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Fast Guided Median Filter
Kazu Mishiba , Member, IEEE

Abstract— Faster computation of a weighted median (WM)
filter is impeded by the construction of a weighted histogram for
every local window of data. Since the calculated weights vary for
each local window, it is difficult, using a sliding window approach,
to construct the weighted histogram efficiently. In this paper,
we propose a novel WM filter that overcomes the difficulty of
histogram construction. Our proposed method achieves real-time
processing for higher resolution images and can be applied to
multidimensional, multichannel, and high precision data. The
weight kernel used in our WM filter is the pointwise guided
filter, which is derived from the guided filter. The use of kernels
based on the guided filter avoids gradient reversal artifacts
and shows a higher denoising performance than the Gaussian
kernel based on the color/intensity distance. The core idea of
the proposed method is a formulation that allows the use of
histogram updates with a sliding window approach to find
the weighted median. For high precision data we propose an
algorithm based on a linked list that can reduce the memory
requirements of storing histograms and the computational cost
of updating them. We present implementations of the proposed
method that are suitable for both CPU and GPU. Experimental
results show that the proposed method indeed realizes faster
computation than conventional WM filters and is capable of
filtering multidimensional, multichannel, and high precision data.
This is an approach which is difficult to achieve with conventional
methods.

Index Terms— Weighted median filter, guided filter.

I. INTRODUCTION

SMOOTHING filters are one of the most basic tools
in image processing. Their wide range of applications

includes image processing for visible light, medical image
analysis [1], [2] and seismic data processing [3], [4].

Edge-preserving smoothing is also an important technique
for better smoothing. Edge-preserving smoothing filters can
be divided into two groups: Filters in the first group calculate
their coefficients from the input image. An example is the
bilateral filter [5], which calculates a weighted average using
filter coefficients derived from a Gaussian distribution of
spatial and color/intensity distances. Filters in the second
group calculate their coefficients from the guide image. Joint
filters are often used when the input image has unreliable edge
information, and a guide image is available that has reliable
edge information. Examples of the application of joint filters
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Fig. 1. Flash/no-flash denoising with WM filters. (a) Guide image. (b) Fil-
tered image with the FWM-O(r) filter, whose weights are based on the
Gaussian kernel. (c) Zoomed-in result of (b). (d) Input image. (e) Filtered
image with the GPU-O(r) filter, whose weights are based on the guided filter
kernel. (f) Zoomed-in result of (e).

include flash/no-flash denoising [6], image upsampling [7],
depth map enhancement [8], and cost volume aggregation in
stereo matching [9], [10], [11].

The results of joint filters depend on the filter kernel that
is used as well as the guide image. Methods that use the
Gaussian kernel based on color/intensity distance, like the
bilateral filter, have known problems with gradient reversal
artifacts on the edges [12]. On the other hand, the guided filter
kernel [12] allows for fast operation while avoiding gradient
reversal artifacts.

Joint filtering can be applied to weighted median (WM)
filters as well as weighted average filters. WM filters
have edge-preserving properties and robustness against out-
liers. Due to these properties, joint WM filters are used
in various image processing applications like optical flow
estimation [13], disparity refinement [14], [15], and rain
removal [16]. The use of the Gaussian kernel based on
color/intensity distance can cause edge reversal artifacts in
WM filters. Using a guided filter kernel can avoid this (Fig. 1).

The heavy computational cost of the WM filter is an obsta-
cle to applications that require real-time performance. A fast
computation algorithm for WM filters is needed. A possible
approach to accelerate the computation is to adopt acceleration
approaches used in the unweighted median (UWM) filter. The
core idea of acceleration in the UWM filter is the sliding win-
dow, which takes advantage of overlapping filter windows by
using neighboring pixels to accelerate histogram construction.
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As described in [17], it is almost impossible to apply methods
that accelerate UWM filters to WM filters. The WM filter
requires the construction of a weighted histogram. Since the
weights spatially vary for each local window, the sliding
window approach cannot be applied directly to construct the
weighted histogram. Several acceleration methods have been
proposed for WM filters using ideas different from those of
UWM filters. Ma et al. [14] proposed a constant time WM
filter: An input image is projected onto a 3D space, and
then an edge-preserving filter is applied to each 2D slice.
The advantage of this method is that any filter kernel can
be used, including bilinear and guided filter kernels. Since
an edge-preserving filter is applied to all 2D slices, the
computational cost is not low enough to realize real-time pro-
cessing. Zhang et al. [17] proposed an innovative acceleration
method for WM filters. They use a joint histogram with two
dimensions: one of the dimensions is pixel value and the other
is feature. Faster computation is achieved by combining the
joint histogram with a median tracking technique and a data
structure that provides instant access to the data. This method
achieves real-time processing for relatively small grayscale
images with small window sizes. Filter kernels that can be
used in this method are limited to those calculated from the
color/intensity difference between two pixels. This includes
the Gaussian kernel based on color/intensity distance. This
means that this method cannot use a guided filter kernel, which
calculates weights from multiple pixels. A fast WM filter using
a guided filter kernel is a challenging task that has not yet been
achieved.

In this paper, we propose a fast guided median filter
weighted by a pointwise guided filter kernel. Like the guided
filter kernel proposed in [12], the pointwise guided filter
kernel can prevent gradient reversal artifacts. The core idea
of the proposed method is a formulation that allows for the
use of histogram updates with a sliding window approach
to find the weighted median. Compared to the conventional
fast WM filters, the proposed method is not only faster but
also applicable to multidimensional, multichannel, and high
precision data. Until recently, conventional methods were used
to process various types of data. Examples include 8-bit color
image processing; multidimensional data such as video and
light field images; multichannel data such as multispectral
images; and high precision data such as medical images, HDR
images, and depth sensor data. The conventional methods have
been insufficient for this data due to their heavy computational
cost and enormous memory requirements. This has lead to a
need to reduce the data size, e.g., by using downsampling.
However, this leads to degraded accuracy in execution. Despite
the situation, there has been little discussion about using WM
filtering for multidimensional, multichannel, or high precision
data.

