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Super-Resolution Phase Retrieval Network for
Single-Pattern Structured Light 3D Imaging

Jianwen Song , Kai Liu , Senior Member, IEEE, Arcot Sowmya, and Changming Sun

Abstract— Structured light 3D imaging is often used for obtain-
ing accurate 3D information via phase retrieval. Single-pattern
structured light 3D imaging is much faster than multi-pattern
versions. Current phase retrieval methods for single-pattern
structured light 3D imaging are however not accurate enough.
Besides, the projector resolution in a structured light 3D imag-
ing system is expensive to improve due to hardware costs.
To address the issues of low accuracy and low resolution
of single-pattern structured light 3D imaging, this work pro-
poses a super-resolution phase retrieval network (SRPRNet).
Specifically, a phase-shifting module is proposed to extract
multi-scale features with different phase shifts, and a refinement
and super-resolution module is proposed to obtain refined and
super-resolution phase components. After phase demodulation
and unwrapping, high-resolution absolute phase is obtained.
A sine shifting loss and a cosine shifting loss are also introduced
to form the regularization term of the loss function. As far as
can be ascertained, the proposed SRPRNet is the first network
for super-resolution phase retrieval by using a single pattern,
and it can also be used for standard-resolution phase retrieval.
Experimental results on three datasets show that SRPRNet
achieves state-of-the-art performance on 1×, 2×, and 4× super-
resolution phase retrieval tasks.

Index Terms— Structured light, super-resolution, single-
pattern, phase retrieval, phase-shifting.

I. INTRODUCTION

STRUCTURED light (SL) three-dimensional (3D) imag-
ing [1] is one of the most efficient active 3D vision

techniques with outstanding accuracy. The principle of SL
3D imaging is similar to that of binocular stereo vision [2]
and is based on triangulation. An SL system uses a projector
that actively projects coded patterns onto objects, and the
projection operation not only simplifies the matching process
but also has superior ability to reduce noise and other error
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Fig. 1. Diagram of super-resolution single-pattern structured light 3D
imaging.

sources when compared to binocular stereo vision. Phase
information is obtained from the patterns captured by the
camera after the projector projects the coded patterns onto
the object. By combining the phase information with the
calibration parameters of the projector-camera system, the 3D
coordinates of points on the object surface can be obtained.
Therefore, the key issue in SL 3D imaging is the retrieval of
phase information.

Traditional SL 3D imaging methods involve various coding
and decoding strategies to obtain the phase information. They
can be classified into multi-pattern and single-pattern methods.
Multi-pattern SL methods apply codification [1] or phase-
shifting [3] via a series of patterns and then use the deformed
patterns to decode the phase information. For codification-
based multi-pattern SL methods, each point is assigned a
unique code that is combined from all the patterns, where the
code can be binary or gray-level values [4], [5], [6]. For phase-
shifting multi-pattern SL methods, intensity variation infor-
mation is coded in multiple patterns with phase shifts. Such
intensity variations can be in the form of sinusoidal [7], [8],
[9], [10], [11], [12], binary [13], [14], triangular [15], [16],
hybrid [17], [18], or other shapes. Phase-shifting SL is the
most representative method of SL because of its robustness
and efficiency, and the sinusoidal pattern has the desirable
properties of continuity and periodicity, and these properties
make the sinusoidal pattern the most popular pattern for SL
3D imaging.

However, the use of multiple patterns requires long scan-
ning time, which makes it challenging to use in a real-
time system. Decreasing the number of projected patterns
is the most straightforward way to improve the real-time
capability of an SL system. Therefore, single-pattern SL
methods are designed to speed up the scanning process. Apart
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from color-based single-pattern SL, which combines multiple
phase-shifting information within a single color-coded pattern,
other single-pattern methods can be classified into Fourier-
based [19] and indexing-based methods [20]. Fourier-based
SL methods retain the principal components and remove other
components in the frequency domain while retrieving phase
information. Indexing-based SL methods use unique strips or
points to construct the projected patterns and can distinguish
different positions on the captured patterns based on the
specific coding method when decoding the patterns. However,
these single-pattern SL methods have low decoding accuracy.

Apart from the coding and decoding processes, some other
issues are also important for improving the accuracy and
efficiency of SL 3D imaging. Traditional methods are based
on constructing various error models to improve accuracy.
Recently, with the development of deep learning techniques,
deep neural networks have been applied to tasks in SL 3D
imaging, such as phase retrieval [21], [22], gamma distortion
elimination [23], light saturation correction [24], intensity
enhancement [25], and phase unwrapping [26].

To achieve high-quality phase retrieval for single-pattern SL
3D imaging, a novel super-resolution phase retrieval network
(SRPRNet) is proposed in this work. The diagram of this work
is shown in Fig. 1. The projector projects a single pattern
onto the 3D object and the camera captures the deformed
single low-resolution (LR) pattern. Then, SRPRNet retrieves
the super-resolution (SR) phase from the single LR pattern.
Finally, we can obtain SR point clouds using the SR phase.
The core components of the network are a phase-shifting
module (PSM) and a refinement and super-resolution module
(RSRM). With the proposed SRPRNet, an SR phase map
can be obtained using a single LR input pattern. Besides,
SRPRNet can also be extended for standard-resolution (STR)
phase retrieval. The main contributions of this work are as
follows:

1) A phase-shifting module consisting of 4 shift blocks and
1 fusion block is designed for extracting features with
information from different phase shifts.

2) A refinement and super-resolution module is designed to
refine the phase-shifting features and generate SR phase
components.

