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Perceptually Optimizing Color Look-up Tables
Johann Reinhard and Philipp Urban

Abstract— The quality of ICC profiles with embedded look-up
tables (LUTs) depends on multiple factors: 1. the accuracy of
the optical printer model, 2. the exploitation of the available
gamut combined with the quality of the gamut mapping
approach encoded in the B2A-LUTs (backwards LUTs) and 3.
the tonal smoothness as well color accuracy of the backwards
LUTs. It can be shown that optimizing the smoothness of the
LUTs comes at the expense of color accuracy and requires
gamut reduction because of internal tonal edges. We present a
method to optimize backwards LUTs of existing ICC profiles
w.r.t accuracy, smoothness, gamut exploitation and mapping,
which can be extended beyond color, e.g. to joint color and
translucency backward LUTs. The approach is based on a
perceptual difference metric that is used to optimize the LUT’s
tonal smoothness constrained to preserve both the accuracy of
and the relationship between colors.

Index Terms— Digital printing, image quality, color, gamut
mapping, table lookup, 3-dimensional printing.

I. INTRODUCTION

COLOR look-up tables (CLUTs) are widely used by color
management systems (such as by the International Color

Consortium [1]) for cross-media color reproduction. They
approximate and encode non-linear transformations between
device-independent (e.g. CIELAB) and device-dependent (e.g.
CMYK) spaces. In particular for printing applications they
combine highly-nonlinear color gamut mapping and separation
algorithms allowing an extremely fast evaluation of the joint
transformation. As one of the key-factors affecting print
quality, CLUTs were the topic of a large body of research
in the past decades [2], [3], [4], [5], [6], to name a few.

In this work, we focus on CLUTs for reproducing given
colors in printing, such as the B2A-CLUTs in ICC-printer-
profiles, but also investigate color-related improvements of
LUTs for appearance reproduction in which appearance
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correlates beyond color are considered, such as translucency
[7], [8]. The latter tables exploit larger degrees-of-freedom
of graphical 3D printing to reproduce appearance correlates
beyond color. The color-related quality of all such CLUTs
depends on multiple factors:

1) the accuracy of the optical printer model that predicts
spectral or color values from tonal values,

2) the exploitation of the available color gamut combined
with the quality of the gamut mapping approach,

3) the tonal smoothness as well color accuracy of the
B2A-CLUTs that determine the tonal values for a
color.

For printing systems with more than CMY colorants, more
than one tonal combination can map to the same color or even
to almost the same reflectance [9]. Such redundancies must be
taken into account while computing the CLUT nodes because
mapping neighboring node-colors to very different tonals may
cause large color errors when interpolating between them. This
results in structural artifacts of the simulated print (see Fig. 1).
Smoothing the CLUT minimizes such artifacts but comes at
the expense of reducing color accuracy.

CLUT discontinuities can be also the result of sharp edges
of gamut boundaries in combination with distinct gamut
mapping algorithms, which may cause nearby out-of-gamut
colors to be mapped to distant in-gamut-colors reproducible
only with very different tonal values [10]. But even if
the gamut mapping transform is smooth, nearby points on
the gamut boundary might be reproducible only by very
different tonal values. This is the case for printing systems
with more than three colorants since an N -dimensional tonal
value hypercube (N > 3) is mapped to a three-dimensional
color space and nearby points on the gamut boundary may
correspond to different tonal hypercube facets as illustrated in
Fig. 2 [11] and [12]. In this case exploiting the full printer
gamut with a smooth CLUT is impossible. Creating a smooth
CLUT for such printers is only possible by removing parts
of the gamut to ensure that any path on the resulting gamut
boundary can be reproduced by a smooth transition in tonal
value space.

Methods have been proposed to optimize CLUTs w.r.t
to single or multiple criteria. Morovič et al. proposed
an accuracy preserving smoothing along lightness [13]
that does not correct gamut-mapping-induced discontinuities.
Bhachech et al. extrapolated gamut boundary vertices to avoid
gamut-mapping-induced CLUT discontinuities at the gamut
boundary [14] but have not optimized for overall smoothness
of the CLUT. To our knowledge no approach exists that
optimizes a CLUT w.r.t. to all criteria, i.e. color accuracy,
smoothness and gamut exploitation.
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Fig. 1. Separation of the tonal values for reproducing an a*b*-plane and the resulting color prediction of the forward optical printer model for a multi-material
3D printer. Most colors are out of gamut and are gamut mapped. Edges in the tonal value images can result in structural artifacts in the color prediction,
visible as whitish lines in the output. This is because similar node-colors of the CLUT are mapped to different tonal values and the multi-linear interpolation
results in colors that are not similar to either node-color.

Fig. 2. Neighboring CLUT node colors located on the gamut boundary can
only be reproduced with very different tonal values if they belong to different
tonal value hypercube facets. In this case it is impossible to exploit the full
gamut with a smooth CLUT.

A prerequisite of such an optimization is an objective
function that incorporates a quality measure of the CLUT.
This quality measure must judge color accuracy, gamut-
mapping-induced distortion and structural artifacts caused by
interpolation between color nodes with very different tonal
values.