The main contributions of this research are:
1) We propose an accelerated computation algorithm for

the WM filter whose kernel is based on the guided filter.
Faster computation is achieved by formulating a WM
filter to which a sliding window method can be applied.

2) The proposed filter can be applied to multidimensional,
multichannel, and high precision data.

The remainder of this paper is organized so that Section II
reviews the related work on faster computation for UWM
and WM filters. We define the weighted median used in this
paper in Section III. The proposed WM filter is presented in
Section IV, and its extensions to multidimensional, multichan-
nel, and high precision data are presented in Section V. The
implementation details of our method are shown in Section VI.
Section VII shows the experimental results over high resolu-
tion, multidimensional, multichannel, and high precision data.
Finally, we conclude our paper in Section VIII.

II. A REVIEW OF RELATED WORK

This section focuses on the study of UWM and WM filters
in achieving faster computation in image processing.

A. Median Filter

The median filter, which we also call the UWM filter,
replaces the pixel value with the median value in a window
centered at each pixel. There are two categories of methods
for calculating median values. The first category is histogram-
based methods, and the second category is sort-based methods.

The histogram-based methods first construct a histogram
of the pixels in the window and then search for their
median. For faster processing, faster histogram construction
and faster median searches have been studied. To accelerate
the construction of histograms, many methods use a slid-
ing window approach that exploits the redundancy of the
overlapping regions of the windows of adjacent pixels. The
sliding window approach has two categories: The first is
called a O(r) sliding window approach and the latter a O(1)

sliding window approach. This is because the computational
complexities with respect to window radius r are O(r) and
O(1), respectively. Huang et al. [18] proposed a UWM filter
that uses the O(r) sliding window approach to construct a
histogram efficiently. The histogram of a horizontal sliding
window can be updated efficiently by removing the elements
of an excluded column resulting from the sliding window and
then adding the elements of a new column included also, from
the sliding window. To accelerate the median search, Huang
et al. also used a technique referred to as median tracking [17].
Median tracking records changes in the number of pixels
below the median value while the histogram is updating and
starts the median search for the next window from the median
value of the previous window. Huang’s method is extendable
in the temporal dimension too, so that it can be used as a
UWM filter for video [19]. The computational cost increases
as the window size increases in the O(r) sliding window
approach. However, the computational cost is independent of
the window size in the O(1) approach [20], [21]. In the O(1)

approach, the histogram of a horizontal sliding window is
updated by respectively subtracting and adding the histograms
of the column excluded and the column included by the
sliding window. To accelerate the median search, a coarse-
level histogram that accumulates only the higher order bits of
pixels is used to reduce the number of bins to search for and
update. SIMD operations are used to accelerate the addition
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and subtraction between histograms. The O(1) sliding window
approach is also used in the arc-distance median filter [22].

The sort-based methods first sort the pixel values in the win-
dow and then search for their median. Similar to the histogram-
based methods, the sorting-based methods use redundancy in
the window’s overlapping region of adjacent pixels and this
accelerates the finding of the median. Chaudhuri [23] used
the O(r) sliding window approach to compute rank orders in
a window. This can be used for min, max, or median filters.
When updating ordered elements through a sliding window,
the elements of the excluded column are removed, and the
elements of the windows newly included column are inserted
using the principle of mergesort. Sánchez and Rodríguez [24]
proposed a UWM filter that combines a sorting algorithm,
based on the complementary cumulative distribution function,
with the O(1) sliding window approach. Adams [25] proposed
fast UWM filters using separable sorting networks. The key
idea for the accelerating median search is to share most of
the sorting tasks between adjacent pixels. Sort-based meth-
ods work faster than histogram-based methods for small to
medium window sizes or high precision data.

B. The Weighted Median Filter

The WM filter replaces the pixel value of each pixel with
the weighted median value in a window centered at each
pixel. The weights are calculated from an input image itself
or from a guide image. Since the weights vary from window
to window, it is difficult to accelerate the construction of
the weighted histogram using a sliding window approach as
is used in UWM filters. Ma et al. [14] proposed the first
O(1) time WM filter. This method projected a 2D input
image into a 3D space, where the extended coordinate was a
histogram bin of the input image. By applying an O(1) edge-
preserving filter to 2D slices with the same bin, the method
achieved O(1) time computation. Since filtering is repeated
for the number of bins, it is difficult to perform real-time
processing for high precision images. Zhang et al. [17] used
a joint histogram with the O(r) sliding window approach to
accelerate the construction of a weighted histogram. Since the
joint histogram had a large number of bins, data traversal
was time-consuming. To solve this problem, a data structure
that allows fast traversal was introduced. The large memory
requirement of the joint histogram made it difficult to apply
the O(1) sliding window approach and to deal with mul-
tichannel and high precision data. Zhao et al. [26] applied
the bilateral grid data structure [27] to WM filtering. Their
method achieved real-time processing on 2D images when
the sampling rate of the bilateral grid was high. Since their
method was based on the bilateral grid, it had the same
problems that the bilateral grid had. For example, using a small
window size required fine sampling, which incurred large
memory and computational costs. Due to memory limitations,
processing high resolution, high-dimensional, multichannel,
and high precision data requires coarse sampling, leading to
significant degradation of results.

Zhang’s method and Zhao’s method cannot use the guided
filter kernel. Ma’s method can use the guided filter kernel, but

it is computationally expensive. In this paper, we propose a
fast WM filter based on the guided filter kernel.

III. A WEIGHTED MEDIAN FORMULATION

In this section, we define the weighted median formulation
used in this paper. Several formulations of weighted medians
have been proposed [28], [29], [30]. The weighted median
formulation is based on the formulation proposed in [14].

