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Abstract— Single-frame infrared small target (SIRST) detec-
tion aims at separating small targets from clutter backgrounds.
With the advances of deep learning, CNN-based methods have
yielded promising results in generic object detection due to
their powerful modeling capability. However, existing CNN-based
methods cannot be directly applied to infrared small targets
since pooling layers in their networks could lead to the loss
of targets in deep layers. To handle this problem, we propose
a dense nested attention network (DNA-Net) in this paper.
Specifically, we design a dense nested interactive module (DNIM)
to achieve progressive interaction among high-level and low-level
features. With the repetitive interaction in DNIM, the information
of infrared small targets in deep layers can be maintained.
Based on DNIM, we further propose a cascaded channel and
spatial attention module (CSAM) to adaptively enhance multi-
level features. With our DNA-Net, contextual information of
small targets can be well incorporated and fully exploited by
repetitive fusion and enhancement. Moreover, we develop an
infrared small target dataset (namely, NUDT-SIRST) and propose
a set of evaluation metrics to conduct comprehensive performance
evaluation. Experiments on both public and our self-developed
datasets demonstrate the effectiveness of our method. Compared
to other state-of-the-art methods, our method achieves better
performance in terms of probability of detection (Pd ), false-alarm
rate (Fa), and intersection of union (I oU).

Index Terms— Infrared small target detection, deep learning,
dense nested interactive module, channel and spatial attention,
dataset.

I. INTRODUCTION

S INGLE-FRAME infrared small target (SIRST) detection
is widely used in many applications such as maritime

surveillance [1], [2], early warning systems [3], [4], and
precise guidance [5]. Compared to generic object detection,
infrared small target detection has several unique character-
istics: 1) Small: Due to the long imaging distance, infrared
targets are generally small, ranging from one pixel to tens of
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Fig. 1. Visual results achieved by Tophat [6], IPI [7], RIPT [8], and our
DNA-Net. The correctly detected targets and false alarms are highlighted by
red and orange dotted circles, respectively.

pixels in the images. 2) Dim: Infrared targets usually have low
signal-to-clutter ratio (SCR) and are easily immersed in heavy
noise and clutter background. 3) Shapeless: Infrared small
targets have limited shape characteristics. 4) Changeable: The
sizes and shapes of infrared targets vary a lot among different
scenarios.

To detect infrared small targets, numerous traditional meth-
ods have been proposed, including filtering-based methods
[6], [9], local-contrast-based methods [10], [11], [12], [13],
[14], [15], and low-rank-based methods [7], [8], [16], [17],
[18], [19]. However, these traditional methods heavily rely on
handcrafted features. Considering the characteristics of real
scenes (e.g., target size, target shape, SCR, and clutter back-
ground) change dramatically, it is difficult to use handcrafted
features and fixed hyper-parameters to handle such variations.

Different from traditional methods, CNN-based methods
can learn features of infrared small targets in a data-driven
manner. Liu et al. [20] proposed the first CNN-based SIRST
detection method. They designed a multi-layer perception
(MLP) network with 5 layers for infrared small target detec-
tion. Then, McIntosh et al. [21] fine-tuned several existing
generic object detection networks (e.g., Faster-RCNN [22]
and Yolo-v3 [23]) for infrared small target detection. Specif-
ically, Dai et al. [24] proposed the first segmentation-based
SIRST detection method. They designed an asymmetric con-
textual module (ACM) to replace the plain skip connection of
Unet [25]. Although recent CNN-based methods have achieved
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Fig. 2. The representation of small targets in deep CNN layers of
(a) U-shape network (b) our Dense Nested U-shape (DNA-Net) network.

the state-of-the-art performance, most of them only fine-tuned
these networks designed for generic objects. Since the size
of infrared small targets is much smaller than generic objects,
directly applying these methods for SIRST detection can easily
lead to the loss of small targets in deep layers.

Inspired by the success of nested structure in medical image
segmentation [26], [27], [28], [29] and hybrid attention in
generic object detection [30], we propose a dense nested
attention network (namely, DNA-Net) to maintain small targets
in deep layers. Specifically, we design a tri-directional dense
nested interactive module (DNIM) with a cascaded channel
and spatial attention module (CSAM) to achieve progressive
feature interaction and adaptive feature enhancement. Within
our DNIM, multiple nodes are imposed on the pathway
between the encoder and decoder sub-networks. As shown
in Fig. 2(b), all nodes in our network are connected with
each other to form a nested-shape network. Using DNIM,
those middle nodes can receive features from their own
and the adjacent two layers, leading to repetitive multi-layer
feature fusion at deep layers. Through repetitive feature fusion
and enhancement, our network can maintain the targets in
deep layers. Meanwhile, contextual information of maintained
small targets can be well incorporated and fully exploited.
Otherwise, as shown in Fig. 2(a), the traditional U-shape
network suffers from the loss of small targets in deep layers,
which ultimately leads to inferior performance. In addition,
we develop a novel infrared small target dataset (namely, the
NUDT-SIRST dataset) to evaluate the performance of SIRST
detection methods under different clutter backgrounds, target
shapes, and target sizes. In summary, the contributions of this
paper can be summarized as follows.

• We propose a DNA-Net to maintain small targets in deep
layers. The contextual information of small targets can be
well incorporated and fully exploited by repetitive feature
fusion and enhancement.

• A dense nested interactive module and a channel-spatial
attention module are proposed to achieve progressive
feature fusion and adaptive feature enhancement.

• We develop an infrared small target dataset (namely,
NUDT-SIRST). To the best of our knowledge, our dataset
is the largest dataset with numerous categories of target
shapes, various target sizes, diverse clutter backgrounds,
and ground truth annotations.

• Experiments on both public and our NUDT datasets
demonstrate the superior performance of our method.
Compared to existing methods, our method is more robust
to the variations of clutter background, target size, and
target shape (as shown in Fig. 1).

This paper is organized as follows: In Section II, we briefly
review the related work. In Section III, we introduce the
architecture of our DNA-Net and our self-developed dataset
in details. In Section IV, we introduce our self-developed
NUDT-SIRST dataset in details. The experimental results are
represents in Section V. Section VI gives the conclusion.

II. RELATED WORK

In this section, we briefly review the major works in SIRST
detection and corresponding datasets.

A. Single-Frame Infrared Small Target Detection

SIRST detection has been extensively investigated for
decades. The traditional paradigm achieves SIRST detection
by measuring the discontinuity between targets and back-
grounds. Typical methods include filtering-based methods
[6], [9], local contrast measure based methods [10], [11],
[12], [13], [14], [15], and low rank based methods [7], [8]
[16], [17], [18], [19]. Considering real scenes are much more
complex with dramatic changes target size, shape, and clutter
background, it is difficult to use handcrafted features and fixed
hyper-parameters to handle such variations. To address this
problem, recent CNN-based methods learn trainable features in
a data-driven manner. Thanks to the large quantity of data and
the powerful model fitting capability of CNNs, these methods
achieve better performance than traditional ones.

