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AdaPool: Exponential Adaptive Pooling for
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Abstract— Pooling layers are essential building blocks of con-
volutional neural networks (CNNs), to reduce computational
overhead and increase the receptive fields of proceeding con-
volutional operations. Their goal is to produce downsampled
volumes that closely resemble the input volume while, ideally,
also being computationally and memory efficient. Meeting both
these requirements remains a challenge. To this end, we propose
an adaptive and exponentially weighted pooling method: adaPool.
Our method learns a regional-specific fusion of two sets of
pooling kernels that are based on the exponent of the Dice-
Sørensen coefficient and the exponential maximum, respectively.
AdaPool improves the preservation of detail on a range of tasks
including image and video classification and object detection.
A key property of adaPool is its bidirectional nature. In contrast
to common pooling methods, the learned weights can also be used
to upsample activation maps. We term this method adaUnPool.
We evaluate adaUnPool on image and video super-resolution and
frame interpolation. For benchmarking, we introduce Inter4K,
a novel high-quality, high frame-rate video dataset. Our exper-
iments demonstrate that adaPool systematically achieves better
results across tasks and backbones, while introducing a minor
additional computational and memory overhead.

Index Terms— Pooling, downsampling, upsampling.

I. INTRODUCTION

POOLING methods downsample spatial input to a lower
resolution. Their goal is to minimize the computational

overhead of subsequent network operations and to increase
their receptive fields. Pooling operations are essential in image
and video processing approaches, including those based on
CNNs. An important aspect of pooling is that it introduces a
loss of information within the model. Thus, the retainment of
detail in the structural aspects of the input, such as contrast
and texture, can become challenging. As pooling is a key
component in virtually all popular CNN architectures, it is
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Fig. 1. AdaPool downsampling. The output is the combination of two
processes. The first uses exponential Dice-Sørensen Coefficient Weighting
(eDSCW) downsampling, based on a region’s mean (x). The second down-
samples using the exponential maximum (eM). Both outputs (xeM ,xeDSCW )
are summed with region-based weight masks β and (1-β) to produce the
adaptively weighted output (xada ).

necessary to ensure that this information loss does not incur
a cost in performance.

A range of pooling methods has been proposed, each with
different properties (see Section II). Most architectures use
maximum or average pooling, both of which are fast and
memory efficient but leave room for improvement in terms
of retaining information. Other approaches use trainable sub-
networks. Such methods have shown some improvements over
average or maximum pooling, but they are typically less
efficient and not generally applicable because their parameters
need to be determined beforehand.

In this work, we study how the shortcomings of pooling
methods can be addressed with low-computational approaches
based on exponential weighting. We introduce methods to
weigh kernel regions, either based on the softmax-weighted
sum of activations [9], or based on the exponent of the
similarity between each activation and the mean activation
within the kernel region obtained by the Dice-Sørensen
Coefficient [7], [8]. We then propose adaPool as the learned
fusion of both methods, schematically visualized in Figure 1.
AdaPool does not average over high-frequency patterns as
in average pooling, nor does it focus exclusively on such
patterns as in maximum pooling. Instead, adaPool provides
a balance between retaining informative detail and the local
image structure.
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Fig. 2. Pooling variants. R denotes the kernel neighborhood as a set of pixels. (i-ii) Average and maximum pooling are based on the average or maximum
activation value of the kernel region. (iii) Power-average pooling [1], [2] is proportional to average pooling raised to the power of ρ. When ρ → ∞ the
output equals maximum pooling, while ρ = 1 equals average pooling. (iv) Sum pooling is also proportional to average pooling with all kernel activations
summed in the output. (v) Stochastic pooling [3] samples a random activation from the kernel region. (vi) Stochastic Spatial Sampling (S3Pool) [4] samples
horizontal and vertical regions given a specified stride. (vi) Gate pooling [5] uses max-average pooling based on a gating mask (ω) and a sigmoid function.
(viii) Local Importance Pooling (LIP) [6] uses a trainable sub-net G to enhance specific features. (ix-x) L1 and L2 Inverse Distance Weighting Pooling
(IDW, ours) weighs kernel regions based on their inverse distance to the mean activation (a). (xi) Exponential maximum pooling (emPool/SoftPool, ours)
exponentially weighs activations using a softmax kernel. (xii) Exponential Dice-Sørensen Coefficient Weighting Pooling (eDSCWPool, ours) uses the
exponent Dice-Sørensen Coefficient [7], [8] of the kernel activations (ai ) and their average (a) as weights. (xiii) Adaptive exponential pooling (adaPool,
ours) combines (xi) and (xii) with a trainable mask of weights β.

Many tasks, including instance segmentation, image gen-
eration and super-resolution, require upsampling of inputs or
signals, which has the inverse goal of pooling. With the excep-
tion of LiftPool [10], pooling operations cannot be reversed as
this would lead to sparse upsampling results (e.g., using max-
imum pooling [11]). Common upsampling approaches such
as interpolation, transposed convolutions and de-convolution
approximate, rather than reconstruct, the higher-resolution fea-
tures. The lack of inclusion of prior knowledge is an obstacle
as the encoding of information to a lower resolution comes at
a loss of local information. Instead, we argue that introducing
prior local knowledge benefits the upsampling process. Based
on the same formulation as adaPool, we propose adaUnPool
for upsampling.

We demonstrate the favorable effects of adaPool in pre-
serving descriptive features. Consequently, this allows models
with adaPool to consistently improve classification and recog-
nition performance. AdaPool maintains a low computational
cost and provides an approach to retain prior information.
We further introduce adaUnPool and address super-resolution
and interpolation tasks. Summarized, we make the following
contributions:

• We adapt Inverse Distance Weighting (IDW) [12] for
pooling and extend it by using a similarity measure
through the Dice-Sørensen Coefficient (DSC), by uti-
lizing its exponent eDSC to weigh kernel elements.

• We propose adaPool, a parameterized learnable fusion of
portions from the smooth approximation of the maximum

and average. Using the inverse formulation, we develop
upsampling process adaUnPool.

• We introduce a collection of 1,000 4K videos
with high frame-rates, Inter4K, to benchmark frame
super-resolution and interpolation algorithms.

• We experiment on multiple global and local-based tasks
including image and video classification, and object
detection. We show consistent improvements by replacing
original pooling layers with adaPool. We also demon-
strate the improved performance of adaUnPool on image
and video super-resolution and video frame interpolation.