3) A novel SR phase retrieval network, namely SRPRNet,
for single-pattern SL 3D imaging is proposed. Besides,
the SR module can be integrated with any existing
methods to form new SR phase retrieval methods for
single-pattern SL 3D imaging, which further demon-
strates the effectiveness and superiority of the proposed
network.

4) A new dataset that contains 147 fringe patterns and
phase components pairs is constructed for training phase
retrieval networks, in addition to existing publicly avail-
able datasets.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. In Section III, the basic
principles of phase-shifting SL are briefly introduced. The
proposed SRPRNet is described in Section IV, and Section V
provides the experimental results. Conclusion and future work
are described in Section VI.

II. RELATED WORK

Single-pattern SL methods are much faster than multi-
pattern SL methods not only during scanning but also during
computation. Traditional single-pattern SL methods decode
a sinusoidal pattern based on Fourier analysis, or decode a
uniquely labeled pattern with grids or strips according to
specific coding methods. These methods are useful but have
low accuracy. Deep learning techniques can also be used for
phase retrieval in SL 3D imaging and can provide better
performance than traditional methods. The projector resolution
in an SL system limits the final resolution, and improving the
resolution on hardware is expensive. It should be easier to
improve the resolution of an SL system using a computational
process, which is the motivation for this work.

A. Traditional Single-Pattern Structured Light Methods

Fourier profilometry [19], windowed Fourier profilome-
try [27], and wavelet transform profilometry [28] are three
representative traditional transform-based single-pattern SL
methods. These methods remove high-frequency components
of the captured pattern in the frequency domain. Then, the
phase information can be obtained using the remaining com-
ponents. Li et al. [29] proposed a phase retrieval method that
used an advanced shearlet transform to extract the fundamental
frequency component of the single pattern. Zhu et al. [30] pre-
sented an image decomposition model, named TV-G-Shearlet,
to remove noise and background from a single fringe pattern,
and then the wrapped phase was obtained using Fourier
transform. Dong and Chen [31] proposed an advanced Fourier
transform method to retrieve phase information from a single
spatial pattern. The method split the pattern into four shifted
patterns with one-pixel difference, and Fourier transform was
used to obtain Fourier spectra from the four patterns. Then,
by subtraction between the Fourier spectra, the 0th harmonic
component was filtered, and phase information was obtained.

A three-channel color-coded pattern [32] can be used to
embed phase shifts or other features into a single pattern.
Lin et al. [33] proposed a single-pattern SL method based
on coding geometric information using color channels in
one pattern. By using a two-step decoding process consist-
ing of color decoding and geometric decoding, this method
achieved high-quality 3D reconstruction. Budianto et al. [34]
proposed a robust color-coded single-pattern SL method. They
implemented an enhanced morphological component analy-
sis method to separate texture and fringe patterns from a
single RGB fringe pattern, and this method achieved bet-
ter performance than the traditional single-pattern methods.
Zhang et al. [35] combined two fringe patterns with a phase
shift of π into the red and blue channels to form a single color-
coded pattern. Then, the captured color-coded pattern can be
used to extract two Moiré patterns [36] for retrieving phase
information.

Strip or grid indexing SL methods [37] utilize uniquely
coded strips or grid features to obtain the correspondences
between the camera and projector spaces. Petković et al. [38]
proposed a self-equalizing De Bruijn sequence method that
eliminated influences such as ambient lighting and object
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albedo. Wang and Yang [39] designed a single-line method
to segment and cluster the single-line pattern for retrieving
the LR phase map and then interpolated the LR phase map to
obtain a full-resolution map.

Although Fourier transform-based single-pattern SL meth-
ods can successfully obtain phase information from a single
pattern, their accuracy is much lower than that of multiple-
pattern methods. While color-coded single-pattern SL methods
can embed phase-shifting information into different color
channels, it cannot be guaranteed that the color information
from a projector is sufficiently accurate.

B. Deep Learning-Based Single-Pattern Structured Light
Methods

Recently, deep learning techniques have been used for
single-pattern SL 3D imaging. Feng et al. [21] first used a
deep neural network to train a model for retrieving phase
components that are then used for demodulating the phase
from a single pattern. Yao et al. [40] trained a similar network
to that of Feng et al. to retrieve the wrapped phase and
achieved phase unwrapping from two extra patterns. Fol-
lowing Feng et al.’s idea, several other convolutional neural
networks (CNNs) [41], [42] have been trained to obtain
the phase components from a single pattern. Jeught and
Dirckx [43] presented a CNN approach to extract height
information directly from a single pattern, and this network
was also used for tasks such as noise reduction and phase
unwrapping. Nguyen et al. [22] trained a U-Net to extract
depth for single-pattern SL 3D imaging. Zheng et al. [44]
proposed a digital twin fringe dataset generation method based
on deep learning and used the generated dataset to train
a U-Net to obtain a depth map. Several encoder-decoder
networks [45] or U-Nets [46] have been trained to retrieve
phase information from a single pattern. Machineni et al. [47]
designed a two-stage framework consisting of a probabilistic
weighted synthesizer network for estimating the reference
fringe patterns and a multi-resolution similarity assessment
network for retrieving depth from the reference and deformed
patterns. Yuan et al. [48] proposed a phase demodulation
method for a single-frame interferogram based on a net-
work combining a U-Net with dense blocks. This network
can obtain a normalized wrapped phase using a normalized
interferogram. Qian et al. [49] proposed a single-shot color-
coded SL 3D imaging method based on deep learning. They
used three shifted patterns extracted from a single color-coded
pattern as inputs and trained the network to obtain the phase
components.