Let fx ∈ F be a pixel value at x in a single channel
input image f , where F = {i ∈ Z| fmin ≤ i ≤ fmax } and
fmin, fmax ∈ Z are the minimum and maximum values that
fx can take, respectively. In [14], the weighted median f ⋆

x in
a local window centered at pixel x is defined as:

f ⋆
x = min

j∈F
j s.t.

j∑
i= fmin

Hx (i) ≥
1
2

fmax∑
i= fmin

Hx (i), (1)

where Hx is a local weighted histogram and a value at bin i
is calculated by

Hx (i) =
∑
y∈�x

wx,y f δ
y (i), (2)

where �x is a set of pixels inside the local window, wx,y is
a weight calculated from the affinity between pixels x and y,
and

f δ
x (i) =

{
1 ( fx = i)
0 ( fx ̸= i).

(3)

In this paper, the weighted median formulation is extended
as follows. A weighted cumulative histogram up to bin i can
be expressed as

H↓x (i) =
i∑

j= fmin

Hx ( j) =
∑
y∈�x

wx,y

i∑
j= fmin

f δ
y ( j). (4)

The weights wx,y are often calculated from the coefficients
of a smoothing filter. Since the sum of the coefficients of a
smoothing filter is 1, the following holds:

H↓x ( fmax ) =
∑
y∈�x

wx,y

fmax∑
j= fmin

f δ
y ( j) =

∑
y∈�x

wx,y = 1. (5)

From this, the following weighted median with smoothing
filter coefficients can be derived:

f ⋆
x = min

i∈F
i s.t. H↓x (i) ≥ 0.5. (6)

To find its solution, we track the change in H↓x (i) with i .
Suppose all the weights are non-negative. When tracking from
i = fmin with increasing i , the solution is i where H↓x (i)
becomes 0.5 or higher for the first time. When tracking from
i = fmax with decreasing i , the solution is i just before H↓x (i)
becomes less than 0.5 for the first time. By generalizing this
observation, we define the weighted median tracked from a
starting bin k as follows:

f ⋆
x =

 min
i>k,i∈F

i s.t. H↓x (i) ≥ 0.5 (H↓x (k) < 0.5)

1+ max
i≤k,i∈F

i s.t. H↓x (i) < 0.5 (H↓x (k) ≥ 0.5).

(7)
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This weighted median formulation is used for the proposed
method.

When the weights are non-negative, the solutions of
(6) and (7) are the same. On the other hand, when the weights
contain negative values, the solutions are not necessarily the
same. As is seen in the next section, the weights used in the
proposed method may contain negative values.

IV. THE FAST GUIDED MEDIAN FILTER

The construction of a histogram Hx (i) shown in (2) impedes
fast computation of WM filters. Section IV-A discusses the
problems of the computation of Hx (i) in the WM filter
using the guided filter kernel. Section IV-B presents the
proposed method to solve this problem. The proposed method
efficiently obtains the weighted median using the median
tracking technique [17] and the sliding window approach
shown in Sec. IV-C.

A. Problems With the Guided Filter Kernel

For the histogram-based WM filter process, the weighted
cumulative histograms are updated as follows:

H↓x (i) = H↓x (i − 1)+ Hx (i). (8)

As this formula shows, fast computation of Hx (i) is the key
to achieving faster WM filtering. In the UWM filter, the
histogram can be updated efficiently using a sliding approach.
This subsection discusses the difficulties of using the same
approach with the guided filter kernel.

Let gx ∈ R be a pixel value at pixel x in a single channel
guide image g. The guided filter [12] assumes that the filtering
output ex at x can be estimated by a linear transformation of
g in a local window �z centered at pixel z:

ex = azgx + bz, (9)

where

az =

1
|�z |

∑
y∈�z

gy fy − µ(gz)µ( fz)

vz
, (10)

bz = µ( fz)− azµ(gz), (11)

µ(·⋆) is the mean value of · in �⋆, |�⋆| is the number of
elements of �⋆, and v⋆ = σ⋆ + ϵ where σ⋆ is a variance of g
in �⋆ and ϵ is a regularization parameter. The output value ex
is estimated in multiple windows, which is called multipoint
modeling [31]. In the rest of this paper, we call the guided
filter proposed in [12] the multipoint guided filter. The final
estimate is calculated as the average of multiple estimates.

ex = µ(ax )gx + µ(bx ). (12)

The weight of the multipoint guided filter is

wx,y =
1
|�x |2

∑
{z|x,y∈�z}

(
1+

(gx − µ(gz))(gy − µ(gz))

vz

)
.

(13)

Here it is noted that the weights may contain negative values.
The summation of the elements in the local window needed
in the calculation of mean values can be computed in O(1)

time using the separable summed area table (SSAT) or the one
pass summed area table (OP-SAT) [32].

Using the multipoint guided filter kernel the histogram
Hx (i) is,

Hx (i) = µ(aδ
x (i))gx + µ(bδ

x (i)), (14)

where

aδ
x (i) =

1
|�x |

∑
y∈�x

gy f δ
y (i)− µ(gx )µ( f δ

x (i))

vx
, (15)

bδ
x (i) = µ( f δ

x (i))− aδ
x (i)µ(gx ). (16)

To use a sliding approach, we attempt to rewrite these
equations using histograms. Let Fx (i) =

∑
y∈�x

f δ
y (i) be a

histogram of f at pixel x . aδ
x (i) and bδ

x (i) can be rewritten
using Fx (i) as

aδ
x (i) =

∑
y∈�x

gy f δ
y (i)− µ(gx )Fx (i)

vx |�x |
, (17)

bδ
x (i) =

1
|�x |

Fx (i)− aδ
x (i)µ(gx ). (18)

These equations reveal three problems that arise when the
multipoint guided filter kernel is used in WM filtering. First,∑

y∈�x
gy f δ

y (i) in (17) cannot be expressed using a histogram
of f . The naive calculation of this term is computationally
inefficient. Second, the computation of the mean value of aδ

x (i)
and bδ

x (i) is time consuming. Since aδ
x (i) and bδ

x (i) depends
on i , SSAT and OP-SAT cannot be used to calculate their
mean values. Third, since many histograms are required, the
calculation is inefficient and requires a lot of memory. For
the calculation of the mean values of aδ

x (i) and bδ
x (i), it is

necessary to keep histograms for all pixels in �x .