The remainder of the paper is structured as follows. We first
discuss related work. We then detail our downsampling meth-
ods eDSCPool, eMPool, and adaPool as well as upsampling
method adaUnPool (Section III). We introduce Inter4K in
Section IV and evaluate on global and local-based image and
video tasks (Section V). We conclude in Section VII.

II. RELATED WORK

A. Pooling Hand-Crafted Features

Downsampling has been widely used in hand-coded fea-
ture extraction. In Bag-of-Words (BoW, [13]), images are
represented as groups of local patches that are pooled and
then encoded as vectors [14]. Based on this approach, Spatial
Pyramid Matching (SPM) [15] aims at preserving spatial infor-
mation. Later works extend this approach with linear SPM [16]
that selects the maximum SIFT features in a spatial region.
Most of the early works on feature pooling have focused on
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Fig. 3. Example of detail preservation with different pooling methods. Common methods such as average and maximum pooling result in a distorted
signature with unrecognizable details such as numbers or characters. Exponential weighting through either normalized local maximum (eM) or similarity-based
measures (eDSCW) better capture details. Further improvements in the detail and representation quality are observed when introducing an adaptive fusion
between both of these exponential weighting methods (adaPool).

max-pooling based on the max-like behavior of biological
cortex signals [17]. Maximum and average pooling studies
in terms of information preservation by Boureau et al. [18]
have suggested that max-pooling produces comparatively more
representative results in low feature activation settings.

B. Pooling in CNNs

With the prevalence of learned feature approaches in var-
ious computer vision tasks, pooling methods have also been
adapted to kernel-based operations. In CNNs, pooling has
been mainly used to create condensed feature representations
to reduce the model’s computational requirements, and in turn
to enable the creation of deeper architectures [19].

More recently, the preservation of relevant features dur-
ing downsampling has taken a more prominent role. Initial
approaches include stochastic pooling [3], which uses a prob-
abilistic weighted sampling of activations within a kernel
region. Other pooling methods such as mixed pooling are
based on a combination of maximum and average pooling,
either probabilistically [20] or through a combination of por-
tions from each method [5]. Power Average (L p) [2] utilizes
a learned parameter p to determine the relative importance of
average and maximum pooling. With p = 1, sum pooling is
used, while p → ∞ corresponds to max-pooling.

Some approaches use grid-sampling. S3Pool [4] randomly
samples rows and columns of the original feature map to create
the downsampled version. Methods can also employ learned
weights such as in Detail Preserving Pooling (DPP, [21]) that
uses average pooling while enhancing activations with above-
average values. Local Importance Pooling (LIP, [6]) utilizes
learned weights within a sub-network attention mechanism.
A visual and mathematical overview of the operations per-
formed by different pooling methods appears in Figure 2.

The majority of the pooling work reported in the literature
cannot be inverted for upsampling. Badrinarayanan et al. [11]
proposed an inversion of the maximum operation by tracking
the in-kernel position of the selected maximum input while the
other positions are populated by zero values in the upsampled
output. This ensures that the original values are used, but the

output is inherently sparse. Recently, Zhao and Snoek [10]
proposed LiftPool based on the use of four learnable sub-bands
of the input. The produced output is composed as a mixture of
the discovered sub-bands. They also propose an upsampling
inversion of their approach (LiftUpPool). Both methods are
based on sub-network structures that limit their usability as a
computation and memory-efficient pooling technique.

Most of the aforementioned methods rely on combina-
tions of maximum and average pooling, or the inclusion of
sub-networks that prohibit low-compute and efficient down-
sampling. Instead of combining existing methods, our work
is based on an adaptive exponential weighting approach to
improve the retention of information and to better preserve
details of the original signal. Our proposed method, adaPool,
is inspired by Luce’s choice of axiom [22]. We thus weigh
kernel regions based on their relevance without being affected
by the neighboring kernel vectors. This is in contrast to both
average and maximum pooling. AdaPool uses two sets of
pooling kernels. The first uses the channel-wise similarity of
individual kernel vectors to their mean in order to determine
their relevance. Similarities are calculated based on the Dice-
Sørensen coefficient. The second is based on softmax weight-
ing to amplify feature activations of greater intensity [9].
Finally, outputs from both kernel operations are parametrically
fused to a single volume. Parameters are specific to each kernel
location thus making our approach regionally-adaptive.

A key property of adaPool is that gradients are calculated
for each kernel vector during backpropagation. This improves
the network connectivity. In addition, downsampled regions
are less likely to exhibit a vanishing trend of activations,
as observed by equal-contribution approaches such as average
or sum pooling. We demonstrate how adaPool can adaptively
capture details in Figure 3, where the zoomed-in region
displays a signature. AdaPool shows improvements in the
clarity and recognizability of the letters and numbers.

III. METHODOLOGY

In this section, we introduce the two processes
(Sections III-A and III-B) that make up the final adaPool
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method (Section III-C. We subsequently introduce the inverse
adaUnPool method in Section III-D).

We start by introducing the basic operations of our pooling
method. We define the local kernel region R as part of
activation map a of size C ×H ×W , with C channels, height
H and width W . For notation simplicity, we omit the channel
dimension and assume that R is the set of relative position
indices corresponding to the activations in the 2D spatial
region of k!×k (i.e., |R| = k2). We denote the pooling output as
ã and the corresponding gradients as ∇ãi , at the i th coordinate
within region R.

A. Smooth Approximated Average Pooling

Average pooling uses equal weights for all input vectors
within a kernel region. The combined outputs are therefore
strongly affected by outliers within the region. We argue that
improvements in the calculation of the regional average can
limit the effect of outlier values in both the creation of pooled
volumes in the forward pass, as well as gradient calculations
in the backward pass.

Inverse Distance Weighting (IDW) is widely applicable as
a weighted average approach for multivariate interpolation
[23], [24]. The assumption is that geometrically close obser-
vations exhibit a higher degree of resemblance than geometri-
cally more distant ones. We extend IDW to kernel weighting
for pooling by using the distance of each activation ai , with
coordinate index i ∈ R, to the mean activation a of R. The
resulting pooled region ã

I DW
is formulated as:

ã
I DW

=


∑
i∈R

w(a, ai )
I DW

� ai∑
j∈R

w(a, a j )
I DW

, i f d(a, ai ) ̸= 0 ∀ i ∈ R

ai , i f d(a, ai ) = 0 ∃ i ∈ R

(1)

The weights w(·, ·
I DW

) are based on the inverse of the distance

d(·, ·) between each activation and the mean activation:

w(a, ai )
I DW

=
1

d(a, ai )
(2)

Distance function d(·, ·) can be calculated by any geometric
distance approach. Further details and limitations of IDWPool
are discussed in Appendix VII-A.