Existing CNN-based methods can be divided into
detection based methods and segmentation based methods.
Liu et al. [20] first introduced a generic target detection
framework for infrared small target detection. They designed
a multi-layer perception (MLP) network with 5 layers for
infrared small target detection. Then, McIntosh et al. [21]
fine-tuned several generic target detection network
(e.g., Faster-RCNN [22] and Yolo-v3 [23]) and used
the optimized eigen-vectors as input to achieve improved
performance.

Recently, segmentation-based methods have attracted
increasing attention. That is because, these methods can pro-
duce both pixel-level classification and localization outputs.
Dai et al. [24] proposed the first segmentation-based network
(i.e., ACM). They designed an asymmetric contextual module
to aggregate features from shallow layers and deep layers.
Then, Dai et al. [31] further improved their ACM by intro-
ducing a dilated local contrast measure. Specifically, a feature
cyclic shift scheme was designed to achieve a trainable local
contrast measure. Moreover, Wang et al. [32] decomposed
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Fig. 3. An illustration of the proposed dense nested attention network (DNA-Net). (a) Feature extraction module. Input images are first fed into the dense
nested interactive module (DNIM) to aggregate information from multiple scales. Note that, features from different semantic levels are adaptively enhanced
by a channel and spatial attention module (CSAM). (b) Feature pyramid fusion module (FPFM). The enhanced features are upsampled and concatenated to
achieve multi-layer output fusion. (c) Eight-connected neighborhood clustering algorithm. The segmentation map is clustered to determine the centroid of
each target region.

the infrared target detection problem into two opposed sub-
problems (i.e., miss detection and false alarm) and used a
conditional generative adversarial network (CGAN) to achieve
the trade-off between miss detection and false alarm for
infrared small target detection.

Although the performance is continuously improved by
recent networks, the loss of small targets in deep layers still
remains. This problem ultimately results in the poor robustness
to dramatic scene changes (e.g., clutter background, targets
with different SCR, shape, and size).

B. Datasets for SIRST Detection

Existing open-source dataset in infrared small target detec-
tion is scarce, most traditional methods are evaluated on their
in-house datasets. Only a few infrared small target datasets are
released by CNN-based methods [24], [32]. Wang et al. [32]
built the first big and open SIRST dataset. This dataset includes
10000 training images and 100 test images. However, many
targets in this dataset do not meet the definition of society
of photo-optical instrumentation engineers (SPIE) [33] and
have obvious synthesized traces with illogical annotations.
These problems may lead to the inapplicability toward SIRST
detection. Dai et al. [24] built the first real SIRST dataset
with high-quality images and labels. However, the number
of images in NUAA-SIRST is 427 (256 for training), which
cannot well cover dramatic scene changes in infrared small
target detection. Moreover, these real infrared data are all
manually labelled with many inaccurately labeled pixels.

Although these open-sourced datasets greatly prompt the
prosperity of SIRST detection, their limited data capacity, data
variety, and poor annotation hinder the further development
of this field. Synthesized data can be easily generated to
achieve higher variety and annotation quality at very low cost
(i.e., time and money). Hence, we developed a new NUDT-
SIRST dataset with numerous categories of target, vairous

target sizes, diverse clutter backgrounds, and accurate annota-
tions. The superiority of our dataset is evaluated in Section V.

III. METHODOLOGY

In this section, we introduce our DNA-Net in details.

A. Overall Architecture

As illustrated in Fig. 3, our DNA-Net takes a SIRST
image as its input and sequentially performs feature extraction
(Section III-B), feature pyramid fusion (Section III-C), and
eight-connected neighborhood clustering (Section III-D) to
generate the detection results.

Section III-B introduces the motivation of our feature
extraction module and the architecture of the dense nested
interactive module (DNIM) and the channel-spatial attention
module (CSAM). Input images are first preprocessed and fed
into the backbone of DNIM to extract multi-layer features.
Then, multi-layer features are repetitively fused at the middle
convolution nodes of skip connection and then are gradually
passed into the decoder subnetworks. Due to the semantic gap
at multi-layer feature fusion stage of DNIM, we used CSAM to
adaptively enhance these multi-level features for achieving bet-
ter feature fusion. Section III-C presents the feature pyramid
fusion module. Enhanced multi-layer features at each scale are
upscaled to the same size. Next, the shallow-layer features with
rich spatial information and deep-layer features with high-level
information are concatenated to generate robust feature maps.
Section III-D elaborates the eight-connected neighborhood
clustering module. Feature maps are fed into this module to
calculate the spatial location of target centroid, which is then
used for comparison in Section V.

B. The Feature Extraction Module

1) Motivation: As shown in Fig. 4(a), traditional U-shape
structure [25] consists of an encoder, a decoder, and plain skip
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Fig. 4. An illustration of the U-shape structure and our dense nested
structure. The insight comes from the multiple U-shape subnetwork stacking.
The representation of small targets in the deep layers is maintained and the
high-level information is extracted.

connections. The encoder is used to enlarge the receptive field
and extract high-level information. Decoder helps to recover
the size of feature maps (which finally reach the same size as
the input images) and achieve progressive multi-scale feature
fusion. The plain skip connection acts as a bridge to pass these
low-level and high-level features from encoder to decoder
subnetworks.

To achieve powerful contextual information modeling capa-
bility, a straightforward way is to continuously increase the
number of layers. In this way, high-level information can be
obtained and larger receptive field can be achieved. However,
infrared small targets are significantly different in their sizes,
ranging from one pixel (i.e., point targets) to tens of pixels
(i.e., extended targets). With the increase of network layers,
high-level information of extended targets is obtained, while
the point targets are easily lost after multiple pooling opera-
tion. Therefore, we should design a special module to extract
high-level features and maintain the representation of small
targets in the deep layers.

2) The Dense Nested Interactive Module: As shown in
Fig. 4(b), we stack multiple U-shape sub-networks together
to build a dense nested structure. Since the optimal receptive
field for different sizes of targets varies a lot, these U-shape
sub-networks with different depths are naturally suitable for
targets with different sizes. Based on this idea, we impose
multiple nodes in the pathway between encoder and decoder
sub-networks. All of these middle nodes are densely connected
with each other to form a nested-shape network. As shown
in Fig. 4(c) and (d), each node can receive features from its
own and the adjacent layers, leading to repetitive multi-layer
feature fusion. As a result, the representations of small targets
are maintained in the deep layers and thus better results can
be achieved.

In this paper, we stack I layers of DNIM to form our feature
extraction module. Without loss of generality, we take the
i th(i = 0, 1, 2, . . . , I ) DNIM layer as an example to introduce

Fig. 5. Channel and spatial attention module. CSAM is used to reduce the
semantic gap at the multi-layer feature fusion stage in DNIM.

this structure, as shown in Fig. 4(c) and (d). Assume Li, j

denote the output of node L̂i, j , where i is the i th down-
sampling layer along the encoder and j is the j th convolutional
layer of dense block along the plain skip pathway. When
j = 0, each node only receives features from dense plain skip
connection. The stack of feature maps represented by Li, j are
computed as:

Li, j
= Pmax (F(Li−1, j )), (1)

where F(·) denotes multiple cascaded convolution layers of
the same convolution block. Pmax (·) denotes max-pooling
with a stride of 2. When j > 0, each node receives outputs
from three directions including dense plain skip connection
and nested bi-direction interactive skip connection, the stack
of feature maps represented by Li, j is generated as:

Li,j
=

[
F

[
Li,k

]j−1

k=0
,Pmax(F(Li+1,j−1)),U(F(Li−1,j))

]
, (2)

where U(·) denotes the up-sampling layer, and [ ·, ·] denotes
the concatenation layer.