In this work we use an objective function based on
iCID, a full reference color image quality metric particularly
designed to judge gamut mapping distortions [15]. As an
extension of the SSIM [16] on color images it is also
computed on windows; given two color images A and B of
equal size, iCID(A, B) computes internally for each pixel a
dissimilarity score by evaluating a window W centered on
the pixel.

iCID was also used to iteratively optimize the gamut
mapping and achieved significantly better results in a
psychophysical experiment compared to state-of-the-art gamut
mapping algorithms [15]. A drawback of the iterative approach
is its runtime performance, which prevents practical usage in
various applications. This limitation is not given for optimizing
existing CLUTs, since once created they can be used by
performance-optimized color management modules in any
existing workflow.

A CLUT encodes (in B2A tags of ICC profiles) a
transformation B : CIELAB 7→ �, where � is the tonal
value space (e.g. CMYK). Such a CLUT provides tonal value
combinations used by subsequent halftoning methods of the
printing workflow to reproduce given CIELAB input. The
transformation encoded in the CLUTs can be conceptually
decomposed into B = pinv ◦ g, where g : CIELAB 7→ p(�)

is a gamut mapping transformation, p : � 7→ CIELAB is
the optical forward printer model and pinv : CIELAB 7→ �

is the backward printer model. Various gamut mapping
transforms g can be used; e.g. for the relative colorimetric

intent (B2A1) gamut clipping transforms are used and for
the perceptual intent (B2A0) compression transforms are
used [17]. Gamut clipping transforms possess the following
property: ∀x ∈ p(�) : g(x) = x . Since p is usually
not injective, there are multiple backward models pinv that
are commonly computed by Gray Component Replacement
(GCR) or Under Color Removal (UCR) strategies for selecting
a distinct tonal combination from the set of combinations
producing the same color. Note that ∀x ∈ p(�) : p(pinv(x)) =

x , but for a printer with more than CMY inks the following
applies ∃z ∈ � : pinv(p(z)) ̸= z.

In this paper we present two main contributions:
• An image difference metric based optimization of

backwards LUTs of color profiles for full-color 3D
printers.

• Extension of this optimization to create joint profiles of
color and other appearance correlates, e.g. translucency.

In section V we show that our proposed algorithm significantly
reduces artifacts in color-only and joint color and translucency
printer profiles and creates much smoother reproductions of
color gradients.

II. OVERVIEW

SYMBOLS

� Tonal value space.
p Optical printer forward model:

� 7→ CIELAB.
B Transform of B2A backward CLUT:

CIELAB 7→ �.
LAB Discrete sampled CIELAB color space.
GLAB B2A CLUT grid points’ position in

CIELAB space.
G� Tonal values at the grid points.
B[x, z] B with tonal value at position

x ∈ GLAB replaced by z ∈ �.
B∗ Optimized Transform.
iCID iCID image difference metric.
CIELCh Cylindrical coordinate representation of

CIELAB with lightness L*, chroma C*, and
hue h predictors.

q, q−1 Color space transformation
CIELAB 7→ CIELCh, its inverse.

r, r−1 Hue linearized mapping
CIELAB 7→ CIELAB, its inverse.

R Set of reference images.
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Fig. 3. Simplified overview of the iCID optimization. First we initialize the reference images RL∗ and separate the grid points into subsets GLAB,i . Then
we optimize the grid points by repeating the following procedure for a fixed number of times: We sequentially iterate over all subsets GLAB,i and for each
grid point x ∈ GLAB,i we search a new tonal value z. Based on its current tonal value B(x) we consider a set of alternative tonal values and modify the
transform B[x, z]. For each of these modified B[x, z] we compute the metric M using the input LABL∗ and corresponding references RL∗ . The tonal value
z that produces the smallest metric value becomes B(x). Note that the grid points in a subset GLAB,i can be optimized in parallel, then the metric is only
evaluated in the partition P[x] of each grid point x ∈ GLAB,i .

Any real printer has a limited device gamut that can create
the previously described color reproduction problems. The
main idea is to use the iCID metric to quantify the difference
between the desired colors and the colors reproduced by the
printer, and then to iteratively modify the B2A CLUT that
defines B to minimize the difference.

Naively we could find the optimal transformation B∗ by

B∗
= argmin

B

∑
L∗

iCID(p(B(LABL∗)), LABL∗) (1)

where LAB is a voxel grid discretizing the CIELAB color
space, e.g. LAB = {0, . . . , 100} × {−128,−127, . . . , 127}

2,
and we denote with LABL∗ ⊂ LAB, L∗

∈ {0, . . . , 100} all
voxels that have the same L∗ value.

Using the entire CIELAB space as the input reduces
structural artifacts and color differences for all colors and
improves the previously mentioned color-related quality.
However, using the entire CIELAB space as the desired output
(which we denote as the ideal reference) results in large color
differences to the reproduced colors by the printer because
of its limited gamut. Minimizing the iCID metric then might
introduce structural artifacts for the favor of reducing color
differences. To avoid this we instead compare p(B(LABL∗))

with a set of references that we derive from the initial
backwards B2A CLUT which encodes the gamut and gamut
mapping.