As distance methods can produce artifacts when directly
applied in input regions (see Appendix VII-A), the use of sim-
ilarity measures is a better suited solution for the region-based
nature of pooling. For the widely-used cosine similarity,
an issue arises when the similarity between the two vectors
is 1 even if one of the two vectors is infinitely large [25].
Other dot-product methods for vector volumes such as the
Dice-Sørensen Coefficient (DSC) overcome this limitation by
taking into account the vector lengths.

Given the IDW approach of Equation 1, zero-valued dis-
tances or coefficients will be assigned a zero weight. There-
fore, our second extension is the use of the exponent (e)
of the similarity between the activation vector and the aver-
age activations. This effectively makes the pooling method
differentiable during backpropagation as at least a minimum

gradient will be calculated for every location. It also reduces
the possibility for the vanishing gradients problem to arise.
Based on the introduction of the exponent of the similarity
coefficient, we re-formulate Equation 1 as:

ã
eDSC

=

∑
i∈R

e
w(a,ai )

DSC � ai∑
j∈R

e
w(a,a j )

DSC

(3)

It is important for downsamped volumes to preserve the
informative features while reducing the spatial resolution of
the input. The creation of volumes that do not fully capture the
structural and feature appearances can have a negative impact
on the performance. An example of such loss in detail can
be seen in Figure 3. Average pooling decreases the resolu-
tion of activations uniformly. Instead, using the exponent of
the Dice-Sørensen Coefficient (eDSCWPool) can improve on
the activation preservation by exponentially weighting kernel
values based on their similarity to their regional mean, while
ensuring non-zero weights are assigned.

B. Smooth Approximated Maximum Pooling

Complementary to the smooth approximated average within
a kernel region, we discuss the formulation of downsampling
based on the smooth approximated maximum which has been
recently introduced as SoftPool [9]. For clarity, and in line
with the used terminology, we refer to SoftPool as exponential
maximum pooling (eMPool).

The motivation behind the use of the exponential maximum
is influenced by the cortex neural simulations [18], [26] that
downsample hand-coded features. The method is based on the
natural exponent (e), which ensures that larger activations will
have a greater effect on the final output while also ensuring that
a minimum weight value is assigned to the lowest activations.

The weights in exponential maximum pooling (eMPool)
are used as non-linear transforms based on the value of
the corresponding activation. Higher-valued activations will
become more dominant than lower-valued ones. As the major-
ity of pooling operations are performed over high-dimensional
feature spaces, highlighting the activations with greater effect
is more balanced than the selection of the maximum activa-
tion alone. In the latter case, discarding the majority of the
activations presents the risk of losing important information.

The output of eMPool is produced through a summation of
all weighted activations within the kernel region R:

ã
eM

=

∑
i∈R

w(ai )
eM

� ai , where w(ai )
eM

=
eai∑

j∈R
ea j

(4)

eMPool produces normalized results, similarly to
eDSCWPool. The results are based on a probability
distribution that is proportional to the values of each
activation with respect to the neighboring activations within
the kernel region.

C. AdaPool: Adaptive Exponential Pooling

Based on their properties, eDSCWPool uses the similarity of
vectors ai within the kernel region R to the mean activation
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Fig. 4. Inter4K video frame samples. These samples show the high resolution (UHD/4K) and variation in the frames. The videos are challenging for video
processing due to rapid motions and movements, complex lighting, textures and object detail.

a. eMPool, however, uses the vectors in proportion to their
values, with higher-valued activations being weighted more.
From Figure 3, neither of the two methods can be considered
superior to the other. However, their properties can be com-
plementary to discover the most informative features within
the kernel region. With this observation, and in line with Lee
et al.’s introduction of average and maximum pooling fusion
strategies [5], we use a trainable weight mask β to create a
combined volume of both smooth approximated average and
smooth approximated maximum. Here, β is used to learn the
proportion that will be used from each of the two methods
within each kernel region R. Introducing β as part of the
network training process has the advantage of creating a
generalized pooling strategy that relies on the combination of
the properties of both eMPool and eDSCWPool. We formulate
the method as a regionally-learned combination of the down-
sampled smooth approximated average ( ã

eDSC
) and the smooth

approximated maximum ( ã
eM

):

ã
ada

(3,4)
HHHH ã

eDSC
� β + ã

eM
� (1 − β) (5)

where β ∈ {0, . . . , 1} is a weight mask of the same size as the
downsampled volume ã (H ′

×W ′). A visualization of adaPool
appears in Figure 1. The gradients of β for backpropagation
are calculated based on the chain rule as:

∂ E
∂β

=
∂ E
∂ ã

ada

∂ ã
ada

∂β
=

∂ E
∂ ã

ada

(max
i

ai −
1

|R|

∑
i∈R

ai ) (6)

D. Upsampling Using adaUnPool

Pooling condenses regional information to a single output.
The majority of the sub-sampling methods do not establish
a bi-directional mapping between the sub-sampled and the
original input, as most tasks do not require this link. However,
tasks such as semantic segmentation [27], [28], [29], super-
resolution [30], [31], [32], [33] or frame interpolation [34],
[35], [36], [37] significantly benefit from it. As adaPool is
differentiable and uses a minimum weight value assignment,
the discovered weights can be used as prior knowledge dur-
ing upsampling. We refer to this upsampling operation as
adaUnPool.

For a given pooled volume (̃a), we use the smooth approx-
imated maximum (w(ai)

eM
) and smooth approximated average

weights (w(a, ai)
eDSCW

) with learned weights mask β. The final

unpooled output (ai) for the i th kernel region (i ∈ R) is
computed as:

ai = β �
e

w
DSC

(a,ai )∑
j∈R

e
w

DSC
(a,a j )

� IA (̃a) + (1 − β) � w(ai )
eM

� IA (̃a) (7)

where IA(·) interpolates by assigning the pooled volume (̃a)
of the original kernel region at each position i . The method is
used to inflate the volume from size H ′

×W ′ to H ×W .

IV. THE INTER4K VIDEO DATASET

We introduce a novel high-resolution video dataset to
benchmark upsampling methods. Inter4K is a collection
of 1,000 ultra-high (4K) resolution clips with 60 frames
per second (fps) sourced from YouTube. The dataset pro-
vides standardized video resolutions at ultra-high definition
(UHD/4K), quad-high definition (QHD/2K), full-high defini-
tion (FHD/1080p), (standard) high definition (HD/720p), one
quarter of full HD (qHD/520p) and one ninth of a full HD
(nHD/360p). Available frame rates for each resolution include
60, 50, 30, 24 and 15 fps. Based on this standardization,
both super-resolution and frame interpolation tests can be
performed for different scaling sizes (×2, ×3, and ×4). In our
experiments, we use Inter4K to address both tasks of frame
upsampling and interpolation.