3) Channel and Spatial Attention Module: As shown in
Fig. 5, CSAM is used for adaptive feature enhancement after
each multi-layer feature fusion of DNIM.

The CSAM consists of two cascaded attention units. The
feature maps Li, j from node L̂i, j (i ∈ {0, 1, 2, . . . I }, j ∈

{0, 1, 2, . . . J }) are sequentially processed by a 1D channel
attention map Mc ∈ RCi ×1×1 and a 2D spatial attention
map Ms ∈ R1×Hi ×Wi . The channel attention process can be
summarized as follows:

Mc(L) = σ
[

M L P(Pmax (L)) + (M L P(Pavg(L))
]
, (3)

L′
= Mc(L) ⊗ L, (4)

where ⊗ denotes the element-wise multiplication, σ denotes
sigmoid function, Ci , Hi , Wi denote the number of channels,
height, and width of Li, j . Pavg(·) denotes average pooling with
a stride of 2, respectively. The shared network is composed
of a multi-layer perceptron (MLP) with one hidden layer.
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TABLE I
MAIN CHARACTERISTICS OF SEVERAL POPULAR SIRST DATASETS. NOTE THAT, OUR NUDT-SIRST DATASET CONTAINS COMMON

BACKGROUND SCENES, VARIOUS TARGET TYPES, AND THE MOST GROUND TRUTH ANNOTATIONS

Fig. 6. Comparison of existing public SIRST datasets on (a) the number of targets, (b) target size, and (c) target brightness. Our NUDT-SIRST dataset
contains more multi-target scenarios, more small targets, and less visually salient targets.

Before multiplication, the attention maps Mc(L) are stretched
to the size of Mc(L) ∈ RCi ×Hi ×Wi .

Similar to channel attention process, the spatial attention
process can be summarized as follows:

Ms(L′) = σ
[

f 7×7(Pmax (L′)), (Pavg(L′)
]
, (5)

L′′
= Ms(L′) ⊗ L′, (6)

where f 7×7 represents a convolutional operation with the filter
size of 7 × 7. The attention maps Ms(L) are also stretched to
the size of Mc(L) ∈ RCi ×Hi ×Wi before multiplication.

C. The Feature Pyramid Fusion Module

After the feature extraction module, we develop a feature
pyramid fusion module to aggregate the resultant multi-layer
features. As shown in Fig. 3 (b), we first upscale multi-
layer features to the same size of Li,J

en_up ∈ RCi ×H0×W0

i ∈ {0, 1, . . . , I }. Then, the shallow-layer feature with rich
spatial and profile information and deep-layer feature with
rich semantic information are concatenated to generate global
robust feature maps:

G = {L0,J
en_up, L1,J

en_up, . . . , LI,J
en_up}. (7)

D. The Eight-Connected Neighborhood Clustering Module

After the feature pyramid fusion module, we introduce
an eight-connected neighborhood clustering module [34] to
cluster the pixels belonging to the same target together and
calculate the centroid of each target. If any two pixels (m0, n0),
(m1, n1) in feature maps G have intersection areas in their
eight neighborhoods, i.e.,

N8(m0,n0) ∩N8(m1,n1) ̸= ∅, (8)

where N8(m0,n0) and N8(m1,n1) represent the eight neighbor-
hoods of pixel (m0, n0) and (m1, n1), (m0, n0) and (m1, n1)

are judged as adjacent pixels. Then, if the these two pixels
have the same value (0 or 1), i.e.,

g(m0,n0) = g(m1,n1), ∀g(m0,n0), g(m1,n1) ∈ G, (9)

where g(m0,n0) and g(m1,n1) represent the gray value of pixel
(m0, n0) and (m1, n1), these two pixels are considered to be
in a connected area. Pixels in a connected area belong to the
same targets. Once all targets in the image are determined,
centroid can be calculated according to their coordinate.

IV. THE NUDT-SIRST DATASET

A. Motivation

Quality, quantity, and scene diversity of data significantly
affect the performance of CNN-based methods. As shown
in Table I, existing datasets either lack enough scenes
(e.g., NUST-SIRST [32] and CQU-SIRST [7]) or have lim-
ited data capacity (e.g., NUAA-SIRST [24]). It is costly
to collect a large-scale dataset with accurate pixel-level
annotations. These issues hinder the further development of
CNN-based methods. Inspired by the solutions in other data-
scarcity field (e.g., ship detection [35], [36], moving car
detection [37], [38]), we develop a large-scale infrared small
target dataset (namely, the NUDT-SIRST dataset). Our NUDT-
SIRST dataset enables performance evaluation of CNN-based
methods under numerous categories of target type, target size,
and diverse clutter backgrounds. As shown in Fig. 7(c), our
dataset contains 5 main background scenes including city,
field, highlight, sea, and cloud. Each image is synthesized from
real background with various targets (e.g., point, spot, and
extended) under various SCR and rich poses. Note that, most
of the background images are collected by ourselves, only a
few field-type background images are adopted from [39]. The
detailed synthesis process and comparison among datasets are
introduced in Section IV-B and Section IV-C.
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Fig. 7. Synthesis process of our dataset. (a) Adaptive target size function. Pre-collected background images are fed into a scene-aware CNN model to identify
the type of background. Then, the size and type of candidate targets are selected with pre-defined possibility Psi ze . The background and selected targets are
directly added. (b) Adaptive intensity and blur function. The initially synthesized images are sequentially fed into an adaptive intensity function Fintensi t y
and a Gaussian blur function Fblur to make the targets’ intensity and boundary realistic, respectively. (c) Samples of our NUDT-SIRST dataset. Our dataset
covers multiple real infrared backgrounds, various target types, rich poses, and ground truth labels. ↗, ↙, →, and ⊗ represents different moving directions
of targets.

B. Implementation Details

High-quality synthesized images should be both physically
reasonable and visually realistic. To render reasonable images,
as shown in Fig. 7(a), we first used a Gaussian kernel function
and collected target templates (e.g., spot, plane, ship, and
UAV) to simulate point, spot, and extended targets, respec-
tively. Then, we adopted an adaptive target size function Fsi ze
to make sure the size of target and the combination of virtual
targets with real infrared background reasonable. In this func-
tion, a scene-aware CNN Fscene is first used to identify the type
of the background. Then, we assigned pre-defined possibility
Psi ze to identify the size and type of candidate targets. In this
way, we can avoid the unreasonable combination of target and
background such as a big plane target with city background
and a ship target with sky background.