Our method is separated in two initialization steps and the
iterative optimization itself as illustrated in Fig. 3. Using the
B2A CLUT grid point’s positions GLAB and tonal values

G� we first compute the references that define the optimal
profile output, with respect to the limited gamut. Their
creation consists of two parts (Fig. 3 A1 & A2) that are
explained in detail in sections III-A.1 and III-A.2. The second
initialization step splits the grid points into sets for an efficient
iterative optimization (Fig. 3 A3) which is described in
section III-B.

Then we repeatedly perform the optimization step of the
transformation B. For this we iterate over the sets and optimize
for each grid point x ∈ GLAB the tonal value (Fig. 3 B1).
This changes the transformation B, which is indicated by
B[x, z] that represents the tonal value at grid point x being
replaced by the tonal value z ∈ �. We select the tonal value
that minimizes a metric M. As explained in section IV-A,
M is the weighted sum of the iCID difference between
p(B(LAB)) and the references (Fig. 3 B2) and a Laplacian on
the tonal value output B(LAB) (Fig. 3 B3). More details of the
iterative algorithm are presented in IV-B. Once all grid points
have been optimized once, the procedure either is repeated or
terminates.

III. INITIALIZATION

We first extract from an ICC profile the B2A-CLUT,
which defines the B transformation for the entire CIELAB
color space by multi-linear interpolation, and A2B1-CLUT,
which encodes the forward printer model p. We denote by
GLAB ⊂ LAB the grid point positions of the B2A-CLUT and
by G� ⊂ � the corresponding tonal values stored at these
positions, i.e. G� = B(GLAB).
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Fig. 4. Grid point filtering process: The discrete GLAB grid points are
mapped with p(B(GLAB)) = p(G�). The resulting 3-dimensional data
structure is processed in the CIELCh color space where each channel is filtered
separately. The output is combined and converted back to CIELAB forming
the filtered reference colors Gref.

Two initialization steps are necessary before the iterative
optimization can start.

A. Reference Generation

As stated in (1) we could optimize B by comparing
p(B(LABL∗)) with LABL∗ itself, but in practice the limited
gamut results in significant color differences for out-of-gamut
colors. This is a problem since the iCID optimization may
favor structural artifacts to reduce large color errors, which
we want to avoid in our CLUTs.

Therefore, instead of comparing with LABL∗ we compare
with a set of reference images R = {R0, · · · , R100}

representing the optimal output of p(B(LABL∗)) for the
different L∗ indices. Each reference RL∗ is a raster images that
matches the corresponding LABL∗ in size. Thus we replace the
optimization in (1) with

B∗
= argmin

B

∑
L∗

iCID(p(B(LABL∗)), RL∗) (2)

The references R are derived such that they do not contain
far out-of-gamut colors, yet they should represent the optimal
output of the transformation. Inspired by heuristics used in
various gamut mapping algorithms to reduce color, contrast
and structural artifacts [18], we require the references to satisfy
the following properties a) to d):

a) Monotone w.r.t. changes to lightness and smooth for
constant lightness

b) Ideal chroma within the gamut, smooth chroma outside
c) Ideal hue everywhere
d) Preserve the profile’s white point
Here and in the following any color x ∈ CIELAB with

a CIEDE2000 color difference of 1E00(x, p(B(x)) > 2.0 is
considered out-of-gamut.

1) Grid Point Filtering: To construct these references
we use the grid points’ tonal values G� = B(GLAB)

and the forward model p. The mapped colors p(G�) of
the grid points are generally similar to GLAB within the
gamut, but deviate from the ideal colors outside the gamut,
which may create transitions that are not smooth. Therefore,
we process or filter these colors, with the exception of
the white point, to get reference colors Gref ∈ CIELAB

that form the reference images R. The steps are shown in
Fig. 4. Using a hue-linearized CIELCh color space allows
to process the predicted color attributes (lightness, chroma,
and hue) independently with negligible cross-contamination
between perceived attributes [19] in separate steps (neglecting
perceptual phenomena such as the Helmholtz-Kohlrausch
effect [20]).

Let q : CIELAB 7→ CIELCh be the transformation to the
CIELCh color space with the inverse q−1. Initialize GLCh =

q(GLAB) ⊂ CIELCh as the ideal grid point colors in the
CIELCh color space and Gout = q(p(G�)) ⊂ CIELCh as the
corresponding mapped colors of the grid points’ tonal values.
The steps to achieve the desired properties a) to d) are

a) Lightness: For lightness we want to ensure mono-
tonicity everywhere and smoothness outside of the gamut.

To achieve monotonicity we consider a column of colors
Co ⊂ Gout, where the corresponding Ci ⊂ GLAB have the
same a∗ and b∗, and ensure, starting from the middle of the
column going in both directions, that the lightness value is
monotone by overwriting it with the previous lightness if not
monotone. Afterward, each column Co is monotone in L∗.

To ensure smoothness we apply a conditional 2-dimensional
box filter on points in the same a*-b*-plane that only replaces
the lightness value if it is closer to the ideal lightness given
by ci ∈ GLCh. This ensures that values at the gamut boundary
are not shifted towards values outside of the gamut.