In contrast to other datasets used for video super-resolution
and interpolation [38], [39], [40], [41], [42], [43], [44], Inter4K
provides standardized UHD resolution at 60 fps for all videos.
The dataset is divided into 800 videos for training, 100 videos
for validation, and 100 videos for testing. Videos are of
5-second length (examples are shown in Figure 4) and include
diverse scenes based on equipment used (e.g., professional
4K cameras, mobile phones), lighting conditions, static and
moving cameras, and variations in movements, actions, and
objects. We include a summary of the videos in Inter4K based
on six main categories as presented in Figure 5. Categories are
chosen given the primary focus of the video. The main four
categories that correspond to 90% of the videos include Urban
environments (e.g. buildings, streets, or vehicles), Nature and
animals, Sports and people depicting human activities and
actions, and Demos and abstract with demo videos for video
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Fig. 5. Inter4K category proportions. Categories are selected based on
broad concepts of the videos.

resolution and frame rates, or videos with computer-generated
abstract shapes. The last two categories are less prevalent in
the dataset either due to copyright restrictions (Music videos
and movies) or scarcity of videos (Machinery). In Figure 6
we present a visualization of the locations of 632 out of the
1,000 videos. These locations were found based on available
geo-tags, video titles, and keywords or depictions of identifi-
able landmarks in the video. Both Figures 5 and 6 demonstrate
the diversity of Inter4K in terms of video content and the
locations where the videos were shot.

V. MAIN RESULTS

We initially evaluate the information loss caused by down-
sampling with various pooling methods. We compare the
downsampled and original images using standard similarity
measures (Section V-B). In addition, we examine the compu-
tational overhead of each pooling method (Section V-C).

We proceed by testing the performance of widely-used
CNN architectures on ImageNet1K when we substitute the
network’s original pooling layers by eMPool, eDSCWPool and
adaPool (Section V-D). We also provide comparisons between
different pooling methods (Section V-E).

We present our results for object detection (Section V-F)
on MS COCO [45] with RetinaNet [46] and Mask R-CNN [47]
using several backbones. We additionally experiment on
spatio-temporal data by focusing on action recognition in
video (Section V-G).

Lastly, we present our results on image super-resolution,
frame interpolation, and their combination (Section V-H).

A. Experimental Settings

1) Datasets: For our image-based experiments, we use
seven different datasets for quantitative evaluation of the
downsampled image quality, image classification, object detec-
tion, and image super-resolution. For the assessment of image
quality and similarity, we use the high-resolution DIV2K [48],
Urban100 [49], Manga109 [50], and Flicker2K [48] datasets.
For image classification we use ImageNet1K [51], and
MS COCO [45] for image object detection. For image
super-resolution we employ the Urban100, Manga109, and
B100 [52] datasets. For our video-based experiments,
we employ six datasets. For action recognition, we use the

Fig. 6. Inter4K video locations by continent. Darker colors correspond to
a larger number of videos.

large-scale HACS [53] and Kinetics-700 [54] datasets, as well
as the smaller UCF-101 [41] dataset. For frame interpolation,
we use Vimeo90K [44] and Middlebury [38] video processing
datasets, as well as our newly introduced Inter4K dataset,
which is also used for the combined task of frame interpolation
and super-resolution.

2) Classification Training Scheme: For image classification,
we use a random spatial region crop of size 294 × 294, which
is then resized to 224×224. The initial learning rate across our
experiments is set to 0.1 with an SGD optimizer. We train for
a total of 100 epochs with a step-wise learning rate reduction
every 40 epochs. For higher numbers of epochs, no further
improvements were observed. The batch size is set to 256.

For our video action recognition tests, we use a multigrid
training scheme [55], with frame sizes between 4–16 and
frame crops of 90–256 depending on the cycle. The average
video inputs are of size 8 × 160 × 160, while the batch
sizes are between 64 and 2048. The size for each of the
batches is counter-equal to the input size in every step in
order to optimize memory use. We use the same learning rate,
optimizer, learning rate schedule, and maximum number of
epochs as in the image-based experiments.

3) Object Detection Details: We first rescale the images to
ensure that the smallest side has a minimum size of at least
800 pixels [47], [56]. If after rescaling the largest side is
larger than 1024 pixels, we resize the entire image so that the
largest side becomes 1024 pixels. Our rescaling and resizing
preserves the aspect ratio of the images. We use the pre-trained
networks from the image classification task as backbones. The
learning rate is set to 1e−5 and we use an SGD optimizer with
0.9 momentum.

B. Downsampling Similarity

In the first set of tests, we evaluate the information loss
when using our proposed methods for downsampling. The
comparisons focus on the similarity of the original inputs
and downsampled outputs. Three widely used pooling kernel
sizes are employed (k ={2, 3, 5}). We use three standardized
evaluation metrics [58], [59]:
Structural Similarity Index Measure (SSIM) is calculated
as the difference of two images in terms of their luminance,
contrast, and a structural term. Larger SSIM values correspond
to larger structural similarities.
Peak Signal-to-Noise Ratio (PSNR) is a quantification of
the produced image’s compression quality. PSNR takes into
account the inverse of the Mean Squared Error (MSE) of two
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TABLE I
QUANTITATIVE RESULTS ON BENCHMARK HIGH-RES DATASETS. BEST RESULTS FOR EACH SETTING ARE DENOTED IN BOLD

TABLE II
LATENCY AND PIXEL SIMILARITY. LATENCY FOR THE FORWARD AND

BACKWARD PASS ON BOTH CPU AND GPU IS AVERAGED OVER ALL

IMAGES IN IMAGENET1K. PIXEL SIMILARITY REPORTED ON

FLICKER2K. BEST RESULTS IN BOLD

images’ channels. Higher PSNR values translate to smaller
channel-wise distances between the two images.
Learned Perceptual Image Patch Similarity (LPIPS) is a
similarity measurement between patches from two images.
LPIPS compares the distances of features from the two images
extracted by a deep learning backbone. Lower LPIPS values
correspond to higher similarity between images.