Although these deep learning-based methods achieve better
performance than traditional transform-based or color-coded
methods, they only utilize common neural network architec-
tures for phase retrieval and depth estimation tasks, and there
is still much scope for improvement. Besides, direct estimation
of depth from fringe patterns discards some information in SL.
In addition, several previous methods use simulated patterns
to train the networks, which may cause instability when tested
on real scenes.

C. Super-Resolution Structured Light Methods

Limited by the projector resolution, improving the resolu-
tion of an SL system in hardware is expensive. SR techniques
based on either hardware or software have been proposed
to improve the resolution of an SL system. Kil et al. [50]
proposed an SR laser scanning method that applied image
SR with multiple scans. In their work, the collected multiple
laser scans had random offsets so that each image would
provide different information to the final model. Ouji et al. [51]
proposed a 3D space-time non-rigid SR scanning method that
used three calibrated cameras and an uncalibrated projec-
tion device. It was a hybrid stereo vision and phase-shifting
method that used two shifted fringe patterns and one texture
image. This method not only incorporated the advantages of
SL and stereo vision but also overcame their shortcomings.
Weinmann et al. [52] proposed a multi-camera and multi-
projector SR SL framework. The system was used to scan
scenes from different viewpoints, and the collected information
in the form of multiple SL depth maps from different view-
points was combined to perform SR reconstruction and obtain
denser point clouds. Shiba et al. [53] proposed a multi-pattern
SR SL method that captured multiple patterns to perform
temporal SR on the depth maps.

These SR SL techniques work in a multi-sensor or multi-
map fusion setup. They require expensive hardware or longer
processing time. Currently there are no SR techniques that can
be used in the phase retrieval process for SL 3D imaging.

D. Guided Depth Super-Resolution Methods

Depth maps generated by depth sensors such as those based
on the time-of-flight approach typically have a low resolution
because of hardware limitations. However, high-resolution
and high-quality RGB images are usually available on depth
sensors. Various guided depth map SR methods [54], [55],
[56], [57], [58] have been proposed to fuse the details of RGB
images to the depth maps for the same captured scenes and
thus improve the resolution of the depth maps. Traditional
guided depth SR methods [54], [55] use an energy function
based on different priors and regularization terms to find the
optimized SR depth. With deep learning techniques becoming
popular in computer vision tasks, many deep learning-based
guided depth SR methods [56], [57], [58] have been proposed
to establish the mapping relationship between the LR depth
map with the corresponding high-resolution RGB image and
the SR depth map. These methods outperform traditional
methods.

However, the depth generated using structured light imag-
ing has high precision. Using an RGB image to guide the
generation of SR depth may damage such precision severely.
Besides, SL 3D imaging is more suitable for imaging objects
that are not rich in color information. Under such conditions,
the RGB-guided generation of SR depth is not suitable to be
applied to SL 3D imaging directly.

III. PHASE-SHIFTING STRUCTURED LIGHT

In traditional phase-shifting SL techniques, the projected
sinusoidal patterns along the vertical direction (with shift
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information along vertical direction and stripes appearing
along horizontal direction) are denoted as [12]:

I p
n = Ap

+ B p cos
[

2π

(
f

y p

H
−

n
N

)]
, (1)

where p indicates the projector space, I p
n represents the pattern

intensities at projector coordinate (x p, y p), Ap and B p are
constants, f and H are the spatial frequency and the height
of the projected pattern in the vertical direction respectively, n
is the shift index, and N is the shift step, i.e., the total number
of phase shifts. For conciseness, the coordinates (x p, y p) for
I p
n have been omitted in Eq. (1). If a horizontal mode is used

to code the patterns, H will be substituted with the width of
the projected pattern in the horizontal direction W , and y p will
be substituted with x p. The patterns captured by the camera
can be denoted as:

I c
n = Ac

+ Bc cos
(

φ −
2πn

N

)
, (2)

where c indicates the camera space, I c
n represents the intensi-

ties of a captured pattern, and Ac, Bc, and φ are the average
intensities, intensity modulation, and phase related to camera
coordinate (xc, yc) respectively. To solve the three unknowns
Ac, Bc, and φ, the smallest number of N for phase-shifting SL
is three. With a larger N , the system will have a better ability
to reduce errors. As for coordinates (x p, y p), the coordinates
(xc, yc) are omitted in Eq. (2). The most important parameter
for obtaining 3D coordinates, i.e., φ, can be computed by

φ = tan−1
(

SN

CN

)
, (3)

where tan−1 is the arctangent operation, and SN and CN
are two components of the wrapped phase (named as phase
components), which can be computed by

SN =

N−1∑
n=0

I c
n sin

(
2πn

N

)
, (4)

and

CN =

N−1∑
n=0

I c
n cos

(
2πn

N

)
. (5)

After obtaining the phase information, the correspondences
between the camera and projector for each pixel can be
derived, i.e., y p

= 2π/φ for each (xc, yc). Then, the 3D
coordinates can be obtained by combining the correspondences
with the camera and projector parameters.

Parameter Ac can be computed by

Ac
=

1
N

N−1∑
n=0

I c
n , (6)

and Bc can be computed by

Bc
=

2
N

√
S2

N + C2
N . (7)

Ac is usually used as the texture for the final 3D point clouds
and Bc is usually used as the background noise filter [8] so
that the noise in shadow areas can be removed with a small Bc.

IV. SUPER-RESOLUTION PHASE RETRIEVAL NETWORK

The architecture of the proposed SRPRNet is shown in
Fig. 2. The input is an STR or LR single fringe pattern of
size H×W . It is first fed into a PSM which consists of 4 shift
blocks and 1 fusion block. The fused features generated by
PSM are fed into an RSRM to estimate the STR or SR phase
components. After phase demodulation and unwrapping, the
final STR or SR absolute phase is obtained.