B. Our Approach

Instead of the multipoint guided filter kernel, the proposed
method uses a pointwise guided filter kernel, which uses
pointwise modeling [31]. The filtering result is

ex = ax gx + bx = ax (gx − µ(gx ))+ µ( fx ). (19)

This equation can also be formulated as

ex = cx
∑
y∈�x

gy fy + dx
∑
y∈�x

fy, (20)

where

cx =
gx − µ(gx )

vx |�x |
, dx =

1
|�x |
− µ(gx )cx . (21)

The weight in the pointwise guided filter can be expressed as

wx,y =
1
|�x |

(
1+

(gx − µ(gx ))(gy − µ(gx ))

vx

)
. (22)

Unlike the multipoint guided filter, the weight of the pointwise
guided filter is not symmetric, i.e., wx,y ̸= wy,x .

Using (20), Hx (i) can be expressed as

Hx (i) = cx
∑
y∈�x

gy f δ
y (i)+ dx

∑
y∈�x

f δ
y (i). (23)
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Algorithm 1 Search Weighted Median

Here, gx f δ
x (i) can be replaced with

gδ
x (i) =

{
gx ( fx = i)
0 ( fx ̸= i).

(24)

Let Gx (i) =
∑

y∈�x
gδ

y(i) be a histogram of f weighted by
g. Then

Hx (i) = cx Gx (i)+ dx Fx (i) (25)

which is that histogram Hx (i) can be calculated as a weighted
sum of the histograms Gx (i) and Fx (i). Equation (25) is the
core result of this research. A fast WM filter using a guided
filter kernel can be achieved because all the elements used
to compute Hx can be computed fast. Gx and Fx can be
obtained efficiently using a sliding window approach. Since
the weights cx and dx are independent of i , they can be
computed efficiently using SSAT or OP-SAT.

C. Efficient Median Search

Let W = {F, G, f ↓, g↓, k} be the local window at the pixel
of interest x , where F and G are the histograms of W , and
f ↓ =

∑k
j= fmin

F( j) and g↓ =
∑k

j= fmin
G ( j) are values at

the tracking bin k of the cumulative histogram of F and G,
respectively. Equation (8) can be rewritten as

H↓x (i) = cx (g↓ + G (i))+ dx ( f ↓ + F(i)). (26)

The pseudocode for the median search of the proposed method
is shown in Algorithm 1.

For fast computation of the WM filter, the proposed method
uses the median tracking technique and the sliding window
approach. Here we will discuss the case where the input image
and the guide image are both 2D grayscale images of size
M × N . Let W (2)

s,t be a 2-dimensional square window of size
2r + 1 centered at pixel (s, t) and W (1)

s,t be a 1-dimensional

Fig. 2. (a) 2D window and column windows. (b) Column window update
in the O(1) sliding window approach.

column window of length 2r+1. Here r is the window radius
of W (2)

s,t .
The median tracking technique can reduce the computation

time for the median search. This technique starts the calcula-
tion of f ⋆

s,t in the window W (2)
s,t from k which is the ending

bin used for the calculation of f ⋆
s−1,t in the previous window

W (2)
s−1,t . Here, k is f ⋆

s−1,t when the median value is searched
in ascending order in W (2)

s−1,t , and f ⋆
s−1,t −1 when the median

value is searched in descending order. This method works
because the median value does not change much between
neighboring pixels and this aids in the search for the median.
Since the weights used in the proposed method can be negative
values, the search from fmin and the search using median
tracking may have different solutions, as mentioned in Sec. III.
Since it rarely occurs, it makes little visual difference. Less
than 0.1 % of the pixels have different solutions in the
30 natural color images used in the experiment in Sec. VII-C.

The sliding window approach allows for efficient calculation
of F , G, f ↓, and g↓. When sliding a filter window to the right,
window W (2)

s,t overlaps much of the region of window W (2)
s−1,t .

Let s− = s−r−1 and s+ = s+r . To obtain the data in window
W (2)

s,t , the sliding window approach adds data in window W (1)

s+,t
to data in window W (2)

s−1,t and removes data in window W (1)

s−,t
from data also in window W (2)

s−1,t (see Fig. 2 (a)). The O(r)

and O(1) sliding window approaches differ in this update
process.

The algorithm for the proposed weighted median filter
based on the O(r) sliding window approach is shown in
Algorithm 2. The data in W (2)

s,t is obtained by adding the
pixels in W (1)

s+,t to W (2)
s−1,t and removing the pixels in W (1)

s−,t
from W (2)

s−1,t . The algorithm for adding pixels is shown in
Algorithm 3. The computational complexity of the histogram
update in the O(r) sliding window approach is proportional
to the filter radius. Given an image with a pixel bit depth of n
bits, 2(2n

+1)(n+2 log2(2r+1))+n bits are required to store
the data in the window. f ↓ and g↓ need n + 2 log2(2r + 1)

bits each, F and G need 2n(n+2 log2(2r +1)) bits each, and
k needs n bits.