To generate visually realistic images, as shown in Fig. 7(b),
we used an adaptive intensity function Fintensi t y and a Gaus-
sian blur function Fblur to adjust the target’s intensity and blur
it’s boundary, respectively. In the adaptive intensity function,
we adjusted the average gray value of the target to keep the
target’s SCR fixed at an empirical value C (i.e., 3, 4, 5, and 6).
That is:

SCR =

∣∣∣∣µT − µB

σB

∣∣∣∣ = C, (10)

where µB and σB are the average and standard derivation
of the background. Then, we imposed a 5 × 5 Gaussian blur
function with different σ (i.e., 0.2, 0.5, 1.0, etc.) on the images
to ensure the smoothness of the synthesized images. Finally,
we manually removed visually low-quality images.

C. Comparison to Existing Datasets

In this subsection, we compare our NUDT-SIRST dataset to
several public SIRST datasets. Following [24], we use three
metrics (i.e., the number of targets, target size, and target
brightness) to evaluate these datasets. As shown in Fig. 6(a),
about 37% of images in the NUDT-SIRST dataset contain no
less than 2 targets. This ratio is much higher than the other two
datasets. Target size distribution in Fig. 6(b) shows that 27%
of targets occupy no more than 0.01% area of the whole image
and 96% of targets meet the SPIE’s defination for small targets
(i.e., the target should be smaller than 0.15% area of the whole
image). Point and small target ratios are much higher than the
other two datasets. As shown in Fig. 6(c), there are about 32%
of targets locating outside of top 10% of the image brightness
value. It demonstrates that the images of our dataset are less
visually salient than other datasets. In summary, compared
with existing datasets [24], [32], our dataset introduces more
challenging scenes (i.e., multiple targets, point target, and dim
target scenes).

V. EXPERIMENT

In this section, we first introduce our evaluation metrics
and implementation details. Then, we compare our DNA-Net
to several state-of-the-art SIRST detection methods. Finally,
we present ablation studies to investigate our network.

A. Evaluation Metrics

Pioneering CNN-based works [24], [31], [32] mainly
use pixel-level evaluation metrics like I oU , precision, and
recall values. These metrics mainly focus on the target



LI et al.: DENSE NESTED ATTENTION NETWORK FOR INFRARED SMALL TARGET DETECTION 1751

shape evaluation. However, infrared small targets are generally
lack of shapes and textures. For a 3×3 small target, one falsely
predicted pixel will cause 11.1% decrease in Pd . Consequently,
these pixel-level evaluation metrics are unsuitable for small
targets. Actually, the overall target localization is the most
important criteria for SIRST detection. Therefore, we adopt
Pd and Fa to evaluate the localization ability and use I oU to
evaluate shape description ability.

1) Intersection Over Union: Intersection over Union (I oU )
is a pixel-level evaluation metric. It evaluates profile descrip-
tion ability of the algorithm. IoU is calculated by the ratio of
intersection and the union areas between the predictions and
labels, i.e.,

I oU =
Ainter

AUnion
, (11)

where Ainter and AUnion represent the interaction areas and
union areas, respectively.

2) Probability of Detection: Probability of Detection (Pd )
is a target-level evaluation metric. It measures the ratio of cor-
rectly predicted target number Tcorrect over all target number
TAll . Pd is defined as follows:

Pd =
Tcorrect

TAll
. (12)

If the centroid deviation of the target is less than the pre-
defined deviation threshold Dthresh, we consider those targets
as correctly predicted ones. We set the pre-defined deviation
threshold as 3 in this paper.

3) False-Alarm Rate: False-Alarm Rate (Fa) is another
target-level evaluation metric. It is used to measure the ratio
of falsely predicted pixels P f alse over all image pixels PAll .
Fa is defined as follows:

Fa =
P f alse

PAll
. (13)

If the centroid deviation of the target is larger than the pre-
defined deviation threshold, we consider those pixels as falsely
predicted ones. We set the pre-defined deviation threshold as
3 in this paper.

4) Receiver Operation Characteristics: Receiver Operation
Characteristics (ROC) is used to describe the changing trends
of the detection probability (Pd ) under varying false alarm
rate (Fa).

B. Implementation Details

As discussed in Section V-E, we used the published NUAA-
SIRST dataset [31] and our NUDT-SIRST dataset for both
training and test. Previous works [24], [31] set the train-to-
test ratios as 3 (i.e., 256 images for training and 86 images
for testing). However, sufficient test images are crucial to
evaluate the real performance of the model. Therefore, we set
the train-to-test ratio to 1 (i.e., 213 images for training and
214 images for testing). Before training, all input images
were first normalized. Then, these normalized images were
sequentially processed by random image flip, blurring, and
crop for data augmentation. Next, these images were resized
to a resolution of 256 × 256 before being fed into the network.

In this paper, we adopted a segmentation network as our
baseline to generate a pixel-level segmentation map and then
used a clustering algorithm to achieve target localization.
The U-net paradigm with ResNets [40] was chosen as our
segmentation backbone. The number of down-sampling layer i
was chosen as 4. Our network was trained using the Soft-IoU
loss function and optimized by the Adagrad method [41] with
the CosineAnnealingLR scheduler. We initialized the weights
and bias of our model using the Xavier method [42]. We set the
learning rate, batch size, and epoch size as 0.05, 16, and 1500,
respectively. All models were implemented in PyTorch [43] on
a computer with an AMD Ryzen 9 3950X @ 2.20 GHz CPU
and an Nvidia GeForce 3090 GPU.

C. Comparison to the State-of-the-Art Methods

To demonstrate the superiority of our method, we compare
our DNA-Net to several state-of-the-art (SOTA) methods,
including traditional methods (Top-Hat [6], Max-Median [9],
WSLCM [13], TLLCM [12], IPI [7], NRAM [16], RIPT [8],
PSTNN [17], MSLSTIPT [5]) and CNN-based methods
(MDvsFA-cGAN [32], ACM [24], ALCNet [31]) on
the NUAA-SIRST and NUDT-SIRST datasets.1 For fair
comparison, we retrained all the CNN-based methods on the
same training datasets as our DNA-Net. It is worth noting
that we use our implementations for these methods for fair
comparison. Most of these open-source CNN-based codes are
rewritten by pytorch and released at: https://github.
com/YeRen123455/Infrared-Small-Target-Dete
ction.

1) Quantitative Results: For all the compared algorithms,
we first obtained their predicts and then performed noise sup-
pression by setting a threshold to remove low-response areas.
Specifically, the adaptive threshold (Tadaptive) was calculated
for traditional methods according to:

Tadaptive = Max[Max(G) × 0.7, 0.5 × σ(G) + avg(G)],

(14)

where Max(G) represents the largest value of output. Tadaptive
represents adaptive threshold. σ(G) and avg(G) mean the
standard derivation and average value of output, respec-
tively. For CNN-based methods, we followed their original
papers and adopted their fixed thresholds (i.e., 0, 0, 0.5 for
ACM [24], ALCNet [31], and MDvsFA-cGAN [32], respec-
tively). We kept all remaining parameters the same as their
original papers.