A. Phase-Shifting Module (PSM)

Traditional sinusoidal phase-shifting SL methods require
at least three patterns with uniformly-spaced phase shifts.
Training a network to map a single pattern into a wrapped
phase is difficult because the distributions and scales are
different for the pattern and phase. To address this issue,
the proposed network maps a single input pattern into two
phase components, i.e., SN and CN , rather than the wrapped
phase directly. The phase components and the input pattern
have similar scales and sinusoidal forms. A PSM is designed
to extract features with different phase shifts and then these
features are fused to retrieve the phase components. This is
different from early research [21], [42] that trained neural
networks to map a single pattern into SN and CN . Moreover,
the PSM is a natural approach to retrieve phase information
because it follows the process of computing SN and CN using
Eq. (4) and Eq. (5).

In PSM, the single pattern I ∈ RH×W is first fed into the
first shift block consisting of a 3×3 convolution and a residual
dense block (RDB) [59]. The RDB consists of 4 convolutions
with a growth rate of 32 for extracting dense features and
1 convolution for fusing features. The activation function used
in RDB is leaky ReLU. The number of branches in the first
to the fourth shift block progressively increases from 1 to 4.
Features generated by the first shift block are denoted as F1

=

C R1
1 (I) where C Ri

j is the j th combination of convolution and
RDB ( j th branch) in the i th shift block and F is in RH×W×C .
The first shift block just extracts the features with zero shift
information corresponding to the pattern represented by Eq. (2)
with n = 0. Therefore, the features are close to the input
pattern and single-scale feature extraction is used.

Then, F1 is fed into the second shift block that consists
of two branches (with two scales). The first branch has the
same resolution as F1, and then through a similar convolution
followed by an RDB, the features generated are used as partial
input to the next shift block. The second branch downsamples
the input F1 to half resolution and then the features are fed into
another convolution followed by an RDB. The output features
are used as partial input to the third shift block. Simultane-
ously, the output features of the second branch are upsampled
to the same resolution as the features of the first branch.
Finally, features from these two branches are concatenated and
denoted as F2

= Concat
[
C R2

1(F1), C R2
2(F1

↓2) ↑2
]
, where

Concat represents a concatenation operation, ↓s is 1/s bicubic
downsampling operation (s is a scale factor), ↑s is s times
bicubic upsampling operation, and F2 is in RH×W×2C . This
second shift block extracts features with phase shift indexed 1
corresponding to the pattern with n = 1 in Eq. (2). This block
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Fig. 2. Overall diagram of the proposed SRPRNet. Top: overall pipeline; Bottom: detailed modules for PSM, RSRM, and RDB.

requires more detailed extraction to obtain all the phase shift
information. Therefore, we employ feature extraction at two
scales to obtain the phase shift information.

As shown in Fig. 2, the third/fourth shift block has
three/four branches to better deal with the phase shift and
scaling information. Input features for the middle scales of
the third and fourth shift blocks consist of two sets of output
features from the previous shift blocks, some with and some
without downsampling. Features generated by the third shift
block is denoted as F3 and features generated by the fourth
shift block can be written as

F4
= Concat

{
C R4

1

(
F3

1

)
, C R4

2

[
Concat

(
F3

1 ↓2, F3
2

)]
↑2,

C R4
3

[
Concat

(
F3

2 ↓2, F3
3

)]
↑4, C R4

4

(
F3

3 ↓2

)
↑8

}
,

(8)

where Fi
j represents the j th branch of features in the i th shift

block. As the network becomes deeper, mapping the phase
shift information from the previous layer into the phase shift
information of the next layer is more complex. Therefore, the
method extracts features with more scales in the following shift
block than in the previous one. In addition, the upsampling
and downsampling processes in shift blocks can provide more
information for the final SR module. Although the same
number of scales can be used for each shift block, it was
found that the performance of such a design is worse (see
Section V) and requires more parameters.

Each shift block generates a set of features with phase shift
information and these features are fused together to obtain the
final phase-shifting features denoted as

F = LReLU
{

Conv3×3

[
Concat

(
F1, F2, F3, F4

)]}
, (9)

where LReLU represents leaky ReLU, Conv3×3 represents a
3 × 3 convolution operation with 10C input channels and 2C
output channels, and F is in RH×W×2C .

B. Refinement and Super-Resolution Module (RSRM)

RSRM consists of two branches, one for initial coarse
phase components estimation and the other for refining and
super-resolving the features. The initial coarse phase compo-
nent estimation branch (as shown in the lower part of RSRM
in Fig. 2) consists of two 3 × 3 convolution operations that
change the feature shapes from H ×W ×2C to H ×W ×C and
to H ×W ×2 and a bicubic interpolation as an upsample block
that upsamples the features to shape s H × sW × 2, yielding
the initial phase components SCini ↑s∈ Rs H×sW×2 where s is
the upsampling factor.