These steps are repeated alternating a fixed number of times,
until the desired smoothness is achieved, we chose in this case
10 times. A final monotonicity step at the end guarantees that
the lightness of each column is monotone.

b) Chroma: We want to ensure that the chroma is ideal
inside and smooth outside of the gamut. The processing is
done in a hue linear space, e.g. according to [21]. For points
inside the gamut we set the chroma to the chroma of the
ideal color ci ∈ GLCh. To ensure smoothness for colors
outside of the gamut we apply a conditional 2-dimensional
box filter in the a*-b*-planes, that only replaces the value if
the average chroma is closer to the chroma of the ideal color
ci ∈ GLCh. This step is repeated n times to achieve the desired
smoothness, where we use n = 10 in this work.

c) Hue: We want the hue to be ideal everywhere and use
the hue of the ideal color ci ∈ GLCh.

d) White point: The profile’s white point is preserved by
keeping it fixed at p(B(xwp)), xwp = (100, 0, 0) ∈ LAB.

We combine the results to TR and compute the filtered grid
points Gref = q−1(TR) that satisfy the required properties
a), b), c) and d) from above. They allow us to construct
reference images without artifacts but also without any colors
that are far away from the gamut.

2) Reference Image Generation: Each reference image
RL∗ ∈ CIELABm×m of R is constructed from the filtered
grid points Gref by trilinear interpolation. This leads to small
errors in non-linear attributes, particularly the hue. Using
r : CIELAB 7→ CIELAB that maps to hue-linear corrected
colors, for example based on Hung and Berns [21], and the
inverse r−1, we process the references R via the following
procedure that corrects the hue channel and also smooths the
other channels for out-of-gamut colors:
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Fig. 5. Comparing the input LABL∗ images at the top, for L∗
= 0,

50,100 from left to right, with the corresponding reference images RL∗ ∈ R
generated from the filtered grid points Gref at the bottom shows, that the RL∗

contain no out-of-gamut colors but are also smooth without artifacts.

1) Set RH L := q(r(R)) ⊂ CIELCh
2) Iteratively smooth RH L colors outside of gamut

Lightness: 2D Box-Filter in C-h-plane
Chroma: 3D Box-Filter

3) Set IH L := q(r(LAB)) ⊂ CIELCh
4) Set correct hue RH L(x)h = IH L(x)h
5) Finally R = r−1(q−1(RH L)) ⊂ CIELAB
Fig. 5 shows some of the resulting reference images RL∗ for

L∗
∈ 0, 50, 100, in comparison to the corresponding images

LABL∗ of the discrete color space LAB. The supplemental
includes additional images of R, including separations of the
lightness, chroma and hue channels, see Fig. 16 and 17.

B. Subset Separation and Partioning

The optimization can be parallelized with a similar way to
phase group partitioning [22] given two observations:

1. Changes to a grid point’s tonal value G�(x) alter only
some colors in p(B(LAB)). We define the partition P[x] ⊂

LAB of a grid point x ∈ GLAB to contain all elements in LAB
that are enclosed in the volume spanned by the grid point’s
neighbors’ positions, i.e. the positions of all grid points within
a 33-window centered at x . Please note the correspondence
between LAB and R: pixels with the same index in LABL∗

and RL∗ correspond to each other; a partition P[x] is defined
for both.

2. Only pixels inside the 2-dimensional iCID window W
affect the iCID value for a given pixel and the partition P[x]

represents all the pixels where the iCID is evaluated for x .
Note that the iCID metric is evaluated on a*-b*-planes with
constant L∗, i.e. pixels in W might be outside P[x] only w.r.t.
their a*-b*-coordinates but never with their L∗-coordinates.

Given these observations we separate the grid points into a
minimal number n of disjoint sets GLAB,i , i ∈ {1, · · · , n} so
that the grid points in each set satisfy the following condition:

∀x1, x2 ∈ GLAB,i , x1 ̸= x2,

∀p ∈ P[x2] : P[x1] ∩ W(p) = ∅

The grid points in the same set GLAB,i can then be
optimized in parallel, since changes to their tonal values do
not have any impact on each others iCID metric.

In Fig. 14 in the supplemental material we show how to
exclude grid points based on this criterion exemplary in 2D.

IV. OPTIMIZATION

After initialization, the tonal values in the table are
iteratively optimized. One important constraint for this
optimization is that the white point w ∈ GLAB must not be
changed. In the following it is excluded from the sets, i.e.
∀i : w ∩ GLAB,i = ∅.

A. Metric Definition

Let L(x) return the set of all unique L∗ positions in the
partition P[x] and define P[x]L∗ as the set of all positions
in P[x] with that L∗, we define for a grid point position
x ∈ GLAB an iCID based metric

MiCID(B, x) =

∑
L∗∈L(x)

iCIDP[x]L∗ (p(B(LABL∗)), RL∗)

|L(x)|

(3)

that is evaluated at all positions in the partition P[x]. We
refer to [15] and (8) in the supplemental material for more
details on the image difference metric iCIDA(X, Y ). This
metric allows selecting the optimal tonal values for a single
grid point position x with respect to the iCID metric but does
not consider the smoothness of the neighboring tonal values.