The algorithm for the proposed weighted median filter
based on the O(1) sliding window approach is shown in
Algorithm 4. The data in W (2)

s,t is obtained by merging the
data in W (1)

s+,t into W (2)
s−1,t and separating the data in W (1)

s−,t
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Algorithm 2 O(r) Sliding Window Approach

Algorithm 3 Add Pixels to Window

Algorithm 4 O(1) Sliding Window Approach

from W (2)
s−1,t . To achieve this update, column windows must

be stored and updated. The number of column windows to be
stored is equal to the image width N . Before the merging
process, the column window W (1)

s+,t is obtained by sliding

W (1)

s+,t−1 vertically one pixel to add and remove pixels (see
Fig. 2 (b)). The algorithm for merging two windows is shown
in Algorithm 5. F (2) and G(2) are updated by adding the values
of each bin of F (1) and G(1), respectively. Since k(1) and k(2)

can be different, first k(1) is updated to be equal to k(2), then
f (1)↓ and g(1)↓ are added to f (2)↓ and g(2)↓, respectively.
The updated W (1)

s+,t is used again to update W (2)
s−1,t+1 in the

next row. Since k(2) in W (2)
s−1,t and W (2)

s−1,t+1 are expected to
be close, W (1)

s+,t updated with k(2) in W (2)
s−1,t is expected to

have a small update when merged with W (2)
s−1,t+1. The process

of separating W (1)

s−,t from W (2)
s−1,t is similar to the opposite

process of merging but is partially different. Since k(1) in
W (1)

s−,t has been updated to a value suitable for merging in

Algorithm 5 Merge Windows

the next row, the separation process adjusts f (2)↓ and g(2)↓

in W (2)
s−1,t without updating k(1) in W (1)

s−,t , e.g., f (2)↓
←

f (2)↓
+ F (1)(k(1)) instead of f (1)↓

← f (1)↓
+ F (1)(k(1)). The

computational complexity of the histogram update in the O(1)

sliding window approach is proportional to the bit depth of
the image. Since column windows are used in addition to the
main window W (2), (2(n+2 log2(2r+1))(2n

+1)+n)(M+1)

bits are required to store the data of all the windows. While
the O(1) sliding window approach has an advantage over
the O(r) sliding window approach in terms of computational
complexity due to the window size, it needs additional memory
and computation for the column windows.

V. EXTENSIONS TO THE WM FILTER

The proposed method can be extended to multidimensional,
multichannel, and higher precision data.

A. The Multidimensional Extension

The proposed method can easily be applied to multidi-
mensional images because SSAT and OP-SAT used in the
calculation of cx and dx and the sliding window approach
used in histogram updating can be straightforwardly extended
to multidimensional images.

B. Using Multichannel Guide Images

Like various filters, a multichannel input image is processed
for each channel. Since cx and dx are commonly used for all
channels of an input image, they need to be calculated only
once.

In the case when the guide image is multichannel, the
pointwise guided filter can be extended in the same way as
the multipoint guided filter. Let gx ∈ Rm be a vector whose
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entries are the pixel value of each channel at pixel x in the
guide image g, where m denotes the number of channels of
the guide image. The output of the pointwise guided filter with
a multichannel guide image is expressed as

ex = c⊤x
∑
y∈�x

gy fy + dx
∑
y∈�x

fy, (27)

where ·⊤ denotes the transpose of the matrix,

cx = V−1
x

gx − µ(gx )

|�x |
, dx =

1
|�x |
− c⊤x µ(gx ), (28)

Vx = 6x +ϵ I , 6x ∈ Rm×m is a covariance matrix of g in �x ,
I is the identity matrix, and µ(gx ) ∈ Rm is a vector whose
entries are the mean values of each channel of g in �x . Using
(27), the histogram Hx is derived in the same way as for the
single channel as follows:

Hx (i) = c⊤x Gx (i)+ dx Fx (i), (29)

where Gx is a weighted histogram of f and Gx (i) ∈ Rm is a
vector with values for each channel bin.

We analyze the behavior of the regularization parameter ϵ,
which controls the smoothing effect, when using multichannel
guide images. Consider the case where all channels of g are the
same. That is, gx = gx 1m , where 1m ∈ Rm is a vector, whose
entries are all 1. Here, the same output is wanted as when
the single channel g is used as the guide image. Substituting
gx = gx 1m into (27), we obtain

ex = αx (gx − µ(gx ))+ µ( fx ), (30)

where

αx = 1⊤m Ṽ−1
x 1m

 1
|�x |

∑
y∈�x

gy fy − µ(gx )µ( fx )

 , (31)

and Ṽx = σx 1m1⊤m+ϵ I . Using the Sherman-Morrison formula,
we obtain

1⊤m Ṽ−1
x 1m =

(
σx +

ϵ

m

)−1
. (32)

As can be seen by comparing with (19), ϵ becomes relatively
small as the number of channels increases. To obtain the same
level of smoothing effect when the guide image has multiple
channels compared to when the guide image has a single
channel, ϵ should be multiplied by the number of channels.
The same is true for the multipoint guided filter kernel.

C. High Precision Extensions

Theoretically, the proposed method described so far can
be applied to high precision data. However, high precision
data causes an explosive increase in the size of the histogram,
which leads to practical problems. One is the requirement for
a large amount of memory to store histograms and another is
the increased computational cost of updating the histograms.
In a UWM filter, using the ordinal transform solves these
problems because the transform can reduce the number of bins
in the histogram [33]. On the other hand, the proposed method
cannot use the ordinal transform because (25) is not invariant
to the transform.

This problem is solved by having the histogram in a linked
list of high precision data in ascending order. Both O(r) and
O(1) sliding window methods can use this solution. This paper
discusses the O(1) sliding window approach to sorted linked
lists. Adding elements to the linked list is like the merge
process of a mergesort, although slightly different. Elements
with the same bin are not inserted into the list but are added
to the existing elements. Please for a moment assume that
the linked list of the histogram of a column window has
already been sorted during processing in the previous row.
Then, adding one pixel to the histogram of the column window
merges one element into the linked list. Adding the histogram
of the column window to the histogram of the main window
merges two sorted lists. When removing elements of the
histogram of the column window from the histogram of the
main window, bins whose value becomes zero are removed
from the list. The computation time for updating the linked list
is proportional to the length of the linked list. As the window
size increases, the computation time tends to increase because
the possibility of having values at various bins increases.

VI. THE IMPLEMENTATION DETAILS

In this section, we describe CPU and GPU implementations
of the proposed method. In general, a CPU is composed of
fewer cores and more cache memory than a GPU. Due to
this difference in composition, the suitable sliding window
approach differs between CPU and GPU, which will be
discussed in Sec. VI-A. In the implementation of the proposed
method, the O(r) sliding window approach is used for the
GPU implementation as shown in Sec. VI-B, and the O(1)

sliding window approach is used for the CPU implementation
as shown in Sec. VI-C. We also describe the implementation
for high precision data in Sec. VI-D.