The branch for refinement and super-resolution (as shown in
the upper part of RSRM in Fig. 2) is used to generate the resid-
ual phase components. F is first fed into a 3 × 3 convolution
that maps the features from 2C channels to C channels. Then,
the features with reduced channels are fed into two residual
blocks (RBs) [60] to generate R1 ∈ RH×W×C . A channel
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Fig. 3. Channel-attention mechanism to generate refined features.

attention (CA) layer is used for generating a channel attention
weight:

V = C A (R1) , (10)

where C A is the CA module [61] and V ∈ R1×C contains
C coefficients. Using the CA module, the weights for each
channel are obtained. The original weighted channels (V) are
fed into an RDB for extracting coarse features. Another RDB
is used to extract additional information from the channels
with weights (1 − V). Then, the two sources of information
are fused together to generate Rref, as shown in Fig. 3. The
refined features Rref are obtained by

Rref = RDB1 (R1 ⊗ V) + RDB0 [R1 ⊗ (1 − V)] , (11)

where ⊗ is an element-wise product operation, 1 is a vector
with the same dimensions as V and with values of all ones, and
RDB0 and RDB1 are two RDBs. Using the channel attention
mechanism, both coarse and fine information are extracted by
the two RDBs, and the features in the phase components are
fully used to retrieve a high-quality wrapped phase.

After obtaining the refined features Rref, two RBs followed
by a pixel shuffle layer [62] that consists of a 3×3 convolution
and a pixel shuffle operation are used to generate the SR
residual phase components, which can be written as

SCres = P S {Conv3×3 [RBs (Rref)]} , (12)

where RBs represents the combination of two RBs, Conv3×3
is the convolution in the pixel shuffle layer that maps the
features from shape H×W×C to shape H×W×s2

×2, and
P S is the pixel shuffle operation that rearranges the features
from shape H×W×s2

×2 to shape s H×sW×2.
Finally, the initial phase components are added to the resid-

ual component SCres to obtain the final SR phase components:

SCout = SCini ↑s + SCres, (13)

where SCout ∈ Rs H×sW×2 consists of an SN of size s H×sW
and a CN of size s H×sW .

When retrieving STR phases, i.e., 1× phase retrieval, the
upsampling of the initial estimation branch needs to be
dropped and the pixel shuffle layer is substituted with a
convolution in the refinement and super-resolution branch.

C. Phase Demodulation and Unwrapping

After obtaining the SR SN and CN , the wrapped phase φ

can be obtained by using Eq. (3). Because the values of SN and

CN may be either positive or negative, the quadrant of SN /CN
should be found in order to obtain the correct value when using
an arctangent function to compute the phase. For practical
implementation, the atan2 function [63] is used to handle
the cases of different quadrants. Unlike multi-pattern methods
that are less error-prone, the single-pattern method only has
access to limited intensity information. Therefore, the values
of SN and CN may have incorrect signs when SN and CN are
close to zero. In addition, because of the characteristics of the
arctangent function, the phase is wrapped into [−π, π], which
may cause ambiguity during 3D reconstruction. To address
these two issues, phase unwrapping can be used to obtain the
correct and absolute phase.

Spatial phase unwrapping methods determine whether the
phase of a pixel needs to be unwrapped, by comparing its
value with that of its adjacent points. This process is easily
influenced by issues such as phase jump and noise. Temporal
phase unwrapping methods are much more robust and accurate
although they require an additional low-frequency phase as
reference [64]. Alternatively, deep learning techniques can be
used to train a network for phase unwrapping by using the
same single pattern [26]. Then, absolute phase can be obtained
by

8 =
φ

f
+ round

(
f φr

− φ

2π

)
2π

f
, (14)

where φr and 8 are a reference phase and an absolute phase
respectively, and round(·) is a rounding operation. After phase
unwrapping, the sign errors on SN and CN are eliminated,
and the final absolute phase is continuous and normalized to
[0, 2π ].

In this paper, the focus is on retrieving the wrapped phase
and a reference phase is used to achieve phase unwrapping
directly. Embedding a phase unwrapping module into the
network will be studied in future.

D. Loss Function

Three losses are used to train the proposed network. The
overall loss function is

L = LSC + λ
(
LFSN + LFCN

)
, (15)

where LSC, LFSN , LFCN , and λ are phase component loss, sine
shifting loss, cosine shifting loss, and weight of the last two
losses, respectively.

The phase component loss measures the difference between
the SR phase components and the ground truth, and is com-
puted by

LSC =

∥∥∥SG
N − SN

∥∥∥2

2
+

∥∥∥CG
N − CN

∥∥∥2

2
, (16)

where SG
N and CG

N are the ground truths, and ∥ · ∥
2
2 represents

the L2 distance.
The PSM in SRPRNet implements the process of imitating

the phase-shifting SL. Each shift block learns a relationship
between the current phase shift and the next phase shift.
In the proposed network, a four-step phase-shifting manner
is adopted, i.e., with the number of shift steps N being 4.
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According to Eq. (4) and Eq. (5), SN and CN are computed
by

SN =

3∑
n=0

I c
n sin

(
2πn

4

)
= I c

2 − I c
4 , (17)

and

CN =

3∑
n=0

I c
n cos

(
2πn

4

)
= I c

1 − I c
3 . (18)

The quality of the phase-shifting features generated in
PSM significantly influences the final demodulated phase.
According to Eq. (17) and Eq. (18), regularization terms
LFSN and LFCN are added to make each shift block learn the
phase shift information effectively. Each shift block generates
a single-channel feature after the group of features is obtained,
and the single-channel feature of each shift block is obtained
by

Fi
g = Conv3×3

(
Fi

)
(i = 1, 2, 3, 4), (19)

where Fi
g is in RH×W×1. The sine shifting loss, which is used

to evaluate the quality of the second and fourth phase-shifting
features, is computed by:

LFSN =

∥∥∥SG
N ↓s −

(
F2

g − F4
g

)∥∥∥2

2
. (20)

The cosine shifting loss, which is used to evaluate the quality
of the first and third phase-shifting features, is computed by:

LFCN =

∥∥∥CG
N ↓s −

(
F1

g − F3
g

)∥∥∥2

2
. (21)

The phase component loss, which contributes to the total
loss predominantly, is used to control the network to obtain
better parameters. The sine shifting loss and the cosine shifting
loss are used to force the PSM to perform as expected on
learning the relationships between features with different phase
shifts.

