information.

Fig. 15. Comparison of the reconstruction results of an real architectural
scene using the constructed CAMSRIS described in Sect. III.

Fig. 16. Comparison of the reconstruction results of real traffic scene using
the constructed CAMSRIS described in Sect. III. The frame rate is 30 frames
per second.

According to the BRISQUE in Table II, the reconstruction
results of the proposed algorithm have the best spatial quality
for the three mentioned scenes. Sinusoidal Siemens stars is
used to obtain the spatial frequency response curves of the
multispectral images captured by the apertures. As shown in
Figs. 17 and 18 our algorithm can recover high-frequency
information on a smaller scale, eliminate artifacts, and improve
limit resolution.

The limiting frequency of a single aperture is the Nyquist
frequency equal to 0.5 cycles/pixel. The limit resolution of
the reconstructed image is the frequency of the intersection
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Fig. 17. Spatial frequency response curves calculated from Sinusoidal
Siemens Stars images acquired by the constructed CAMSRIS described in
Sect. III, those processed using Tric, and those reconstructed by the proposed
method in Fig. 18.

Fig. 18. Comparison of the reconstruction results of real sinusoidal Siemens
stars using the constructed CAMSRIS described in Sect. III. The central
high-frequency region is that highlighted the red box in (a).

TABLE III
SPECTRAL DISTORTION AND THE TIME CONSUMPTION OF SPECTRAL

IMAGE REGISTRATION AND RECONSTRUCTION TO THE IMAGES
ACQUIRED BY THE PROPOSED CAMSRIS

between its spatial frequency response curve and the human
eye contrast threshold (HECT); its value is approximately
equal to 0.03. The limit resolution of the reconstructed image
after SCSR is 1.5 cycles/pixel, as shown in Fig. 17; thus
the super-resolution multiplication value is equal to three. A
comparison of the images captured by the aperture and after
cubic interpolation in the same band in Fig. 18 shows that
the latter does not increase the image information nor does it
eliminate image artifacts; thus, its limit frequency is still the
Nyquist frequency (equal to 0.5 cycle/pixel). Table III shows
that the spectral distortion of the reconstructed results of our
algorithm is small, thus ensuring the reconstructed spectral
accuracy.

VII. CONCLUSION

Existing multispectral imaging technology cannot simulta-
neously achieve multispectral imaging with high spatial and

temporal resolutions. A new multispectral imaging system
known as CAMSRIS is proposed. The proposed multispectral
camera array acquires low-resolution multispectral images,
thus reducing cost and transmission bandwidth. These features
are beneficial to the imaging of fast or even high-speed moving
objects. The proposed system exploits the nonredundant spatial
motion information between the apertures to perform super-
resolution reconstruction, thus improving the spatial resolution
of the captured images. Crab-HFP is used to align multi-
spectral images from different imaging perspectives, and the
SCSR algorithm is then used to reconstruct high-resolution
multispectral images. CAMSRIS and MSFA qualitatively and
quantitatively were analyzed based on different multispectral
datasets. The results showed that the proposed system and
the algorithm have better reconstruction quality than MSFA,
a much shorter execution time than the demosaicking algo-
rithms, and a more flexible band selection. Owing to the
limitation of the adaptive kernel, the reconstructed results still
suffer from jagged edges; thus, additional improvements are
needed. In the future, we will extend the multispectral camera
array to hyperspectral imaging. The proposed algorithm should
also be accelerated to achieve real-time reconstruction and
multispectral imaging at video frame rates.
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