The latter is important for cases where the forward model
p is not smooth, which would yield non-smooth tonal values
for a maximally smooth output of B if just MiCID in (3) is
used. To keep the transition between the tonal values smooth
we define a tonal value space metric M1 as

M1(B, x) =
1

|L(x)|

∑
L∗∈L(x)

1P[x]L∗ (B(LABL∗)) (4)

where

1P[x]L∗ (T ) =
1

|P[x]L∗ |

∑
p∈P[x]L∗

∥∇
2(T )(p)∥1

dim(�)
(5)

with dim(�) being the dimension of � and ∇
2(T )(p)

being the second partial derivative of T evaluated at p.
We approximate this by evaluating finite differences on the
transformed reference images B(LABL∗), i.e. just considering
the a*-b*-plane.

We denote with M the combined metric that includes the
iCID color term and the weighted Laplacian tonal term

M(B, x) = MiCID(B, x) + wM1(B, x) (6)

with the weight w chosen such that the the Laplace term does
not dominate the iCID term which is limited to [0, 1]. We then
optimize this combined metric for each grid point

B∗(x) = argmin
B

M(B, x) (7)

B. Iteration

We optimize the transformation B by minimizing the metric
via variation of the tonal value entry of the B2A backwards
CLUT for each grid point position. We denote by B[x, z] a
locally modified B for which the tonal values at grid point
position x ∈ GLAB are replaced by z ∈ �.
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Algorithm 1 Profile Optimization Step

To select a new tonal value z for B(x) ∈ G� we use the
quantization of the tonal value space (usually 8 or 16 bits) and
consider tonal values that differ one quantization step in one
component, i.e. where ||z − B(x)||1 = 1. Let N�(z) : � 7→

�(2·dim(�)+1) return a set of the tonal value z ∈ � and all its
direct L1 neighbor tonal values.

Then the iterative optimization to update each grid point’s
tonal values B(x) ∈ G� for all x ∈ GLAB of the B2A CLUT
is performed by repeated execution of Algorithm 1.

Each iteration step optimizes all grid points of the B2A
table one time with respect to the metric, with the exception
of the white point whose values are fixed. Grid points that
belong to the same set can be optimized in parallel, the sets
are optimized sequentially for each step. Effectively to select
the optimal tonal value for a grid point x we alter the tonal
value, compute and average the metric over the partition P[x]

of the grid point and select the change with the minimal value.
Results using a fixed step size of 1 for variation of B(x) have

shown that the optimization can get stuck in local minima. It is
beneficial to vary the step size for the changes of B(x) along
the tonal space axes, such that initially large and subsequently
smaller changes allow the tonal values to gradually settle in
a minimum. We choose to iterate through a set of step sizes
based on a reversed Fibonacci series of fixed length, which is
in detail explained in the supplemental material.

The optimization repeats this iteration step either until there
is no change, i.e. until OPTIMIZE(B) = B, or terminates
after a fixed number of iterations. After the last iteration the
optimized B2A CLUT of B∗ is stored in the ICC profile.

C. Translucency

One interesting application for the iCID optimization is
the construction of a joint color and translucency profile
that characterizes a multi-material 3D printer employing a
clear material in addition to the color materials. We define
the color and tonal spaces similar to [7] and [23] using
CMYKγ for the tonal space, with γ corresponding to the
amount of clear material that replaces the white material, and
CIELABα as the color space, with the α parameter according
to Urban et al. [8]. For the α parameter, which ranges from
α = 0.0 fully transparent to α = 1.0 fully opaque, we define
T different discrete translucency levels t corresponding to
the grid point position in the LUT, with translucency values
αt , t ∈ {1, · · · , T } from fully opaque to fully transparent, i.e.
α1 = 1.0 and αT = 0.0. Each of the translucency levels t is
then optimized sequentially.

We define pγ : CMYKγ 7→ CIELABα as the
mapping from the tonal space to the color-and-translucency

space. There are different ways to determine such a
mapping, for example Chen and Urban proposed deep-
learning-based optical printer models to approximate pγ

with high accuracy requiring only a moderate number of
printed and measured training samples [24]. We aim to
compute the inverse B2A CLUT that maps CIELABα to
CMYKγ by iteratively applying the previously described
iCID optimization sequentially for incremental translucency
levels t .

1) Initialization: From sampling the forwards model at
the white point for different γ values, i.e. pγ (zwp(γ )) with
zwp(γ ) = {0, 0, 0, 0, γ }, we determine for each translucency
level αt the corresponding γt value where pγ (zwp(γt )) has
an α component that best matches αt . By definition γ0 = 0
for the first translucency level α1 and maximal for the
last translucency level αT . It is important to note that the
transformation is therefore only accurate in α for the white
point and likely has errors in the translucency reproduction
anywhere else.

We denote by G�
t the grid points’ tonal values for a

particular translucency level αt . Since the first translucency
level α1 represents the fully-opaque case with no transparent
material we initialize G�

1
= G� × {0} to be the tonal values

of the color-only table with γ = 0.
2) Iteration: The other tonal values G�

t , t ∈ {2, · · · , T }

are iteratively determined by the following approach. Each
grid point of the next translucency level t is initialized with
the values of the previous translucency level G�

t−1 but with
the value of γ set to the current γt .