V. EXPERIMENTS

In this section, the datasets and implementation details
are discussed, and ablation studies are carried out to verify
the effectiveness of the proposed network architecture. Then,
the proposed network is compared with several single-pattern
phase retrieval methods. Finally, the phase-shifting results
and 3D reconstruction results are shown to further verify the
effectiveness of the proposed network.

A. Datasets

The dataset created by Qian et al. [42], named as FP1000,
that contains 800 training pairs and 200 test pairs (single
pattern I c and phase component pairs SN and CN ), the dataset
created by Nguyen et al. [22], named as FP672, that contains
600 training pairs and 72 test pairs, and the dataset created for
this work, named as FP147, that contains 120 training pairs
and 27 test pairs were used to train and test the network.
The ground truths on SN and CN are generated by a multi-
pattern phase-shifting SL method. The frequencies of the used

Fig. 4. Combinations of shift blocks.

coded patterns for FP1000, FP672, and FP147 are 48, 100, and
32 respectively. The resolution of the images in the datasets
is 640×480. The patterns in dataset FP1000 are in horizontal
mode and the patterns in datasets FP672 and FP147 are in
vertical mode. Our dataset FP147 with a different frequency
further enriches the existing single-pattern structured light
datasets. As described in Section IV-C, we focus on retrieving
the phase components and omit phase unwrapping in this
work. To avoid any issues that may be introduced by phase
unwrapping, we directly apply the ground truth reference
phase generated by the multi-pattern SL method for the phase
unwrapping stage in all experiments. For the SR phase retrieval
tasks, bicubic downsampling was used to generate the LR
patterns.

B. Implementation Details

The network was implemented in PyTorch on a PC with
an NVIDIA Tesla P100 GPU. The models were optimized
via the Adam optimizer. The batch size was set to 1, and the
initial learning rate was 2×10−4. The learning rate decreased
by half after every 100 epochs. For the FP1000 and FP672
datasets, the training stopped after 200 epochs. For the FP147
dataset, the training stopped after 400 epochs. The dataset
FP147 was captured by an SL system which consists of a
Casio XJ-M140 (projector resolution: 1024 × 768), an AVT
Prosilica GC650 camera (camera resolution: 640 × 480), and
a controlling circuit.

C. Ablation Study

1) Shift Blocks: The shift blocks in PSM were used to
obtain representative features with phase shifts. To verify the
effectiveness of the designed combination of the shift blocks,
the network was retrained with different numbers of shift
blocks and different numbers of scales in each shift block.
In this section, RSRM is excluded, and the PSM is followed
by a pixel shuffle layer to achieve the SR function. The
combination of shift blocks is shown in Fig. 4, where bi
represents the number of branches in the i th shift block and
a circle represents the convolution operation with an RDB.
The number of shift blocks is l. In order to avoid too low
resolutions, the largest number of bi was set to four, i.e., the
smallest downsampling scale is 1/8. The largest number of
scale and the final combination is denoted as (b1, b2, · · · , bl).
The results are presented using: (1) the mean squared error
(MSE) on SN and CN and (2) mean absolute error (MAE)
and root mean squared error (RMSE) on absolute phase for
4× SR phase retrieval. A more accurate phase can be obtained
when the MSE on SN and CN is smaller.
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TABLE I
COMPARATIVE RESULTS OBTAINED ON FP147 AND FP1000 USING

DIFFERENT COMBINATIONS OF SHIFT BLOCKS WITHOUT RSRM
FOR 4× SR PHASE RETRIEVAL. THE MSE IS EVALUATED

ON SN /CN AND THE MAE/RMSE (10−4 RAD) IS
EVALUATED ON ABSOLUTE PHASE

TABLE II
COMPARATIVE RESULTS OBTAINED ON FP147 WITH AND WITHOUT

RSRM FOR 4× SR PHASE RETRIEVAL. THE MSE AND MAE/RMSE
REPRESENT THE SAME EVALUATIONS AS THOSE IN TABLE I

The MSE on SN /CN and MAE/RMSE on absolute phase for
the 4× SR phase retrieval task with different combinations
of shift blocks are shown in Table I. Besides, the number
of parameters (‘#P’ in Table I) and the floating point oper-
ations (FLOPs) are listed. Among these combinations, the
(1, 2, 3, 4) combination has the best performance on RMSE,
and it is a noticeable improvement over other combinations.
Although the (1, 2, 3, 4, 4) combination has similar MSE and
MAE/RMSE as the (1, 2, 3, 4) combination, such a combina-
tion requires more parameters and FLOPs, which decreases
efficiency. To balance efficiency and performance, we select
the (1, 2, 3, 4) combination as the basic design in PSM.
The optimal condition obtained on FP1000 is the same as
or very similar to that obtained on FP147, and we only
show the results obtained on FP147 in the following ablation
studies.

2) Refinement and Super-Resolution Module (RSRM): The
RSRM is used to obtain detailed information in areas around
edges and the SR residual for compensating the initially esti-
mated phase components. To demonstrate the effectiveness of
RSRM, the proposed network was compared with and without
this module. Besides, to demonstrate that the setup with two
branches followed by the CA layer in RSRM is useful, the
results of using either the RDB0 or the RDB1 branch alone
were compared, as well as using two branches, i.e., both
RDB0 and RDB1 in RSRM.