A. Sliding Window Approach for CPU and GPU

The O(1) sliding window approach is superior to the O(r)

sliding window approach in computational time. However,
while this is true for single-threaded environments, it is
not necessarily true for multi-threaded environments. In the
O(1) sliding window approach, each row cannot be computed
independently because the data of the column window updated
in the previous row is needed. In a parallel implementation
of the O(1) sliding window approach, an input image is
divided into multiple blocks, and these blocks are processed
in parallel. A small number of divisions is ineffective in
terms of parallelism while a high number of divisions causes
a lot of overhead, which is mainly in the construction of
the histograms of column windows. For fast computation,
it is necessary to store the data of the column windows in
the cache memory, which needs a large amount of cache
memory. The O(1) sliding window approach is therefore
suitable for CPUs but not for GPUs. [34] shows that the CPU
implementation outperforms the GPU implementation in terms
of computational speed in the UWM filter implementation
using the O(1) sliding window approach. Unlike the O(1)

sliding window approach, the O(r) sliding window approach
does not have the overhead of parallelization because each
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row is computed independently. Also, it does not require a
large cache for execution because it does not need the data
of the column windows. Therefore, the O(r) sliding window
approach is suitable for processors with many cores and a
small cache, such as GPUs.

B. GPU Implementation With O(r) Sliding Window Approach

In this paper, the NVIDIA’s CUDA platform is used to
implement the proposed method on GPUs.

In the O(r) sliding window approach on GPU, cx and dx
are first calculated using SSAT, and then the weighted median
is calculated by sliding a window vertically for each image
column. The reason for sliding vertically instead of horizon-
tally is to achieve coalesced memory access for efficient pixel
loading.

High parallelism and efficient memory access are required
to achieve high-speed processing. Since the data of the sliding
window are accessed frequently, they should be stored in
on-chip memory, such as the L1 cache or shared memory.
One viable way to achieve high parallelism is to allocate
one thread for each image column. This approach, however,
achieves low parallelism. Since each thread stores the data
of the sliding window, running a small number of threads
consumes most of the on-chip memory in one thread block.
Therefore, the number of threads running per thread block is
small. Furthermore, the window update is inefficient because
it is not parallelized.

In the proposed implementation, one thread block is allo-
cated for each image column. Each thread block has the
same number of threads as the width of a local window.
When a local window slides, each thread loads a pixel in
parallel and updates F, G, f ↓ and g↓ in parallel using atomic
operations. The median tracking process is performed by one
of the threads in a thread block. The pseudocode for the
GPU kernel is shown in Algorithm 6. Except when using
a small filter radius, this implementation uses more threads
than the implementation of allocating one thread for each
image column. In practical applications, this implementation
is effective because a large filter radius is often used.

C. CPU Implementation With O(1) Sliding
Window Approach

Unlike the O(r) sliding window on GPUs, we compute
the weighted median while computing cx and dx using OP-
SAT, because both computations are one-pass algorithms. For
multichannel input, cx and dx are saved in the first channel
processing and loaded in the subsequent channels processing
without recalculating cx and dx .

For high-speed computation, we use SIMD operations and
multi-threaded processing. Since the histogram update is sim-
ply the addition and subtraction of elements between the
same bins of histograms, it can be accelerated by using
SIMD operations. In our implementation, we use Intel AVX2
instructions, which have 256-bit vector integer instructions.
We assign 32 bits to each bin of a histogram, so we can update
8 bins in parallel with a single instruction.

Algorithm 6 GPU Kernel Implementation

A strategy for multi-threaded processing is to divide an
image into vertical, horizontal, or both partitions and assign
each thread to process each partial image. Note that this
strategy incurs the overhead of initializing the histograms of
a 2D window and column windows for each partial image.
In our implementation, we simply divide an image into T
vertical partitions, where T is the number of threads used. The
optimal division method and number depend on the image size,
window size, CPU cache size, etc. Consideration of a more
appropriate division is beyond the scope of this paper.

D. O(1) Sliding Window on CPU for High Precision Data

With high precision data, the O(1) sliding window approach
is used on CPU with the linked list-based histogram as
described in Sec. V-C. This implementation searches for a
median from fmin instead of using median tracking because
it takes time to find specific elements from a linked list.
SIMD operations are not used because they cannot update
the histogram for the linked list effectively. However, multi-
threaded processing is used to process each partial image in
parallel.

VII. EXPERIMENTATION

A. Experimental Setup

The specification of the computer conducting the experi-
ment was a Core i7-8700 @ 3.20 GHz CPU with 6 cores
(12 threads) and 64 GB of RAM, and an NVIDIA GeForce
GTX 1060 @ 1.51 GHz graphics card with 1152 CUDA cores
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and 3 GB of RAM. We used the three types of the proposed
methods shown in Sec. VI. We name each implementation as
follows: GPU-O(r) (Sec. VI-B), CPU-O(1) (Sec. VI-C), and
List-O(1) (Sec. VI-D). The proposed method was compared
with the following conventional methods: The UWM filter,
the constant time WM filter (CT-O(1)) [14] and a hundred
times or faster WM filter (FWM-O(r)) [17]. All methods
were implemented in the C++ programming language. The
OpenMP application programming interface was used for
parallel computation of the CPU implementation. The CUDA
toolkit was used for the GPU implementation. CT-O(1) was
coded using CUDA by the author. It employs the multipoint
guided filter [12] for calculating weights. The code of FWM-
O(r) is provided by the author and is slightly modified for
parallelization using OpenMP. The default parameters that
were set in the code of FWM-O(r) were used. I.e., the weights
were calculated as

wx,y = exp

(
−

(gx − gy)
2

2σ 2

)
, (33)

where σ is a parameter.