In Tables I and II, we present the SSIM, PSNR, and
LPIPS values averaged over all images in DIV2K [48],
Urban100 [49], Manga109 [50], and Flicker2K [48] datasets,
for different kernel sizes. IDW-based distance methods outper-
form non-trainable and stochastic methods. The randomized
policy of stochastic methods does not seem to allow to fully
capture details. Additionally, the use of exponential weighting

to our IDW-based methods yields clear improvements. Both
eMPool and eDSCWPool are top-performing across kernel
sizes and datasets, demonstrating the benefits of exponential
approximation methods for image downsampling. Finally, the
combination of the two exponential methods into adaPool
consistently achieves the best overall performance when the
fusion parameter β is learned.

C. Latency and Memory Use

Costs in terms of the memory and latency required by
pooling operations are largely overlooked in literature as single
operations have minor latency times and memory consump-
tion. However, given potentially limited available resources,
and the fact that operations are executed thousands of times
per epoch, we advocate an evaluation of the running times
and memory use. Slow or memory-intensive operations can
have a detrimental effect on the performance and may become
potential computational bottlenecks.

Computation overheads are reported in Table II based on
the inference over CPU and GPU (CUDA) for forward (↓ F)
and backward (↑ B) passes over each operation. We observe
that our implementations achieve reasonable inference times
on CUDA despite the additional computations in comparison
to methods such as average, maximum, power average or sum
pooling.

D. Image Classification Performance on ImageNet1K

We test the assumption that a better preservation of infor-
mation during downsampling with the exponential weighting
method leads to an increase in image classification accuracy.
Based on the results between average and max pooling and
adaPool (Tables I and II), we replace the original pooling
layers in ResNet [60], DenseNet [61], ResNeXt [62] and wide-
ResNet [63] networks with our exponential pooling method
and test their performance on ImageNet1K. Results appear in
Table III. In Table IV, we summarize the results of four runs
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TABLE III
PAIRWISE COMPARISONS OF TOP-1 AND TOP-5 ACCURACIES ON IMAGENET1K [51] BETWEEN ORIGINAL NETWORKS AND THEIR COUNTERPARTS

WITH POOLING REPLACED BY eMPOOL, eDSCWPOOL AND ADAPOOL. ALL NETWORKS HAVE BEEN TRAINED FROM SCRATCH. BEST RESULTS IN

BOLD. MORE DETAILS FOR THE PARAMETERS AND FLOPS ARE PROVIDED IN APPENDIX VII-E

TABLE IV
TOP-1 ACCURACY OVER RUNS ON IMAGENET1K [51] FOR ORIGINAL NETWORKS AND THOSE WITH eMPOOL, eDSCWPOOL AND ADAPOOL.

WE PERFORMED FOUR RUNS FOR EACH COMBINATION OF NETWORK AND POOLING TYPE. THE BEST RUN IS DENOTED WITH (BEST).
BEST OVERALL RESULTS IN BOLD

over different training seeds for three models to ensure fair
comparisons. The highest accuracies are denoted by (best).

Overall, we notice that networks with their pooling layers
replaced by adaPool yield improved accuracy rates. We pro-
vide a further discussion per CNN architecture.

1) ResNet [60]: We report an average of 2.19% top-1 and
1.33% top-5 improvement on ResNet models when replacing
their pooling layers with adaPool. Improvements in accuracy
are also observed with replacements based on both eMPool
and eDSCWPool with an average +1.17% and +1.15% top-
1 accuracy, respectively. ResNet architectures include only a
single pooling operation after the first convolution layer. The
improvements from replacing only a single layer demonstrate
the benefits of adaPool for image classification. In Table IV,
we do not notice a significant divergence in accuracy over
multiple runs on ResNet-18, ResNet-34, and ResNet-50 net-
works. On average, a replacement with adaPool can improve
by +2.01% the original ResNet-18 across runs, by +2.24%
on ResNet-34 and +2.38% on ResNet-50.

2) DenseNet [61]: DenseNets include five pooling layers.
Our replacements concern the maximum pooling layer after
the first convolution and the four average pooling layers
between dense blocks. The average top-1 accuracy gains based
on layer replacements with adaPool are between 2.35–2.64%.
More modest increases are found for eMPool and eDSCWPool
with +(0.93–1.23)% and +(1.12–1.41)%, respectively.

3) ResNeXt [62]: We achieve an average of 2.37% top-
1 and 1.17% top-5 accuracy improvement with adaPool.
An average gain of 1.20% and 0.76% for the top-1 and top-5
accuracies are observed with pooling layer replacement with

TABLE V
POOLING LAYER SUBSTITUTION TOP-1 ACCURACY FOR A VARIETY OF

POOLING METHODS. EXPERIMENTS WERE PERFORMED ON

IMAGENET1K. BEST RESULTS PER NETWORK IN BOLD

eDSCWPool. For eMPool, these improvements are 0.83% and
0.64% for the top-1 and top-5 accuracies, respectively.

4) Wide-Resnet-50 [62]: On Wide-ResNet-50, we observe
the best top-1 accuracy of 80.24% with a 1.73% improvement
when we replace the original pooling layers with adaPool.
Gains in performance are also observed for eMPool with
+1.01% and eDSCWPool with +1.10%.

E. Comparison With Alternative Pooling Methods

We provide quantitative comparisons between different
pooling methods over six different models in Table V.
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TABLE VI
OBJECT DETECTION BOUNDING BOX AP RESULTS ON MS COCO TEST-DEV FOR MODELS WITH ORIGINAL BACKBONE NETWORKS AND THE SAME

NETWORKS WITH POOLING LAYERS REPLACED BY OUR EXPONENTIAL POOLING LAYERS. ALL MODELS ARE PRE-TRAINED

ON IMAGENET1K [51]. BEST RESULTS IN BOLD

We systematically replaced the pooling layers of the original
model (baseline). For LIP, we consider both drop-in replace-
ments, in line with the rest of our experiments, as well as
multiple replacements following the LIP-ResNet and LIP-
DenseNet architectures of the paper [6]. Non-adaptive eMPool
and eDSCWPool still outperform stochastic methods while the
obtained accuracies are similar to those of learnable methods.
Across the tested architectures, adaPool outperforms other
learnable and stochastic pooling methods. The largest overall
margins are observed for InceptionV1 with improvements over
other methods in the range of 1.61–2.78% and on DenseNet-
121 (0.65–2.64%).