In Table II, the results are improved after including the
RDB1 branch in RSRM. Besides, the result on MSE and
MAE/RMSE with two branches followed by the CA layer is
better than that of using only one branch. Therefore, the design
of RSRM is effective on obtaining detailed information for the
initial estimation and on producing high-quality output.

3) Loss Function: To verify the effectiveness of the loss
function with regularization and to find an appropriate weight,
the network was trained without regularization and with dif-
ferent weights of the regularization term from 0.1 to 0.4.

TABLE III
COMPARATIVE RESULTS OBTAINED ON FP147 WITH DIFFERENT
WEIGHTS ON REGULARIZATION FOR 4× SR PHASE RETRIEVAL.

THE MSE AND MAE/RMSE REPRESENT THE SAME
EVALUATIONS AS THOSE IN TABLE I

λ = 0 means that the network was trained by using the loss
function without the regularization terms. As Table III shows,
when the weight of the regularization terms is 0.2, the network
has the best performance and obtains an improvement of 0.16
(MSE on SN + MSE on CN ) compared with the network
trained without the regularization terms.

D. Comparison With State-of-the-Art

To verify the effectiveness of SRPRNet for STR phase
retrieval, SRPRNet was compared with several other phase
retrieval methods for single-pattern SL 3D imaging, including
Fourier transform profilometry [19] (FT) and the networks
proposed by Feng et al. [21] (FPDL) and Qian et al. [42]
(SPU). However, there is no other SR phase retrieval method
for single-pattern SL 3D imaging in the literature. Bicubic
interpolation was used to upsample the input pattern to the
target resolution required for FT, FPDL, and SPU in order
to verify the effectiveness and superiority of the SR function
of SRPRNet. Besides, the combination of the pixel shuf-
fle [62] layer with FPDL and SPU was also implemented
for more comparisons. Furthermore, we compress our full
SRPRNet by reducing the number of channels, substituting
some 3×3 convolutions with 1×1 convolutions, and dropping
two RBs. Specifically, the changes include the followings:
(1) Channel number C is changed from 64 to 60. (2) In
PSM, the convolutions ahead of the RDBs are changed from
3 × 3 convolutions to 1 × 1 convolutions. (3) In RSRM, the
first convolution in the upper branch and the first convolution
in the lower branch are changed from 3 × 3 convolutions to
1 × 1 convolutions, and ‘Residual Block1_b’ and ‘Residual
Block2_b’ are dropped. Such a compressed model is named
as SRPRNet-light.

1) Quantitative Results: In Table IV, quantitative results
on the three datasets are shown. The note 1× in the ‘Scale’
column represents STR phase retrieval when the resolutions
of the input and output are the same. ‘Bicubic+’ represents
the combination of bicubic interpolation with another model,
while ‘+Shuffle’ represents the combination of another model
with the pixel shuffle SR. MAE and RMSE on absolute phase
are used to measure accuracy. When MAE and RMSE are
smaller, absolute phase is more accurate and will lead to better
3D reconstruction. Because phase unwrapping can reduce
phase errors [7] and absolute phase is normalized to [0, 2π ],
the magnitude of absolute phase errors is small (10−4 rad
level in the results). The frequencies of patterns in these three
datasets are different, therefore the magnitudes of absolute
phase errors are also different.
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TABLE IV
COMPARATIVE RESULTS ON THREE DATASETS FOR STR OR SR PHASE RETRIEVAL TASKS. THE RESULTS SHOW THE MAE AND RMSE

ON ABSOLUTE PHASE. THE BEST RESULTS ARE IN BOLD AND THE SECOND-BEST RESULTS ARE UNDERLINED

As can be seen in Table IV, SRPRNet and SRPRNet-light
achieve the best and second-best performances on the FP1000,
FP672, and FP147 datasets for all 1×, 2×, and 4× SR
phase retrievals. Specifically, the average MAE/RMSE of
SRPRNet are 1.28/2.93×10−4 rad, 1.83/4.27×10−4 rad, and
2.21/5.64×10−4 rad smaller than SPU+Shuffle for 1×,
2×, and 4× SR phase retrievals. Although the results
achieved by SRPRNet-light decreases slightly compared
with SRPRNet, SRPRNet-light still has 0.67/1.96×10−4 rad,
1.19/3.06×10−4 rad, and 1.59/4.39×10−4 rad improvements
on average MAE/RMSE compared with the SPU+Shuffle
method. Apart from the FT method, the others are deep
learning-based phase retrieval methods for single-pattern SL
3D imaging and have much better performance than the FT
method. The number of parameters for SRPRNet-light is
between that of FPDL+Shuffle and SPU+Shuffle, and the
FLOPs for SRPRNet-light are similar to that of SPU+Shuffle.
The full version SRPRNet provides further improvements on
performance but with a larger number of parameters and
FLOPs compared with SRPRNet-light.

The results for 2× SR FT (average MAE/RMSE:
19.42/56.12×10−4) and 4× SR FT (average MAE/RMSE:
19.36/55.63×10−4) on FP1000 are even better than that for
1× FT (average MAE/RMSE: 19.60/56.81×10−4). This is
because the accuracy of the FT method is related to remov-
ing high-frequency components and retaining fundamental
component in the frequency domain, and it is difficult to
extract the fundamental component completely. Although the
upsampled input pattern is of lower quality, the interpolation
is equivalent to a smoothing process that reduces the high-
frequency components. After smoothing, it is easier to retain
the fundamental component.