B. Noise Reduction Performance

In this experiment, noise reduction performance is verified.
One scenario in which WM filters are used is to remove noise
contained in a disparity image using a color image as a guide
image. We performed denoising of a disparity image estimated
from a 4D light field image. We used 16 scenes in the
Additional category of the dataset [35]. Each scene consisted
of a 4D color light field image with a spatial resolution of
512×512 and an angular resolution (the number of viewpoints)
of 9×9. First, an 8-bit disparity image of the central viewpoint
was estimated using the initial estimation process in the
disparity estimation method [36]. Next, we denoised the initial
estimation result using the GPU-O(r) filter with the color
image of the central viewpoint of the light field image as a
guide image. Finally, the mean squared errors (MSEs) were
obtained using the ground truth of the disparity image provided
in the dataset. The filters and their parameters used in the
experiment were as follows: The UWM filter with rs = 14,
the FWM-O(r) filter with rs = 16 and σ = 25.5, the CT-
O(1) filter with rs = 24 and ϵ = 0.512, and the GPU-O(r)

filter with rs = 18 and ϵ = 2.552. Here rs was the spatial
radius of a filter window. For a fair comparison, parameters
were adjusted for the best results in terms of MSEs.

The MSEs are shown in Table I. The WM filters showed
higher denoising performance compared to the UWM filter.
The CT-O(1) and GPU-O(r) filters, which used kernels based
on the guided filter, showed higher denoising performance than
the FWM-O(r) filter, which used the Gaussian kernel based on
color/intensity distance. Fig. 3 shows how the CT-O(1) filter
and the GPU-O(r) filter helped recover the structural details.
Compared to GPU-O(r), the CT-O(1) filter showed higher
performance. This may be due to the CT-O(1) filter using
the kernel based on multipoint modeling, while the GPU-O(r)

filter used the kernel based on pointwise modeling. Multipoint
modeling has better estimation performance than pointwise
modeling because of its redundant estimation [31].

TABLE I
AVERAGE MSE (×100) ON NOISE REDUCTION FOR DISPARITY IMAGE

Fig. 3. Zoomed up of denoising results of estimated disparity in dataset table.
(a) Estimated disparity in initial estimation process of [36]. (b) UWM filter.
(c) FWM-O(r) filter. (d) CT-O(1) filter. (e) GPU-O(r) filter. (f) Ground
truth.

Fig. 4. Examples of test images. (a) Color image. (b) Depth image.

C. Computation Time of Natural Images

In this experiment, the computation time of each method
was evaluated for grayscale and color images (8 bits/channel)
with different image sizes and window sizes. The dataset [37]
was used. It contained high resolution natural color images
of assorted sizes. Thirty images of size 2040 × 1356 were
selected, resized, and converted to grayscale for the experi-
ment. Figure 4 (a) shows one of the test images.

The computation times for three different image sizes
(640 × 480, 1024 × 768, and 1920 × 1080) with window
size 15 are shown in Table II. The CPU-O(1) filter and
GPU-O(r) filter were clearly faster than the conventional
methods. List-O(1) was suitable for high precision data and
not for 8-bit natural images, but it was competitive with the
FWM-O(r) filter and faster than the CT-O(1) filter. For color
images, the computation times of all methods increased signifi-
cantly because the guide images were also color images. When
the FWM-O(r) filter uses a color guide image, the image
requires quantization into 256 different values, which increases
the computation time as overhead. The significant increase
in computation time of the CT-O(1) filter and our proposed
methods, both of which are the guided filter-based methods,
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TABLE II
AVERAGE COMPUTATION TIMES (IN MILLISECONDS) WITH RESPECT TO

DIFFERENT IMAGE SIZES FOR GRAYSCALE AND COLOR IMAGES

was due to the inverse matrix operations shown in (28). Given
these reasons, despite the difficulty of efficient computation
for large color images, the GPU-O(r) filter achieved near
real-time processing speed. Of particular emphasis is the fact
that both the CT-O(1) and GPU-O(r) filters use kernels based
on the guided filter with high noise reduction performance,
but the GPU-O(r) filter is more than 50 times faster than the
CT-O(1) filter.

The computation times for images of size 1920×1080 with
different window sizes are shown in Fig. 5. The computation
times of the CT-O(1) and CPU-O(1) filters were nearly
constant for increasing the window size. The slight increase
in computation time with increasing window size in the CPU-
O(1) filter is due to the increase in overhead caused by
parallelization. The computation time of the List-O(1) filter
increased as the window size increased. This is because the
length of the linked list tends to become longer as the window
size increases, as mentioned in Sec. V-C. The computation
time of the FWM-O(r) and GPU-O(r) filters increased as
the window size increased. Despite O(r) time algorithm, the
GPU-O(r) filter was faster than other O(1) time algorithms.

D. Application to High Precision Data

In this experiment, we verify the behavior of our proposed
methods for high precision data. We used 16-bit depth images
in the dataset [38]. Thirty images of size 1280 × 720 were
selected. To measure the computation time for different bits,
we created 8-, 10-, 12-, and 14-bit data by quantizing the
original data. Figure 4 (b) shows one of the test images. The
window size was set to 15.

The computation times with different bit depths are shown
in Fig. 6. The GPU-O(r) filter was not able to manage 14-bit
or higher data because the histograms could not be stored on
the shared memory of the GPU. The CPU-O(1) filter was able
to manage 16-bit data. Its computation time for 16-bit data was
about 600 times longer than one in the List-O(1) filter. Most
of the computation time was spent on adding and subtracting
histograms with 216 bins. The List-O(1) filter operated at near
real-time speed for 16-bit data. Unlike the results for 8-bit
grayscale images in Sec. VII-C, the computation time of the
List-O(1) filter was shorter than that of the CPU-O(1) filter
for the 8-bit data in this experiment. Because the histogram
distribution of the depth data used in the experiment was
sparse, the linked list of the depth data was shorter than that
of natural images. The List-O(1) filter runs faster the sparser
the distribution of the histogram is, while the CPU-O(1) filter

Fig. 5. Average computation times with respect to different window radii
for (a) grayscale and (b) color images.