To compute the metric the input colors LAB are augmented
with the alpha value, i.e. LABt

= LAB×αt . Then we compute
pγ (B∗(LABt )), from which we remove the alpha channel and
compare it with the references R by evaluating the metric M.
We select again the change to the tonal value that minimizes
M, the γ component is not altered during the iteration.

V. RESULTS

We applied the presented optimization on color profiles for
two multi-material-jetting 3D printers, the Stratasys J750 and
the Mimaki 3DUJ-553. Both printers can print with five color
inks, CMYKW, a transparent material and a support material.
The cyan material of the Mimaki printer is particularly dark,
which results in a peculiarly shaped gamut that contains darker
colors than the darkest color of the gray axis.

The ICC color profiles were generated with a proprietary
profile creation software and contain a color-only B2A CLUT
with 433 grid points and CMYK tonal values. They can also
contain an embedded color-and-translucency profile utilizing
the additional clear ink, with a 434 grid points B2A and
CMYKγ tonal values. The tonal values are quantized as 16-bit
unsigned integers.

Compared to the original iCID description [15] we slightly
modified the metric by squaring the lH hue-difference factor
to better preserve the hue during the optimization. For the
parameters of the optimization we use a kernel size of k = 7
for both the iCID window and Laplacian kernel. The weight
for the Laplacian tonal term M1 in the metric was w = 0.005,
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Fig. 6. Effect of the iCID optimization for both profiles on the simulation p(B(I )) of an input image I shown at the top. For the Mimaki color profile
the severe artifact in the top of the image (a) is significantly reduced. For the Stratasys color and translucency profile the output is shown for two uniform
RGBA alpha values. Note the reduced halo around the towers e.g. in the center with the blue signage (b), the better preserved red signage (c) on the right to
it, as well as the generally more vibrant colors of the buildings in the right of the image (d); magnifications are shown in the top right. As described in V-B
the gamut is particularly small and therefore challenging for α = 0.5 due to lateral light transport. Here the optimization shows the biggest improvements.
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Fig. 7. Iterative reduction of the metric M for each L∗ image during the optimization of the Mimaki profile. Top visualizes exemplary results after 0,
16 and 64 iterations for images with L∗ = 0, 18 and 100; on the left p(B(LABL∗ )) the transformed image of the a*-b* plane at constant L* and on the right
the corresponding metric M output when comparing to RL∗ . After a significant reduction of the average metric M in the first 8 iterations the curve flattens
and after iteration 16 the metric remains almost constant. The images show that the output of the transformation p(B∗(LABL∗ )) becomes smoother and the
structural artifacts are reduced or even removed.

we chose this value empirically such that the iCID color term
MiCID has a higher influence on the overall metric M than
M1. The image size m for the reference images is 256 pixels.

The algorithm was implemented in C++, with the iCID
computation being accelerated using CUDA kernels. The
LCMS2 color engine [25] was used to evaluate the B and
p transforms embedded in the profiles and to modify the tonal
values in the corresponding lookup tables. All experiments
were run on a Windows 10 computer with an Intel Core i7
9700K, 64GB of RAM and a NVIDIA Geforce RTX 2080 Ti
graphics card.

In Fig. 6 we highlight some of the improvements of the
optimization in a real world example, the following sections
provide a more quantitative analysis on the synthetic input and
reference data.

A. Color Profile Optimization

To show that the proposed algorithm can reduce or remove
artifacts we optimized an ICC color profile for the Mimaki
3DUJ-553 3D printer. The optimization iterated 8 times
through the list {21, 13, 8, 5, 3, 2, 1, 1} of tonal step sizes,
in total 64 iteration steps. We have empirically seen that more
iterations did not further improve the output.

1) Metric Reduction: The left graph in Fig. 8 shows that
the average metric for all colors is significantly reduced from
0.0150 to about 0.0067 after only 16 iterations A visual
example of the results is given in Fig. 7 which also shows how
the metric is evaluated and reduced in each LABL∗ image of
LAB. The initial color profile shows structural artifacts at the
gamut edge in the transformed images p(B(LABL∗)) before
the first iteration, especially for dark colors with L∗

= 0 the
white artifacts are quite visible. They are significantly reduced

Fig. 8. Left graph: Effect of the optimization of the Mimaki profile on the
overall metric M averaged over all pixels of the transformed LABL∗ images.
Note the staircase pattern that is a result of the varying step sizes for the tonal
offsets. Also visible is that both the color term MiCID and tonal term M1 are
reduced monotonically. Right graph: Also all percentiles and the maximum
of the overall metric M are reduced.

in the optimized output p(B∗(LABL∗)) after 16 iterations even
though some errors still remain.