Quantitative results are shown in Table II. The improve-
ments achieved by our DNA-Net over traditional methods are
significant. That is because, both NUDT-SIRST and NUAA-
SIRST contain challenging images with different SCR, clutter
background, target shape, and target size. Our DNA-Net can
learn discriminative features robust to scene variations. In con-
trast, the traditional methods are usually designed for specific

1Note that, we follow ACM [24] and ALCNet [31] to not use the NUST-
SIRST for comparison in the main body of our manuscript since only about
30% of targets meet the SPIE’s definition of small targets. To achieve a
more comprehensive comparison, we have updated the experimental results
of NUST-SIRST and released the trained model at our Github repository.

https://github.
com/YeRen123455/Infrared-Small-Target-Dete
ction
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TABLE II
I oU , Pd , AND Fa VALUES ACHIEVED BY DIFFERENT STATE-OF-THE-ART METHODS ON THE NUDT-SIRST AND NUAA-SIRST DATASETS, FOR

I oU AND Pd , LARGER VALUES INDICATE HIGHER PERFORMANCE. FOR Fa , SMALLER VALUES INDICATE HIGHER PERFORMANCE.
THE BEST RESULTS ARE IN RED AND THE SECOND BEST RESULTS ARE IN BLUE. TR = 50% MEANS

50% IMAGES ARE USED FOR TRAINING AND THE REST ARE USED FOR TEST

TABLE III
COMPARISION TO SOTA METHODS IN TERMS OF TRAIN TIME, INFERENCE

TIME, AND I oU (×102)/Pd (×102)/Fa (×106) ON THE
NUDT-SIRST DATASET

scenes (e.g., specific target size and clutter background). The
manually-selected parameters (e.g., structure size in Tophat
and patch size in IPI) limit the generalization performance
of these methods. Moreover, we also observe that the IoU
improvements are obviously higher than the improvement of
Pd and Fa . That is because, the traditional methods mainly
focus on the overall localization of the target instead of
precise shape matching. It also validates our claim that using
pixel-level evaluation metric (such as I oU ) introduces unfair
comparison and leads to inaccurate conclusion.

As shown in Table II, the improvements achieved by DNA-
Net over other CNN-based methods (i.e., MDvsFA-cGAN,
ACM, and ALCNet) are obvious. That is because, we redesign
a new backbone network that is tailored for SIRST detection.
The U-shape basic backbone with our dense nested interactive
skip connection module can achieve progressive feature fusion
and selectively enhance the informative features in deep CNN
layers. Consequently, intrinsic features of infrared small targets
can be maintained and fully learned in the network. It is also
worth noting that the I oU improvements of our method on
NUDT-SIRST is significantly higher than those on the NUAA-
SIRST dataset. That is because, our dataset contains more
challenging scenes with various target sizes, types and poses.
Our channel and spatial attention module and feature pyramid

TABLE IV

Pd (×102)/Fa (×106) VALUES ACHIEVED BY DIFFERENT
STATE-OF-THE-ART METHODS ON THE NUDT-SIRST

DATASET WITH DIFFERENT SETTINGS OF Dthresh

fusion module help to learn discriminative features to achieve
better performance.

Quantitative results in Table IV demonstrate that our method
is superior to other deep-learning based methods under differ-
ent pre-defined deviation thersholds.

2) Qualitative Results: Qualitative results on two datasets
(i.e., NUDT-SIRST, NUAA-SIRST) are shown in Fig. 8 and
Fig. 9. Compared with traditional methods, our method can
produce output with precise target localization and shape
segmentation under very low false alarm rate. Nonetheless,
the traditional methods only perform well on point targets,
(e.g., image-3), and easily generate lots of false alarm areas in
local highlight areas (e.g., image-4 and image-6). Moreover,
as shown in Fig. 12, we divided our NUDT-SIRST dataset
into point targets subset, spot targets subset, and extended
targets subset. With the increase of spot and extended tar-
gets ratio, traditional methods suffers dramatic performance
decrease while our DNA-Net maintains high accuracy. That is
because, the performance of traditional methods rely heavily
on handcrafeted features and cannot adapt to the variations of
target sizes.

The CNN-based methods (i.e., MDvsFA-cGAN, ACM, and
ALCNet) perform much better than traditional methods. How-
ever, due to the complicated scenes in our NUDT-SIRST,
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Fig. 8. Qualitative results achieved by different SIRST detection methods. For better visualization, the target area is enlarged in the right-top corner. The
correctly detected target, false alarm, and miss detection areas are highlighted by red, yellow, and green dotted circles, respectively. Our DNA-Net can generate
output with precise target localization and shape segmentation under a lower false alarm rate.

MDvsFA-cGAN produces many false alarm and miss detection
areas (Fig. 9). Our DNA-Net is more robust to these scene
changes. Moreover, our DNA-Net can generate better shape
segmentation than ALCNet. That is because, our designed
new backbone can well adapt to various clutter background,
target shape, and target size challenges and thus achieves better
performance.

3) Computational Efficiency: In this part, we reduced half
of the channels in DNA-Net-ResNet10 to build DNA-Net-
ResNet10-Light and compared it to several competitive meth-
ods (i.e., MDvsFA-cGAN [32], ACM [24], ALCNet [31])
in terms of training time and inference time. As shown in
Table III, our DNA-Net-ResNet10-Light achieves the highest
I oU , Pd , and the lowest Fa with comparable training and
inference time. This clearly demonstrates the high computa-
tional efficiency of our method.

D. Ablation Study

In this subsection, we compare our DNA-Net with several
variants to investigate the potential benefits introduced by our
network modules and design choice.

1) The Dense Nested Interactive Module (DNIM): The
dense nested interactive skip-connection module is used to
interact with features at different scale levels to enlarge recep-
tive fields while maintain fine-grained features at the finest
scale level. To demonstrate the effectiveness of our DNIM,
we introduced three network variants and made their model
sizes comparable for fair comparison.

Table V shows the comparative results achieved by DNA-
Net and its variants. It can be observed that the I oU , Pd , and
Fa values of DNA-Net w/o DNIM suffer decreases of 2.08%,
2.23%, and an increase of 4.298×10−6 on the NUDT-SIRST
dataset. Similar results are also observed on the NUAA-SIRST
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Fig. 9. 3D visualization results of different methods on 6 test images.

TABLE V

I oU (×102)/Pd (×102)/Fa (×106) VALUES ACHIEVED BY MAIN VARIANTS
OF DNA-NET AND DNIM ON THE NUDT-SIRST AND NUAA-SIRST

DATASETS. TOP-TO-BOTTOM AND LEFT-TO-RIGHT MEAN STACK
U-SHAPE SUB-NETWORK FROM DIFFERENT DIRECTIONS

dataset. That is because, DNIM progressively aggregates fea-
tures at multiple scales to maintain the target information at the
finest scale for better performance. Visualization maps shown
in Fig. 10 also demonstrates the effectiveness of our DNIM.
Small targets are lost in the feature maps of the deep layer in
DNA-Net w/o DNIM (i.e., L(4,0), L(3,1)).

• DNA-Net w/o DNIM: We replaced the dense nested
interactive skip connection module with a regular plain
skip connection module.