2) Qualitative Results: In Fig. 5, the ground truth absolute
phases are shown. The first to third rows are from the FP1000,
FP672, and FP147 datasets respectively. Qualitative compar-
isons for the 1×, 2×, and 4× SR phase retrieval are shown

Fig. 5. Ground truth absolute phases from different scenes. The first to third
columns correspond to the phase error maps in Figs. 6, 7, and 8, respectively.

in Figs. 6, 7, and 8 respectively, which show the STR or SR
absolute phase error maps. The values below each figure are
the MAE/RMSE for those scenes. As can be seen, most of the
phase errors are around areas with large depth discontinuities,
such as the areas along object boundaries. The results obtained
from SRPRNet show the smallest phase error numerically and
visually, and SRPRNet performs better on areas with depth
discontinuities.

It can be observed from Fig. 8 that the phase error maps
using bicubic+FT, bicubic+FPDL, and bicubic+SPU have
large errors even in areas without depth discontinuities. The
reason for this phenomenon is that the frequency of the
projected patterns is too high. As noted in Section V-A,
the frequency of the patterns in FP672 is 100. Such a high
frequency will result in aliasing when upsampling the pattern.
For those areas where aliasing occurs, it is difficult to obtain
the correct phase value using an incorrect intensity of the
input pattern. For SRPRNet, the features for each image pixel
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Fig. 6. Visual comparison of phase error maps for 1× phase retrieval. The numbers below each subfigure are the MAE/RMSE (unit: 10−4 rad) of that scene.

Fig. 7. Visual comparison of phase error maps for 2× SR phase retrieval. ‘B+’ represents the combination of bicubic interpolation with another model and
‘+P’ represents the combination of another model with the pixel shuffle SR method. The numbers below each subfigure are defined to be the same as those
in Fig. 6.

are extracted through multiple stages, and these features are
combined with features of the surrounding pixels. Therefore,
the phase information can be retrieved more accurately from
the input intensity at that pixel.

E. Shifts and Refinement Results

The main motivation for SRPRNet comes from simulating
the four-step phase-shifting SL by using a neural network
with a single pattern as input. The single-channel features
generated by the shift blocks represent the simulated patterns
with different shift information, as illustrated in Fig. 9. The
intensities of each feature map are normalized to [0, 1].
As can be seen, these single-channel features carry the
phase shift information, and the four feature maps conform
to the four-step phase-shifting patterns although the range

of intensity for each feature map is different. The differ-
ent ranges can be easily adjusted when fusing the features
together.

Besides, two sample lines are extracted from each fea-
ture map to clearly illustrate the phase shift information.
The bottom row in Fig. 9 shows the intensities of the two
lines. The intensity at the same positions in each feature
map fits the shape of the sinusoidal waveform. The phase
shift information of each feature is reproduced in flat or
discontinuous areas, which demonstrates that the approach
is valid. As the features go deeper in the network, more
convolution layers become involved, which makes the features
smoother.

In Fig. 10, the feature maps of residuals generated within
RSRM are illustrated. The residuals on SN and CN focus on
the areas around edges or the positions where the gradient
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Fig. 8. Visual comparison of phase error maps for 4× SR phase retrieval. The method names are the same as those in Fig. 7. The numbers below each
subfigure are defined to be the same as those in Fig. 6.

Fig. 9. Visual features with different phase shifts generated by PSM. Top:
single-channel feature maps of each shift block; Bottom: two sample lines in
each feature map.

Fig. 10. Visualization of residuals generated within RSRM for tasks with
different resolutions. The top and bottom rows show the residuals on SN
and CN .

direction of the sine waveform changes. For flat areas, the
features generated by PSM are effective enough for obtaining
the final phase components. By using RSRM, more detailed
information is obtained.

Fig. 11. 3D reconstruction results using 4× SR phases.

F. 3D Reconstruction

To illustrate the results more intuitively, a group of 3D
reconstruction results using 4× SR phases is shown in Fig. 11.
The 3D results using the phase generated by SRPRNet are
significantly better than other methods, especially in areas with
detailed textures, such as the local area indicated by the red
arrow. Even by just using quarter-resolution input pattern, the
quality of the final 3D result using SRPRNet maintains high.
These 3D results demonstrate that the quality of 3D recon-
struction is directly related to the quality of phase information,
and SRPRNet is effective and superior. Besides, it can be seen
that the 3D results obtained by deep learning-based methods
are not influenced by gamma distortion [65] (with gamma
distortion, the 3D results will be wavy), while multi-pattern
3D imaging with three patterns will be severely affected by
gamma distortion. Multi-pattern 3D imaging with four or more
patterns is much less affected by gamma distortion or noise,
so the accuracy is typically higher than that of single-pattern
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methods. Neural network methods have the ability to alleviate
the influence of gamma distortion even with just a single
pattern. We will fully investigate such phenomena in future.

VI. CONCLUSION AND FUTURE WORK

In this paper, a super-resolution phase retrieval network
(SRPRNet) for single-pattern SL 3D imaging has been pro-
posed. Motivated by multi-pattern phase-shifting SL 3D imag-
ing, a phase-shifting module (PSM) that exploits groups
of features with different phase shifts is designed. The
PSM consists of four shift blocks and one fusion block,
and hierarchically extracts features at different scales. Then,
a refinement and super-resolution module (RSRM) is designed
for generating high-quality STR or SR phase components.
Finally, the STR or SR absolute phase can be obtained after
phase demodulation and unwrapping. Comparative results on
1×, 2×, and 4× super-resolution phase retrieval show that
the proposed SRPRNet achieves state-of-the-art performance.
In future work, a network that can retrieve phases with
different resolutions by using only one group of parameters
will be designed.
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