F. Object Detection Performance on MS COCO

To investigate the merits of our proposed
exponentially-weighted pooling on encapsulating relevant
local information, we present results for object detection on
MS COCO [45] in Table VI. We use RetinaNet [46] and
Mask-RCNN [47] with several different backbone networks.
We chose these two models based on their wide popularity.
Overall, we observe that both eMPool and eDSCWPool
come with average precision (AP) improvements of 1.00%
and 0.86%, respectively. A 2.40% increase over the original
models is observed for adaPool. Similar trends in AP are also
visible for AP50 and AP75, demonstrating that adaPool does
not only benefit tasks that rely primarily on general features
such as classification, but also provides a performance boost
for local-based feature tasks such as object detection.

G. Video Classification Performance

We evaluate our pooling operators on spatio-temporal data
by focusing on the task of action recognition in videos.
The accurate classification and representation of space-time
features stands as a major challenge in the field of video
understanding [71].

The majority of space-time networks are based on the
extension of 2D convolutions to 3D to include the temporal
dimension. Stacks of frames are used as inputs. Similarly,
the only modification in our method is the inclusion of the
temporal dimension in kernel region R.

For our tests, we first train models from scratch on
HACS [53] using the author implementations. These models
are then used to initialize the weights for the Kinetics-700 and
UCF-101 tests. SlowFast (SF) [69] and ir-CSN-101 [67] are
the only two models that use different initialization weights,
with ir-CSN-101 pre-trained on IG65M and SF on ImageNet.

TABLE VII
ACTION RECOGNITION TOP-1 AND TOP-5 ACCURACIES FOR HACS,

K-700 AND UCF-101. MODELS ARE TRAINED ON HACS AND

FINE-TUNED ON K-700 AND UCF-101, EXCEPT FOR IR-CSN-101 AND

SF R3D-50 (SEE TEXT). N/A MEANS NO TRAINED MODEL WAS

PROVIDED. BEST RESULTS IN BOLD

We report in Table VII the performance of three
spatio-temporal CNNs with pooling layers replaced by
adaPool. We observe state-of-the-art performance using
MTNetL with adaPool on HACS and Kinetics-700, with
87.83% and 64.67% top-1 accuracies, respectively. This cor-
responds to an increase of 1.21% and 1.36% over the same
networks with the original pooling layers. This also comes
with negligible additional GFLOPs (+0.2). On UCF-101,
we show that both MTNetL and SRTG r3d-101 with adaPool
outperform the original and other top-performing models.
Increases in top-1 performance are also observed for SRTG
r3d-101 with +2.71% on HACS and +1.47% on Kinetics-700.

These results further demonstrate that the simple replace-
ment of a pooling operator by adaPool consistently results in
a modest but important performance gain. Even for the almost
saturated performance on UCF-101, using adaPool results in
a performance increase of 1.22% on MTNetL .

H. Image Super-Resolution and Frame Interpolation Results

In order to assess the benefits of re-using the learned
adaPool weights in adaUnPool, we experiment on image
super-resolution, video frame interpolation, and their combi-
nation. For each task we replace pooling layers with adaPool
and the respective bilinear interpolation with adaUnPool.
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TABLE VIII
IMAGE SUPER-RESOLUTION WITH ×2 AND ×4 UPSAMPLING. BEST

AND SECOND BEST RESULTS IN BOLD AND UNDERLINED

TABLE IX
QUALITATIVE FRAME INTERPOLATION RESULTS ON VIMEO90K,
MIDDLEBURY AND INTER4K. N/A INDICATES THAT THE RESULTS

WERE NOT PROVIDED IN THE ORIGINAL WORKS.
BEST RESULTS IN BOLD

Our comparisons on image super-resolution are shown
in Table VIII. Both RCAN [73] and HAN+ [75] perform
favorably with down and up-sampling layers substituted by
ada(Un)Pool. We observe that, in both cases of 2× and 4×

image upsampling, our converted networks not only outper-
form their original implementations, but also other methods.

We demonstrate the merits of replacing all pooling and
interpolation layers with ada(Un)Pool for frame interpolation
in Table IX. The two converted networks, DAIN [34] and
CDFI [81], produce improved results across the tested datasets.
CDFI with adaPool and adaUnPool yields state-of-the-art
results on both Vimeo90K and Middlebury as well as on our
Inter4K for 4K video interpolation from 30 to 60 fps.

We also perform benchmarking tests on Inter4K with
CDFI+ada(Un)Pool for the combined task of frame
super-resolution and interpolation. Our findings are reported
in Table X. Overall, we observe only slight degradation in
performance on high-resolution, high-frame-rate conversions.

VI. ABLATION STUDIES

In this section, we investigate the impact of different
design choices for adaPool. We initially consider the effect
of setting the β weight mask as trainable parameter or
as constant value (Section VI-A). Additionally, we provide
results on pooling layer replacements on the InceptionV3 [82]
(Section VI-B), evaluate the performance over fusion and

TABLE X
FRAME INTERPOLATION AND SUPER-RESOLUTION WITH CDFI ON

INTER4K. THE RESOLUTIONS AND FPS OF THE ORIGINAL AND

PROCESSED VIDEOS ARE INDICATED IN THE SECOND COLUMN.
BEST RESULTS IN BOLD

TABLE XI
EFFECT OF β ON IMAGENET1K IMAGE CLASSIFICATION. LARGER

VALUES OF β CORRESPOND TO STRONGER RELIANCE ON eDSCWPOOL

WHILE SMALLER β VALUES PRIORITIZE eMPOOL. BEST RESULTS ARE

IN BOLD WHILE SECOND BEST RESULTS ARE UNDERLINED

pooling method substitutions (Section VI-C), and compare
against attention-based methods converted to downsampling
(Section VI-D). Finally, we present qualitative visualizations
of network saliency and the feature embedding space over
original and adaPool-replaced models (Section VI-E). Unless
otherwise specified, experiment settings follow those described
in Section V-A.

A. Effect of β Weight Mask

In order to study how different combinations of the approx-
imated maximum and average effect our proposed adaPool
method, we present results in Table XI on ImageNet1K with
several constant β values and study the performance gains
when β is converted to a trainable weight mask.

Overall, the trainable setting provides the best performance
across all three tested networks. The performance improve-
ment of the trainable weight mask over the best-performing
constant value becomes more apparent in complex archi-
tectures. In ResNet-18 the difference in top-1 is 0.44%
while in InceptionV3 it becomes 1.18%. We provide further
parameterization-based ablations in Appendix VII-D.