• DNA-Net-left-to-right: As shown in Fig. 11(c), multiple
U-shape subnetworks with different depths are stacked

from left to right. Each node in the middle part of the
network can receive features from its own and the lower
layer.

• DNA-Net-top-to-bottom: We stacked the U-shape
subnetworks from top to bottom to generate DNA-Net-
top-to-bottom, as shown in Fig. 11(b). Different from
DNA-Net-left-to-right, this variant stacks U-shape subnet-
works with three kinds of depth and only its core part uses
tri-direction skip connection.

As shown in Table V, DNA-Net-left-to-right suffers
decreases of 1.20%, 1.44%, and an increase of 0.426 ×10−6

in terms of I oU , Pd , and Fa values over DNA-Net on the
NUDT-SIRST dataset. That is because, each node in DNA-
Net-left-to-right only interacts with the deep layer instead of
full interaction among shallow, their-own, and deep layers.
Shallow layer has rich localization and profile information, but
the information is not fully incorporated at the skip connection
stage. Consequently, this variant has limited performance.

As compared to our DNA-Net, the variant DNA-Net-top-to-
bottom suffers decreases of 1.34%, 1.77%, and an increase of
3.459 ×10−6 in terms of I oU , Pd , and Fa values on NUDT-
SIRST dataset. That is because, only the core part of this
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Fig. 10. Visualization map of DNA-Net (row 1) and DNA-Net w/o DNIM (row 2). The feature maps from the deep layer of DNA-Net w/o DNIM loses
representation of small targets. It finally results in low values and miss detection in the output layer.

Fig. 11. Three variants of DNIM. (a) DNA-Net w/o DNIM. (b) DNA-Net–
top-to-bottom. (c) DNA-Net-left-to-right. (d) DNA-Net, each color represents
different U-shape sub-networks.

variant adopts tri-direction skip connection, the remaining part
still uses the plain skip connection. Moreover, its tri-direction
interactive area is relatively shallow, high-level information
can not be fully exploited at shallow layers.

2) The Channel and Spatial Attention Module (CSAM):
The channel and spatial attention module is used for adaptive
feature enhancement to achieve better feature fusion. To inves-
tigate the benefits introduced by this module, we compare our
DNA-Net with four variants. To achieve fair comparison (i.e.,
comparable model size), we increased the number of filters
of all convolution layers of four variants to make their model
sizes slightly larger than DNA-Net.

• DNA-Net w/o CSAM: We removed the channel and
spatial attention module in this variant and directly con-
catenate multi-layer features for subsequent process.

• DNA-Net w/o CSAM (Element-wise summation): We
replaced CSAM with common element-wise summation
in this variant to explore the effectiveness of CSAM.
Specifically, we used 1×1 convolution operation and up-
sampling/down-sampling to make features from different
layer identical. Then, an element-wise summation is used
to achieve multi-layer feature fusion.

• DNA-Net w/o channel attention: We removed the chan-
nel attention operation in this variant to evaluate its
contribution.

TABLE VI

I oU (×102)/Pd (×102)/Fa (×106) VALUES ACHIEVED BY MAIN VARIANTS
OF DNA-NET AND CSAM ON THE NUDT-SIRST AND NUAA-SIRST

DATASETS. ⊕ MEANS ELEMENT-WISE SUMMING AS
FEATURE FUSION METHOD

• DNA-Net w/o spatial attention: We canceled the spatial
attention operation in this variant to investigate the benefit
introduced by spatial attention.

If CSAM is removed, the performance suffers decreases of
1.19%/1.84%, 2.11%/2.11%, and an increase of 1.515/2.487
×10−6 in terms of I oU , Pd , and Fa for DNA-Net w/o CSAM
and DNA-Net w/o CSAM ⊕ on the NUDT-SIRST dataset,
respectively. Similar results are achieved on the NUAA-SIRST
dataset. This clearly demonstrates the importance of the chan-
nel and spatial attention module. As shown in Fig. 13, with
the help of CSAM, the feature maps from the deep layer of
DNA-Net have high response to informative cues and finally
results in precise shape segmentation.

As shown in Table VI, DNA-Net w/o channel attention
suffers decreases of 0.82%, 1.77%, and an increase of
0.658 ×10−6 in terms of I oU , Pd , and Fa values over
DNA-Net on NUDT-SIRST dataset. That is because, chan-
nel attention unit in our DNA-Net can better exploit infor-
mative channels to enhance the representation capability of
features.

If the spatial attention unit is removed, the performance
suffers decreases of 0.95%, 2.00%, and an increase of
0.095 ×10−6 in terms of I oU , Pd , and Fa values for DNA-
Net on NUDT-SIRST dataset. That is because, infrared small
targets are easily immersed in heavy cloud and noise, it is
hard to distinguish these small and dim targets from the
background. Spatial attention facilitates the network to pay
attention to local informative areas and thus produces better
results.

3) The Feature Pyramid Fusion Module (FPFM): The
feature pyramid fusion module is used to fuse shallow-layer
feature with rich spatial information and deep-layer feature
with rich semantic information. To investigate the benefits
introduced by this module, we compare our DNA-Net with
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Fig. 12. ROC performance on (a) point targets subset, (b) point targets subset + spot targets subset, (c) all kinds of targets of NUDT-SIRST. With the
increase of spot and extended targets ratio, the performance of traditional methods suffers dramatic drop. In contrast, the performance our DNA-Net is stable.

Fig. 13. Visualization map of DNA-Net (row 1) and DNA-Net w/o CSAM (row 2). The feature maps from the deep layer of DNA-Net have high values
representation to informative cues and finally results in precise profile segmentation in output layer.

three variants, we increased the number of filters of all
convolution layers of three variants to make their model sizes
comparable for fair comparison.

• DNA-Net w/o FPFM: We replaced the feature pyramid
fusion module in this variant and only used the output
from the final layer as final result.

• DNA-Net w/o L345: We removed the outputs of layer 3,
4, and 5 from FPFM in this variant to evaluate the
contribution of features from middle and deep layers.

• DNA-Net w/o L45: We removed the outputs of layer 4,
and 5 from FPFM in this variant to investigate the
contribution of features from deep layers.

• DNA-Net w/o L5: We removed the outputs of layer
5 from FPFM in this variant to investigate the benefit
introduced by the deepest layer of the network.

As shown in Table VII, DNA-Net w/o FPFM suffers
decreases of 0.83%, 1.89%, and a increase of 1.81 × 10−6

in terms of I oU , Pd , and Fa on the NUDT-SIRST dataset.
Similar results can also be observed on the NUAA-SIRST
dataset. That is because, FPFM helps to achieve multi-layer
features fusion. The representation from shallow layers and
deep layers can be both extracted and fused to generate more
robust feature maps as output.

When we gradually removed partial outputs of FPFM from
bottom to the top layer, our network suffers decreases of
0.23%, 0.84%, and an increase of 3.01×10−6 in terms of I oU ,
Pd , and Fa for DNA-Net w/o L5. Similar results can also be
observed on DNA-Net w/o L45 and DNA-Net w/o L345. That
is because, NUDT-SIRST contains rich multi-target scenarios,
more small size targets, and less visually salient targets.