While the graphs show that additional iterations further
reduce the average metric, which reaches a final value of
0.0065 after 64 iterations, the improvements between iteration
16 and 64 are only small and therefore hard to see in the
transformed images or even the metric images. The right graph
in Fig. 8 shows that also the maximal metric value and all
evaluated percentiles are reduced in the optimization. Most of
the curves follow an approximately exponential decay, after a
limited number of iterations the improvements become only
marginal yet measurable.
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Fig. 9. CMYK tonal images of the Mimaki color profile for L∗
= 0, 18 and

100 before B(LABL∗ ) (top rows) and after B∗(LABL∗ ) (bottom rows) the
optimization. The smoothness is either preserved or visibly increased.

Concluding the plots show that the average metric
was significantly reduced for all images p(B∗(LABL∗)) in
comparison to the references RL∗ thereby improving the
profiles transformation to produce smoother yet still color
accurate output. This smoothness is also visible in the
transformed images shown in Fig. 7, the optimized profile
especially improves the reproduction of color gradients.
Structural artifacts are either removed or noticeably reduced,
which is particularly apparent in the shown examples for
L∗

= 0 near the gray axis.
2) Tonal Term: The plot in Fig. 8 shows that the tonal

Laplacian term M1, which measures the smoothness in the
tonal space, is also reduced during the optimization. This
shows that the optimization is able to reduce both objective
functions simultaneously. Looking at the tonal value images
in Fig. 9 the output of the optimized transform B∗(LAB) is
smoother compared to the initial B(LAB), especially for dark
colors with small L∗ values.

3) CIEDE2000: While the iCID metric contains a color
term we want to validate that it is not dominated by the other
terms such that the color accuracy is actually reduced during
the optimization. To validate this we compare the transformed
images LABL∗ and the reference images RL∗ using a color
difference formula, the CIEDE2000 color difference 1E00.
We compute the pixel-wise color difference between the

Fig. 10. CIEDE2000 difference between the referencesR and the simulation
p(B∗(LAB)) during the optimization. The left graph shows that on average
the color difference is reduced in the first few iterations for each L∗ image
and then remains constant, however for some colors the optimization later
on reduces structural artifacts at the expense of the color accuracy. The right
graph shows that computed over all colors in LAB also the maximal, median
and 90th percentile difference in comparison to the references is reduced.

Fig. 11. Simulation of an image I that shows the surface of an CMYK
printer’s gamut visualized in sRGB (CMY varies left to right, K and total
area coverage top to bottom). Left p(B(I )) before and on the right p(B∗(I ))
after the optimization. Note the structural whitish artifacts on the bottom right
of the left image, magnified below, that are reduced in the right image.

references R and the mapped colors p(B∗(LAB)) for each L∗

image separately but also overall and then statistically analyze
the values, Fig. 10 shows the results.

We can see that the average CIEDE2000 color difference
is reduced for all LABL∗ images, also the overall average
drops from 1.35 to around 1.04 and remains at this level for
the remaining iterations. The median of the color difference
follows the same trend, also the 90th percentile and maximal
value are reduced and remain below the initial error. As the
color difference is only one part of the metric it is not expected
to be reduced in each iteration step, since other terms might
dominate it, but the results show that the optimized profile is
not only smoother but also exhibits a better color reproduction.

4) Runtime: Each optimization iteration takes about
80 seconds, the entire optimization with 64 iterations and the
computation of the references takes about 90 minutes in total.
Note that the optimization is an offline process and needs to
be done only once.

a) Conclusion: The presented results show that our
algorithm is able to improve both the color reproduction and
smoothness of the B backwards model from the B2A table.
For example structural artifacts are completely removed or
strongly reduced in the optimized profile as shown in Fig. 11.
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Fig. 12. Results of the iCID optimization for the Stratasys color and
translucency profile. The upper plots show the average metric per L∗ slice for
different translucency levels t when comparing the transformed input images
to the references. Results for the profile created with the proprietary software
on the left and for our algorithm on the right. As apparent from the graph in
the lower left, that shows the difference between both results, the metric is
generally smaller for the iCID optimized profile. Also the average CIEDE2000
color difference for each translucency level is smaller, shown in the lower
right.

Because of the tonal M1 term the smoothness is also increased
in the tonal value space.

B. Translucency

To show that our algorithm can be used to create a joint
color and translucency profile we have optimized the profile
of a Stratasys J750 Polyjet 3D printer. We compare the output
with a color-and-translucency profile that was created with
a proprietary software using an algorithm described in [7],
where the tonal space is sampled and mapped to select
the color that matches the metamer with the most similar
translucency. First the color only table is optimized identically
as before, then the tables for the subsequent translucency levels
are each optimized 3 times with the tonal offset step sizes
{8, 5, 3, 2, 1, 1} for a total of 18 iterations per level.

Fig. 12 shows the average metric for each L∗ slice for each
translucency level t before and after the optimization.

Compared to the Mimaki printer, the gamut of the Stratasys
printer has no sharp edges at the boundary and the input profile
does not contain structural artifacts in the color-only table, i.e.
for t = 1 at the fully opaque α1 = 1.0. Therefore this output
could not be improved much by the optimization, but for other
translucency levels we can see greater improvements of the
metric, especially for bright colors our output is on average
better for all t and L∗.