B. Layer-Wise Ablation on InceptionV3

To understand the effect of adaPool at different network
depths, we hierarchically ablate over pooling layers of the
InceptionV3 architecture. This choice is primarily based on the
Inception block’s structure that includes pooling operations.
This allows for a per-block evaluation of the change in the
pooling operator.
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TABLE XII
PROGRESSIVE LAYER SUBSTITUTION FOR INCEPTIONV3 ON

IMAGENET1K. COLUMN NUMBERS REFER TO THE NUMBER OF

REPLACED POOLING LAYERS, MARKED WITH ✓. BEST

RESULTS IN BOLD

TABLE XIII
TOP-1 ACCURACY OVER RUNS ON IMAGENET1K BASED ON

DIFFERENT POOLING AND POOLING COMBINATION METHODS.
A RESNET-18 IS USED FOR ALL EXPERIMENTS. TOP RESULTS ARE IN

BOLD AND THE BEST RESULT PER FUSION METHOD IS UNDERLINED

From results summarized in Table XII, we observe that we
can expect an average increase of 0.56% in top-1 accuracy
with each additional replacement of an original pooling oper-
ation by adaPool. While the performance gains are system-
atic, the largest improvements are observed for replacements
over the first pooling operation after the initial convolutional
layer (pool1) with a 0.89% jump in accuracy, and at the
final Inception block (mixed7b−d ) with a 0.80% increase.
We thus demonstrate that adaPool yields accuracy improve-
ment through its adaptive weighting, regardless of the network
depth and number of channels.

C. Pooling Combinations Over Fusion Methods

We provide comparisons over additional pooling methods
and fusion strategies proposed in [5]. The mixed pooling fusion
strategy corresponds to using a single parameter to fuse the
pooling methods used. This can be considered as a special
case of adaptive pooling in which |β| = 1. The gate fusion
method uses a learned parameter to select either of the two
used pooling methods. In addition to our eDSCW+eM com-
bination, we also test fusion strategies with average/maximum
pooling.

Our comparisons are shown in Table XIII. The combina-
tion of the smooth approximated average and maximum per-
forms favorably over the different average or maximum-based
combinations. We also observe that the use of a parameter
mask through adaptive fusion helps to improve performance.

D. Comparisons to Attention-Based Downsampling

The recent introduction of attention-based methods has
shown great promise for a range of high-level vision tasks.

TABLE XIV
COMPARISON OF ADAPOOL TO ATTENTION-BASED DOWNSAMPLING

FOR DENSENET-121 ON IMAGENET1K, WITH SE [83], CBAM [84],
AND MSA [85]. BEST RESULTS ARE IN BOLD

We therefore also investigate the usability of three differ-
ent attention-based approaches by adapting them for down-
sampling. We test the channel-wise Squeeze-and-Excitation
(SE) [83] attention module, the locally-applied Convolutional
Block Attention Module (CBAM) [84], and the Multiscale Self
Attention module (MSA) [85] that uses global attention over
spatially reduced KQV linear projections of the input. The
tested modules are converted for downsampling by pooling
after (SE, CBAM) or before (MSA) the attention modules.

From the results presented in Table XIV, we observe that
our proposed adaPool is substantially more efficient than any
attention-based method with only requiring +1.5 additional
MFLOPs and 4.2K parameters. AdaPool shows to perform
favorably compared to SE-based and CBAM-based pooling
methods while a small decrease in performance is observed in
comparison to MSA with average or SoftPool. We note that the
performance-to-computational complexity trade-off between
adaPool and MSA-based pooling is substantial, with MSA
requiring 1,600 more FLOPs than adaPool. For DenseNet-121
the computational burden with using MSA-based pooling is
30% of the total number of FLOPs used by the model.

E. Qualitative Visualizations

To better understand the effect of adaPool in the feature
extraction process, we compute saliency maps using Grad-
CAM [86] to visualize the salient regions for the original
and adaPool-substituted networks, shown in Figure 8. We use
a fixed ResNet-50 model from Table III and sample exam-
ples from the ImageNet classes “pirate ship”, “tennis ball”,
“go-cart”, “sea lion”, “convertible” and “paddle boat”.

For cases such as “go-cart” and “sea lion” where multiple
objects of the class appear in the image, the adaPool-based
network produces saliency maps that better fit their regions.
Because details regarding the input are better preserved, the
model focuses more on regions containing more descriptive
features of the class, for example the sails in the “pirate ship”
example or the racket and ball for “tennis ball”.

Additionally, in Figure 7 we provide t-SNE [87] visualiza-
tions for the feature embeddings of the original and adaPool-
replaced InceptionV3. We follow the same recipe as in [9] and
reduce the dimensionality to 50 channels with PCA. Overall,
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Fig. 7. t-SNE feature embeddings for InceptionV3 with (bottom) and without (top) adaPool. The ImageNet1K classes used are “flamingo”, “acoustic
guitar” and “bell pepper.”

Fig. 8. Saliency maps. We compare maps of the visual saliency from two ResNet-50 models with the original max pooling and the proposed adaPool.
Examples are sampled from the validation set of ImageNet1K. For each image we show the ground truth label.

feature embeddings for similar examples are shown to be
mapped somewhat closer on the adaPool-enabled network. For
example, there is a clearer distinction between the color of
the peppers for the class “bell pepper” as well as a distinction
between multiple or single peppers in an image.

VII. CONCLUSION

In this paper, we have proposed adaPool, a pooling method
for the preservation of informative features based on adaptive
exponential weighting. It is a regionally-adaptive method that
uses the parameterized fusion of the exponential maximum
eMPool and exponential average eDSCWPool. The weights of
adaPool can be used to invert the pooling operation (adaUn-
Pool), to achieve upsampling.

We have tested our approach on image and video classifi-
cation, image similarity, object detection, image and frame
super-resolution tasks, as well as frame interpolation. The
experiments consistently demonstrate the merits of our pro-
posed approach when faced with various challenges such as

capturing global and local information, or to consider 2D
image data and 3D video data. Over all downstream tasks,
and using a variety of network backbones and experiment
settings, adaPool systematically outperforms any other method
while computational latencies and memory use remain modest.
Based on these extensive experiments, we believe adaPool is
a good alternative for currently popular pooling operators.

APPENDIX A
In this appendix, we provide more details on Inverse

Distance Weighting (IDW) pooling (Section VII-A), a moti-
vation for our use of the Dice-Sørensen Coefficient (DSC,
Section VII-B), a comparison with other soft average meth-
ods (Section VII-C), and a description of the computational
complexity of our implementation (Section VII-E).

A. Inverse Distance Weighting Pooling
To assign a weight value, IDW relies on the measured obser-

vation distances within the region. A visual representation of
this weighting process is shown in Figure 9.
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Fig. 9. Inverse Distance Weighting. Given multiple points {p1, . . . , pn} in
a feature space and their mean (µ), their weights are equal to the inverse of
their distance divided by their sum.