TABLE VII

I oU (×102)/Pd (×102)/Fa (×106) VALUES ACHIEVED BY MAIN VARIANTS
OF DNA-NET AND FPFM ON THE NUDT-SIRST AND NUAA-SIRST

DATASETS. DNA-NET W/O L i, j,k MEANS THE OUTPUTS FROM
LAYER i , j , AND k ARE REMOVED FROM FPFM

Our network can fully fuse low-level and high-level informa-
tion and thus achieves better performance on NUDT-SIRST.

E. Benefits of the Synthesized Dataset

In this section, we evaluate the benefits of our synthesized
dataset for real IRST tasks. Specifically, we mixed real SIRST
images (from the training set of NUAA-SIRST) and synthe-
sized SIRST images (from the training set of NUDT-SIRST)
with different ratios to train the networks and evaluated their
performance on the real images (from the test set of NUAA-
SIRST). As shown in Table VIII, with small ratio of real
images, both DNA-Net and ACM can achieve comparable
results to baseline results (trained on all real images). That
is because, our synthesized dataset can well cover the main
challenges for infrared small target detection (i.e., differ-
ent SCR, clutter background, target shape, and target size).
Consequently, the huge cost for collecting real SIRST images
can be reduced.
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TABLE VIII

I oU (×102)/Pd (×102)/Fa (×106) VALUES ACHIEVED BY DNA-NET
ON REAL DATASETS. THE DNA-NET IS TRAINED ON MIXED

DATASET WITH DIFFERENT REAL IMAGES RATIOS

Fig. 14. Samples of the input images, public ground truth masks [24]
(manually labeled), and output of our DNA-Net trained on mixed dataset.
Our method can even produce more precise segmentation result than manually
labeled ground truth masks.

Moreover, we compared the output of our network trained
on the mixed dataset with the manually labeled masks of
NUAA-SIRST in Fig. 14. It can be observed that the outputs
of our network have more reasonable shape segmentation than
ground truth labels. That is because, the synthesized SIRST
images have absolutely precise labels. The network can learn
the essence of infrared small targets with sufficiently well
labeled data and finally contribute to the improvement of
real SIRST images. Our network can generate better visual
performance than ground truth label.

VI. CONCLUSION

In this paper, we propose a DNA-Net to achieve SIRST
detection. Different from existing CNN-based SIRST detection
methods, we explicitly handle the problem of small targets
being lost in deep layers by designing a new tri-direction dense
nested interactive module with a cascaded channel and spatial
attention model. The intrinsic information of small targets can
be incorporated and fully exploited by repeated fusion and
enhancement. Moreover, we develop an open SIRST dataset
to evaluate the performance of infrared small target detection
with respect to challenging scenes. We also reorganized a set
of evaluation metrics. Experiments on both our dataset and the
public dataset have shown the superiority of our method over
the state-of-the-art methods.

REFERENCES

[1] M. Teutsch and W. Kruger, “Classification of small boats in infrared
images for maritime surveillance,” in Proc. Int. WaterSide Secur. Conf.,
Nov. 2010, pp. 1–7.

[2] X. Ying et al., “MoCoPnet: Exploring local motion and contrast priors
for infrared small target super-resolution,” 2022, arXiv:2201.01014.

[3] H. Deng, X. Sun, M. Liu, C. Ye, and X. Zhou, “Small infrared target
detection based on weighted local difference measure,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 7, pp. 4204–4214, Jul. 2016.

[4] T. Ma, Z. Yang, J. Wang, S. Sun, X. Ren, and U. Ahmad, “Infrared small
target detection network with generate label and feature mapping,” IEEE
Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[5] Y. Sun, J. Yang, and W. An, “Infrared dim and small target detection
via multiple subspace learning and spatial-temporal patch-tensor model,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 3737–3752,
May 2021.

[6] J.-F. Rivest and R. Fortin, “Detection of dim targets in digital infrared
imagery by morphological image processing,” Opt. Eng., vol. 35, no. 7,
pp. 1886–1893, Jul. 1996.

[7] C. Q. Gao, D. Meng, Y. Yang, Y. Wang, X. Zhou, and A. G. Hauptmann,
“Infrared patch-image model for small target detection in a single
image,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 4996–5009,
Dec. 2013.

[8] Y. Dai and Y. Wu, “Reweighted infrared patch-tensor model with
both nonlocal and local priors for single-frame small target detection,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8,
pp. 3752–3767, Aug. 2017.

[9] S. D. Deshpande, M. H. Er, R. Venkateswarlu, and P. Chan, “Max-
mean and max-median filters for detection of small targets,” Proc. SPIE,
vol. 3809, pp. 74–83, Oct. 1999.

[10] C. L. P. Chen, H. Li, Y. Wei, T. Xia, and Y. Y. Tang, “A local contrast
method for small infrared target detection,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 1, pp. 574–581, Jan. 2014.

[11] J. Han, Y. Ma, B. Zhou, F. Fan, K. Liang, and Y. Fang, “A robust
infrared small target detection algorithm based on human visual system,”
IEEE Geosci. Remote Sens. Lett., vol. 11, no. 12, pp. 2168–2172,
Dec. 2014.

[12] J. Han, S. Moradi, I. Faramarzi, C. Liu, H. Zhang, and Q. Zhao,
“A local contrast method for infrared small-target detection utilizing
a tri-layer window,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 10,
pp. 1822–1826, Oct. 2020.

[13] J. Han et al., “Infrared small target detection based on the weighted
strengthened local contrast measure,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 9, pp. 1670–1674, Sep. 2021.

[14] S. Kim and J. Lee, “Scale invariant small target detection by optimizing
signal-to-clutter ratio in heterogeneous background for infrared search
and track,” Pattern Recognit., vol. 45, no. 1, pp. 393–406, Jan. 2012.

[15] X. Wang, G. Lv, and L. Xu, “Infrared dim target detection based
on visual attention,” Infr. Phys. Technol., vol. 55, no. 6, pp. 513–521,
Nov. 2012.

[16] L. Zhang, L. Peng, T. Zhang, S. Cao, and Z. Peng, “Infrared small
target detection via non-convex rank approximation minimization joint
l2,1 norm,” Remote Sens., vol. 10, no. 11, p. 1821, 2018.

[17] L. Zhang and Z. Peng, “Infrared small target detection based on partial
sum of the tensor nuclear norm,” Remote Sens., vol. 11, no. 4, p. 382,
Feb. 2019.

[18] H. Zhu, S. Liu, L. Deng, Y. Li, and F. Xiao, “Infrared small target
detection via low-rank tensor completion with top-hat regularization,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 1004–1016,
Oct. 2020.

[19] Y. Dai, Y. Wu, Y. Song, and J. Guo, “Non-negative infrared patch-
image model: Robust target-background separation via partial sum min-
imization of singular values,” Infr. Phys. Technol., vol. 81, pp. 182–194,
Mar. 2017.

[20] M. Liu, H.-Y. Du, Y.-J. Zhao, L.-Q. Dong, and M. Hui, “Image small
target detection based on deep learning with SNR controlled sample
generation,” in Current Trends in Computer Science and Mechanical
Automation, vol. 1. Poland, U.K.: De Gruyter Open, 2018, pp. 211–220.