Fig. 13. Transformed images pγ (B(LABt )) of the Stratasys color and
translucency profiles for different lightness L∗ and translucency levels t
created with a proprietary software (top row) and our approach (bottom row).
The smoothness of the output is increased especially for bright colors in the
translucency level t = 5.

The figure also shows the CIEDE2000 average between
R and the mapped colors pγ (B(LABt )) and pγ (B∗(LABt ))

for each translucency level, with our iCID optimized profile
producing a smaller color difference.

Due to the nature of 3D Polyjet printing, where the amount
of color material per voxel is limited, adding more transparent
material limits the amount of colored inks per volume and
effectively reduces the gamut. Since in this case the clear
material replaces the white material this results especially in
bright colors being out of gamut and consequently a higher
metric. Note that due to lateral light transport translucent
colors have intrinsically higher reproduction errors than fully
transparent colors that were measured on a white background.

Fig. 13 shows a comparison of the transformed output
pγ (B(LABt )) before and after the optimization for some L∗

lightness and t translucency levels. Visible especially for bright
colors, e.g. L∗

= 100, the output of the unoptimized profile
shows strong structural artifacts for t = 5 and t = 28 that are
not present in the output of the optimized profile.

Computing a single iteration step required on average
114 seconds, it is slower than the color-only optimization
because of the additional dimension in the look-up-tables.
The optimization per translucency level t took on average
about 34 minutes using 18 iterations, in total about 24 hours
to compute all 42 translucency levels of the color-and-
translucency CLUT.

VI. CONCLUSION AND OUTLOOK

We presented an iterative algorithm that optimizes the B2A
CLUT defining the backwards transform of an ICC color
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profile to improve especially the smoothness but also the
color accuracy of the transformation output. It significantly
reduces the iCID image difference metric for the evaluated
color profiles, resulting in profiles with reduced or removed
structural artifacts without sacrificing color accuracy as it also
reduces the CIEDE2000 color error to an ideal reference.

The resulting CLUT will reflect all changes introduced by
the creation of the references. In particular, if the hue angles
are intentionally altered in the input CLUT, the resulting
CLUT will reverse these intended changes. The optimization
process can arbitrarily alter properties of the profile such as
the black generation strategy. Furthermore, gamut clipping
transformations might be changed to slight gamut compression
to avoid discontinuities.

We have shown that this approach can also be used to
create profiles with attributes beyond color, in this case
with a transparent clear ink to reproduce translucency.
In comparison to an already established algorithm we see
significant improvements in the smoothness of the output,
allowing the printer to reproduce gradients with higher
perceptual similarity.

The brute force approach takes a significant time to
compute, especially for color and translucency profiles, even
thought most parts can be done in parallel or massively
parallel. Since this process is only computed offline once for
each profile this is not a problem in practice. Some of the
parameters, such as the number of iterations or the used step
sizes, are based on empirical observations and might not be
optimal w.r.t. convergence or performance.

A. Limitations

It is not possible to create the backwards transform B of
a color profile from scratch just using a forward model, it is
necessary to have already a reasonable starting point for the
B2A CLUT to compute the references of the optimization.

If the initial profiles backward model’s gamut mapping
contains lightness inversion artifacts the references will also
encode this, we can see this for the Mimaki profile where a
very dark cyan material results in darker blue colors than the
darkest color of the gray axis. Then the optimization will also
produce a backward model with the same lightness inversion.
Adjusting the references, either by clipping the L∗ value to the
darkest color of the gray axis or by using the ideal L∗ values
in some regions, can reduce this problem but may result in a
smaller gamut or undesired color shifts.

Another important requirement for this optimization to
optimize color profiles of 3D printers is that the optical printer
forward model is accurate and smooth. If the forward model is
not smooth the optimization can produce smooth output in the
color space that might not be smooth in the tonal space and
lead to artifacts that are not visible in the simulation but lead
to problems in the halftoning of the printing process. When
optimizing color profiles for devices not reliant on halftoning,
e.g. RGBW Displays, this can be less of an issue.

For the color and translucency profile the translucency
values are only correct along the gray axis and can be slightly
off for other colors.

B. Future Work

The use of reference images allows interesting adjustments
of the optimization to create profiles that are optimized with
specific properties, especially regarding the gamut mapping.
For example we can steer the optimization for out of gamut
colors to prioritize the lightness reproduction over the hue and
chroma, even locally for specific regions of the color space.

Adding more terms to the metric M or restricting the tonal
values N�(B(x)) considered for optimizing a grid point x
based on some secondary criteria could be used to enforce
or preserve also other properties of the profile, such as the
black generation strategy or total area coverage.

Using a derivative or gradient of the iCID metric would
allow to also use other optimization algorithms like gradient
descent that might converge faster or find better minima.
Future work could also define a stopping criterion which could
reduce the number of iterations and therefore the run-time,
especially for profiles with attributes beyond color.

Currently the iCID image difference metric is only defined
for 2D images, the presented algorithm is not a true 3D
optimization but rather a 2.5D approach. Extending the iCID
or using a different image difference metric that operates in
the 3D space might improve the optimization. Also the iCID is
only defined for the CIELAB color space and does not include
translucency, extending the metric could further improve the
color-and-translucency profile creation.
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