Fig. 6. Average computation times for each precision.

does not depend on the distribution of the histogram for its
computation speed.

E. Application to Multichannel Images

In this experiment, the behavior of the proposed methods
for multichannel data is verified. The University of Pavia
dataset [39] was used, which is a multispectral image of
size 610 × 340 with 103 bands. Salt-and-pepper noise with
a probability of 0.05 was added to each channel.
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TABLE III
AVERAGE PSNRS OF IMAGES FILTERED WITH DIFFERENT CHANNEL RADII rc ON NOISE REDUCTION FOR MULTISPECTRAL IMAGE

TABLE IV
AVERAGE MSES OF IMAGES FILTERED WITH DIFFERENT ANGULAR RADII ra ON DISPARITY REFINEMENT FOR LIGHT FIELD IMAGE

We performed multispectral image denoising using the
GPU-O(r) filter and varied the number of channels as a guide
image. The number of channels to be used as a guide image
was determined by the channel radius rc. Filtering for the
i-th channel with rc used channels from i − rc to i + rc
except i as a guide image. The number of channels of the
guide image to be used was expressed as 2rc. The reason
why the i-th channel was not used for the guide image was
that if the guide image was the same as the input image,
it would have been difficult to efficiently remove noise in
the input image. As described in Sec. V-B, ϵ was adjusted
for the number of channels in the guide image as follows:
ϵ = 2 rcϵ̂. We set the spatial window radius to 1 and ϵ̂ = 552.
For comparison, the following methods were applied to each
channel for denoising: The UWM filter with rs = 1, the FWM-
O(r) filter with rs = 1 and σ = 510, the CT-O(1) filter with
rs = 1 and ϵ = 2552, and the GPU-O(r) filter with rs = 1 and
ϵ = 5102. Parameters were adjusted for best results in terms
of the average peak signal-to-noise ratios (PSNRs).

The PSNRs of the filtered images are shown in Table III.
The FWM-O(r), CT-O(1) and GPU-O(r) filters gave the best
results using large σ and ϵ. If the pixel of interest is affected by
noise, the weights computed from that pixel result in improper
smoothing. While the use of large σ and ϵ reduces the effect
of noise in the guide image, their kernels approach the mean
filter kernel. As a result, they are almost identical to the UWM
filter. As can be seen from (13), the multipoint guided filter
kernel used in the CT-O(1) filter considers overlapping local
windows. Therefore, the range of pixels used to calculate the
output is 2rs . This leads to a lower PSNR for the CT-O(1)

filter with rs = 1 compared to the UWM filter with rs = 1.
As shown in Fig. 7, these methods degrade luminance changes
that are not noise in the subject. In the GPU-O(r) filter with a
multichannel guide, the use of more channels achieved better
performance. Figure 8 shows the input channels of bands 78 to
82. The luminance changes that the subject has commonly
appear in multiple channels at the same coordinates, while the
luminance changes due to noise appear only in some channels
at the same coordinates. The use of multiple channels may lead
to appropriate weights based on similarities between channels.

F. Application to Multidimensional Data

In this experiment, the behavior of the proposed methods
is verified for multidimensional data. Denoising of a 4D
light field image was performed. The same dataset used

Fig. 7. Denoising results of a multispectral image (band 80). (a) Original
image. (b) Noisy image. (c) UWM filter. (d) FWM-O(r) filter. (e) CT-O(1)

filter. (f) GPU-O(r) filter with single channel guide. (g), (h), (i) and (j) are
GPU-O(r) filter with rc = 1, 3, 5 and 7, respectively.

Fig. 8. Noisy input channels. (a) Band 78. (b) Band 79. (c) Band 80.
(d) Band 81. (e) Band 82.

in the experiments in Sec. VII-B was used. Disparities of
all viewpoint estimates were obtained by using the initial
estimation process of the disparity estimation method [36].
The disparities of all viewpoints could be regarded as 8-bit
4D data of size 512× 512× 9× 9. Next, the initial estimation
results were denoised using the GPU-O(r) filter using the 4D
color light field image as a guide image. The angular radius
ra of the filter varied from 0 to 4. An ra = 0 meant that the
disparity of each viewpoint was filtered independently. I.e.,
it is equivalent to applying a 2D filter instead of a 4D filter.
The spatial window radius was set to 20 and ϵ̂ = 2.552. For
comparison, the following methods were applied to each view
for denoising: The UWM filter with rs = 14, the FWM-O(r)

filter with rs = 16 and σ = 25.5, and the CT-O(1) filter with
rs = 24 and ϵ = 2.552. The parameters were adjusted for the
best results in terms of MSEs.

The MSEs of filtered images with different angular radii are
shown in Table IV. Figure 9 shows the refinement results of
the upper left viewpoint. As can be seen by comparing the
result of ra = 0 with the other results, using the 4D filter
instead of the 2D filter (ra = 0) significantly improved the
refinement performance.
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Fig. 9. The denoising results for the upper left viewpoint of estimated disparity in the dataset antinous. (a) The estimated disparity in the initial estimation
process of [36]. (b) UWM filter. (c) FWM-O(r) filter. (d) CT-O(1) filter. (e) GPU-O(r) filter with ra = 0. (f) GPU-O(r) filter with ra = 4. (g) Ground truth
disparity.

VIII. CONCLUSION

In this paper, we proposed a novel fast WM filter with the
pointwise guided filter kernel. The proposed method can effi-
ciently update the weighted histogram, which is the bottleneck
in the real-time processing of WM filters. Fast computation
is achieved by combining a sliding window approach with
a median tracking technique. While conventional methods
struggle to handle multidimensional, multichannel, and high
precision images, the proposed method can manage them
without data reduction. The experimentation results showed
that the proposed method realizes faster computation than
conventional WM filters. Furthermore, the proposed method,
which calculates weights based on the guided filter kernel,
has a higher noise reduction performance than the conven-
tional method which calculates weights using the Gaussian
kernel.
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