To overcome the limitations of uniformly-weighted region
averaging, we adapt IDW for pooling, which we term IDW-
Pool. Our results in Section V use the Euclidean distance
(L2) between the mean and the individual activations. We also
provide an overview alongside results for alternative dis-
tance functions in the following sections. In comparison to
uniformly-weighted averaging, IDWPool produces normalized
results with higher weights for feature activation vectors that
are geometrically closer to the mean. This also applies to the
calculation of the gradients, and reduces the effect of outliers,
providing a better representative update rate based on feature
activation relevance. In that aspect, IDWPool works differently
than the common approach of averaging all activations in
which the output activation is not regularized.

Although IDWPool can provide an improvement over
uniformly-weighted averaging, we argue that weighted aver-
aging based on distance is sub-optimal over multi-dimensional
spaces. One of the main drawbacks of a naive IDWPool
implementation is that the L1 or L2 distance between the
feature activation vector and the average over the region are
calculated based on the mean, sum or maximum per-channel
pair. The resulting distance is unbounded since the pair-wise
distances are also unbounded. In addition, the calculated dis-
tance is sensitive to channel pair outliers. The effect of this is
visible with the pixel artifacts of the inverse distance weighting
approaches in Figure 10. When using distance methods, the
computed distance in certain channels can be significantly
larger than in others. This creates the problem of weights that
are nearing zero (w(ac, a j,c)

I DW
→ 0).

B. Coefficient-Based Methods

We have considered other similarity-based methods to find
the relevance of two volumes of vectors [90]. Apart from
the cosine similarity, the Kumar and Hassebrook Peak-to-
correlation energy (PCE) [91] can be applied to vector volumes
(as shown in Table XVI). We present the differences in
the pooling quality based on different similarity methods in
Figure 10. Considering the aforementioned shortfalls of cosine
similarity, our use of DSC over PCE is primarily due to PCE’s
non-monotonic nature and value distribution [91].

C. Comparison With Alternative Soft Average Methods

To evaluate the effect of different distance and similarity
measures for average-approximating pooling in image classi-
fication performance, we use a ResNet-18 as backbone. We set
as baseline the original ResNet-18 with maximum pooling.

TABLE XV
DISTANCE FUNCTIONS FOR VECTORS. ALL METHODS CAN BE

APPLIED TO MULTI-DIMENSIONAL VECTOR VOLUMES

TABLE XVI
SIMILARITY FUNCTIONS FOR VECTORS. ALL METHODS CAN BE

DIRECTLY APPLIED TO MULTI-DIMENSIONAL VECTOR VOLUMES

The results in Table XVII show negligible differences
between distances in IDW pooling. Huber-based pooling
shows small top-1 accuracy improvements, in the range
of +(0.10–0.19)% over L1, L2 and Chebyshev distance-
weighting. A slight performance reduction is observed with
the Gower method. This could be because of the production
of small weight values as Gower uses the L1 distance divided
by the number of channels (Equation 12).

Compared to distance approaches, similarity measures show
a larger increase over the baseline model. This can be
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TABLE XVII
IMAGENET1K CLASSIFICATION WITH DISTANCE- AND

SIMILARITY-BASED POOLING ALTERNATIVES ON RESNET-18.
DISTANCE-BASED METHODS ARE DENOTED BY IDW, WHILE

SIMILARITY-BASED METHODS ARE DENOTED WITH

SIM. BEST RESULTS IN BOLD

Fig. 10. Instances of Average Distance/Similarity Weighting Methods.
Distance kernel weights based on IDW [12] with various inverse distance func-
tions. Similarity kernel weights based on (e)PCEW, (e)cosW and (e)DSCW.

attributed to the sparsity of the per-input volumes. Consid-
ering the relatively small size of the kernel (k ×k) and the
high-dimensional spaces they are represented in, distances
between points and their mean are large [92]. The Dice-
Sørensen coefficient is most effective with 70.66% and 89.77%
top-1 and top-5 accuracies. Increases are observed by the
exponent of DSC in eDSCWPool shown in Table III, with
70.79% top-1 and 90.16% top-5 accuracies.

D. Ablations Over β Parameterization Alternatives

As adaPool introduces additional parameters. Therefore,
we evaluate if the observed gains in performance are indeed
due to improved information retainment or simply due to the
inclusion of more parameters. We use three different β sizes:
a single |β| = 1 parameter shared across each location, our
proposed mask |β| = H ′

×W ′ for individual parameters across
each location, and a channel-wise mask |β| = H ′

× W ′
× C

for both location and channel-based parameters. We present
results on ResNet-50 and DenseNet-161 in Table XVIII.
We observe a difference between our proposed mask-based β

and the largely parameterized channel-wise β on both models,
with 1.01% in ResNet-50 and 1.28% in DenseNet-121. The
results suggests that improvements in performance are not

TABLE XVIII
ADAPOOL β PARAMETERIZATION ALTERNATIVES ON IMAGENET1K

FOR RESNET-50 AND DENSENET-121. BEST

RESULTS AND SETTINGS IN BOLD

TABLE XIX
PARAMETERS AND FLOPS OVERHEAD WITH THE INCLUSION OF

ADAPOOL PER FAMILY OF ARCHITECTURES

solely dependent on the inclusion of additional parameters.
The channel-wise β underperforms compared to the other
non-channel-wise parameterization approaches. This suggests
that the pooling approach is better suited for data with larger
channel and feature dependencies. Our proposed approach
introduces only a small fraction of additional parameters
compared to the parameters used by most models, with +3.1K
on ResNets and +4.2K on DenseNets (see Table XIX).
We conclude that the observed performance improvements
are strongly related to the design of adaPool instead of the
additional parameters.

E. Computational Description

Our implementation is in CUDA and thus allows the native
run on GPUs, providing inference times close to those of
native methods such as average and maximum pooling. Due to
the parallelization capabilities of both exponential maximum
and average pooling methods, running times are close to
those of average pooling with O(2) and O(3) respectively,
as operations can be performed in parallel over the kernel
region matrix. In contrast, max pooling has O(n) computa-
tional complexity, due to the sequential consideration of each
input within the region in order to discover the maximum.

Both eMPool and eDSCWPool are on par with average and
maximum pooling due to CUDA’s memory reduction through
data partitioning with tiling. In addition, both can be imple-
mented through fused multiply-adds (FMA) that significantly
improve performance on CUDA-enabled devices [93].
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