[21] B. McIntosh, S. Venkataramanan, and A. Mahalanobis, “Infrared target
detection in cluttered environments by maximization of a target to clutter
ratio (TCR) metric using a convolutional neural network,” IEEE Trans.
Aerosp. Electron. Syst., vol. 57, no. 1, pp. 485–496, Feb. 2021.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” 2015,
arXiv:1506.01497.

[23] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[24] Y. Dai, Y. Wu, F. Zhou, and K. Barnard, “Asymmetric contextual
modulation for infrared small target detection,” in Proc. IEEE Winter
Conf. Appl. Comput. Vis. (WACV), Jan. 2021, pp. 950–959.

[25] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2015, pp. 234–241.

[26] J. Zhang, Y. Jin, J. Xu, X. Xu, and Y. Zhang, “MDU-Net: Multi-scale
densely connected U-net for biomedical image segmentation,” 2018,
arXiv:1812.00352.



1758 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

[27] J. Dolz, I. B. Ayed, and C. Desrosiers, “Dense multi-path U-Net for
ischemic stroke lesion segmentation in multiple image modalities,” in
Proc. Int. MICCAI Brainlesion Workshop. Cham, Switzerland: Springer,
2018, pp. 271–282.

[28] H. Huang et al., “UNet 3+: A full-scale connected UNet for medical
image segmentation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2020, pp. 1055–1059.

[29] Z. Zhou et al., “UNet++: Redesigning skip connections to exploit
multiscale features in image segmentation,” IEEE Trans. Med. Imag.,
vol. 39, no. 6, pp. 1856–1867, Dec. 2019.

[30] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional
block attention module,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3–19.

[31] Y. Dai, Y. Wu, F. Zhou, and K. Barnard, “Attentional local contrast
networks for infrared small target detection,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 11, pp. 9813–9824, Nov. 2021.

[32] H. Wang, L. Zhou, and L. Wang, “Miss detection vs. false alarm: Adver-
sarial learning for small object segmentation in infrared images,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 8509–8518.

[33] W. Zhang, M. Cong, and L. Wang, “Algorithms for optical weak small
targets detection and tracking: Review,” in Proc. Int. Conf. Neural Netw.
Signal Process., vol. 1, 2003, pp. 643–647.

[34] K. Wu, E. Otoo, and A. Shoshani, “Optimizing connected component
labeling algorithms,” Proc. SPIE, vol. 5747, pp. 1965–1976, Apr. 2005.

[35] J. Shermeyer, T. Hossler, A. Van Etten, D. Hogan, R. Lewis, and D. Kim,
“RarePlanes: Synthetic data takes flight,” in Proc. IEEE/CVF Winter
Conf. Appl. Comput. Vis., Jan. 2021, pp. 207–217.

[36] F. Zhang, X. Wang, S. Zhou, Y. Wang, and Y. Hou, “Arbitrary-
oriented ship detection through center-head point extraction,” IEEE
Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, 2022.

[37] C. Xiao et al., “DSFNet: Dynamic and static fusion network for moving
object detection in satellite videos,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, pp. 1–5, 2022.

[38] Q. Yin et al., “Detecting and tracking small and dense moving objects
in satellite videos: A benchmark,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–18, 2022.

[39] B. Hui, Z. Song, and H. Fan, “A dataset for infrared detection and
tracking of dim-small aircraft targets under ground/air background,”
China Sci. Data, vol. 5, no. 3, pp. 291–302, 2020.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[41] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, no. 7, pp. 2121–2159, 2011.

[42] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell.
Statist., 2010, pp. 249–256.

[43] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
2019, pp. 8026–8037.

Boyang Li received the B.E. degree in mechanical
design manufacture and automation from Tianjin
University, China, in 2017, and the M.S. degree in
biomedical engineering from the National Innova-
tion Institute of Defense Technology, Academy of
Military Sciences, Beijing, China, in 2020. He is cur-
rently pursuing the Ph.D. degree in information and
communication engineering with the National Uni-
versity of Defense Technology (NUDT), Changsha,
China. His research interests include infrared
small target detection, weakly supervised semantic
segmentation, and deep learning.

Chao Xiao received the B.E. degree in com-
munication engineering and the M.E. degree in
information and communication engineering from
the National University of Defense Technology
(NUDT), Changsha, China, in 2016 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree with the College of Electronic Science.
His research interests include deep learning, small
object detection, and multiple object tracking.

Longguang Wang received the B.E. degree in elec-
trical engineering from Shandong University (SDU),
Jinan, China, in 2015, and the M.E. degree in
information and communication engineering from
the National University of Defense Technology
(NUDT), Changsha, China, in 2017, where he is
currently pursuing the Ph.D. degree with the College
of Electronic Science and Technology. His research
interests include low-level vision and deep learning.

Yingqian Wang received the B.E. degree in electri-
cal engineering from Shandong University (SDU),
Jinan, China, in 2016, and the M.E. degree in
information and communication engineering from
the National University of Defense Technology
(NUDT), Changsha, China, in 2018, where he is
currently pursuing the Ph.D. degree with the College
of Electronic Science and Technology. His research
interests include low-level vision, particularly on
light field imaging, and image super-resolution.

Zaiping Lin received the B.Eng. and Ph.D. degrees
from the National University of Defense Technology
(NUDT) in 2007 and 2012, respectively. He is
currently an Associate Professor with the College
of Electronic Science and Technology, NUDT. His
current research interests include infrared image
processing and signal processing.

Miao Li received the M.E. and Ph.D. degrees
from the National University of Defense Technology
(NUDT) in 2012 and 2017, respectively. He is
currently an Associate Professor with the College
of Electronic Science and Technology, NUDT. His
current research interests include infrared dim and
small target detection.

Wei An received the Ph.D. degree from the
National University of Defense Technology
(NUDT), Changsha, China, in 1999. She was
a Senior Visiting Scholar at the University of
Southampton, Southampton, U.K., in 2016. She is
currently a Professor with the College of Electronic
Science and Technology, NUDT. She has authored
or coauthored over 100 journals and conference
publications. Her current research interests include
signal processing and image processing.

Yulan Guo (Senior Member, IEEE) received the
B.E. and Ph.D. degrees from the National University
of Defense Technology (NUDT) in 2008 and 2015,
respectively. He has authored over 100 papers at
highly referred journals and conferences. His current
research interests include 3D vision, particularly on
3D feature learning, 3D modeling, 3D object recog-
nition, and scene understanding. He was an Asso-
ciate Editor of IEEE TRANSACTIONS ON IMAGE
PROCESSING, IET Computer Vision, IET Image Pro-
cessing, and Computers & Graphics. He also served

as an Area Chair for CVPR 2021, ICCV 2021, and ACM Multimedia 2021.
He organized several tutorials, workshops, and challenges in prestigious
conferences, such as CVPR 2016, CVPR 2019, ICCV 2021, 3DV 2021, CVPR
2022, ICPR 2022, and ECCV 2022. He is a Senior Member of ACM.


