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Abstract— Light field imaging, which captures both spatial
and angular information, improves user immersion by enabling
post-capture actions, such as refocusing and changing view
perspective. However, light fields represent very large volumes
of data with a lot of redundancy that coding methods try to
remove. State-of-the-art coding methods indeed usually focus on
improving compression efficiency and overlook other important
features in light field compression such as scalability. In this
paper, we propose a novel light field image compression method
that enables (i) viewport scalability, (ii) quality scalability,
(iii) spatial scalability, (iv) random access, and (v) uniform
quality distribution among viewports, while keeping compression
efficiency high. To this end, light fields in each spatial resolution
are divided into sequential viewport layers, and viewports in each
layer are encoded using the previously encoded viewports. In each
viewport layer, the available viewports are used to synthesize
intermediate viewports using a video interpolation deep learning
network. The synthesized views are used as virtual reference
images to enhance the quality of intermediate views. An image
super-resolution method is applied to improve the quality of the
lower spatial resolution layer. The super-resolved images are
also used as virtual reference images to improve the quality
of the higher spatial resolution layer. The proposed structure
also improves the flexibility of light field streaming, provides
random access to the viewports, and increases error resiliency.
The experimental results demonstrate that the proposed method
achieves a high compression efficiency and it can adapt to the
display type, transmission channel, network condition, processing
power, and user needs.

Index Terms— Light field, compression, scalability, random
access, deep learning.

I. INTRODUCTION

L IGHT field imaging is a promising technology for pro-
viding an immersive experience to the users [1]. Unlike
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Fig. 1. Light fields are typically represented by multiview images. (u,v)
represents the view location while (x,y) denotes the pixel location in each
view.

traditional photography that integrates angular information into
a 2D image, light field imaging collects both spatial and
angular information, resulting in a grid of 2D views, enabling
functionalities such as changing viewport, synthesizing new
views, and immersive navigation within the captured scene.
However, light fields come with a huge amount of data for
transmission and/or storage, making their compression and
transmission a challenging task. Therefore, a highly efficient
light field compression method is required to deal with these
images for transmission/storage. Light field compression meth-
ods are mainly categorized into two groups [2]: (i) transform-
based coding and (ii) predictive-based coding methods.

The Discrete Cosine Transform (DCT) [3], Discrete Wavelet
Transform (DWT) [4], Karhunen Loeve Transform (KLT) [5],
and Graph Fourier Transform (GFT) [6] are among the trans-
formations that have been applied to light fields to reduce
their redundancy in the transform domain. Such a transform-
based solution has been adopted in the 4D transform mode,
also known as the Multidimensional Light field Encoder
(MuLE) [3] of JPEG Pleno. The 4D redundancy of light fields
is exploited by applying a 4D-DCT transform to 4D spatio-
angular blocks. Rizkallah et al. [7] propose a graph-transform
based light field compression method using a rate-distortion
optimized graph coarsening and partitioning algorithm.

Predictive-based coding approaches are typically based on
(i) non-local spatial prediction, (ii) inter-view prediction,
and (iii) view synthesis methods. Non-local spatial predic-
tion approaches have been used to reduce the redundancy
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Fig. 2. Example of converting multiview images of a light field into a PVS
using the serpentine scan order.

within a lenslet image [8], [9]. High Efficiency Video Coding
(HEVC) [10] or Versatile Video Coding (VVC) [11] coding
standards have also been used to reduce the redundancy
between light field views thanks to inter-view prediction
methods. Light field views are reordered as a pseudo video
sequence (PVS) and the generated PVS is fed into the video
codec. A predefined scan order such as raster and spiral [12],
[13] is typically used to generate a PVS. Fig. 2 depicts the con-
version of the multiview images to a PVS using the serpentine
scan order. Wang et al. [14] analyze the relationship of the
inter-view prediction structure with the coding performance
and propose an efficient prediction structure for light field
coding.

In synthesized-based approaches, a sparse set of light field
views is first encoded and used to synthesize (predict) the
remaining views using view synthesis methods, including
(i) Depth Image Based Rendering (DIBR), as in the Warp-
ing, merging and Sparse Prediction encoder (WaSP) [15],
which has been adopted in the JPEG Pleno coding standard,
or in [16], (ii) transform-assisted [17], and (iii) learning-based
view synthesis [18], [19] approaches.

Dib et al. [20] use a transform-assisted view synthesis
method to compress light fields. A subset of views is first
inter-coded and then used to synthesize the next subset of
views using the Fourier Disparity Layer (FDL) representation.
The prediction residuals are then inter-coded and used to
enhance the quality of synthesized views and refine the FDL
representation. Ahmad et al. [21] divide light field views into
two groups, namely, key views and decimated views. Key
views are encoded using MV-HEVC. They are then used to
synthesize the decimated views using the shearlet transform.
The residuals of synthesized views are then encoded as a single
PVS.

Hou et al. [18] propose a bi-level compensation approach
which uses the learning-based view synthesis Deep Neural
Network (DNN) proposed in [22] for light field compression.
The four corner views are inter-coded first and after decoding,
they are fed to the DNN to synthesize the remaining views.
The residuals between the synthesized views and their cor-
responding target views are reordered as a PVS and inter-
coded. Jia et al. [23] propose a light field compression method
based on a Generative Adversarial Network (GAN). They first
generate a PVS by sparsely sampling light field views fol-
lowing a chessboard pattern. The intermediate views are then
synthesized from the decoded PVS views using the GAN. The

residuals between synthesized views and their corresponding
target views are then inter-coded to enhance the quality of
the synthesized views. Hu et al. [19] propose an adaptive
two-layer light field compression method based on Graph Neu-
ral Network (GNN) reconstruction. Low- and high-frequency
components are encoded using different approaches. The high-
frequency view components are converted into a PVS and
encoded using HEVC. The low-frequency components of the
views are resampled in the angular dimension and the selected
views are inter-coded. The discarded views are synthesized
using the GNN. Bakir et al. [24] use VVC’s temporal scala-
bility structure to encode key views which are then fed to a
GAN to synthesize the remaining views.

Some approaches provide a form of scalability when coding
light fields. Conti et al. [25] propose a viewport scalable
coding solution for 3D light fields based on an inter-layer
prediction scheme that exploits the redundancy between multi-
view and lenslet representations. Li et al. [26] propose a three
layers disparity-compensated scheme for scalable coding of
lenslet images. Garrote et al. [27] propose a scalable scheme
based on the wavelet transform for lenslet image coding.
Conti et al. [28], [29] propose a light field coding solution
with field of view scalability, which supports region of interest
enhancement. Komatsu et al. [30] propose a light field coding
using weighted binary images with the support of quality
scalability. Rüefenacht et al. [31] propose a scalable light field
coding approach based on the base-anchored representation,
including scalable compression of the disparity information
itself.

In this paper, we propose a flexible light field compression
method that can be adapted to the user’s needs by sup-
porting the following functionalities: (a) viewport scalabil-
ity, (b) spatial scalability, (c) quality scalability, (d) random
access, and (e) uniform quality distribution. The proposed
framework extends the method described in [32] in several
ways. It first adds spatial scalability based on a single image
super-resolution approach which is shown to give a very high
rate-distortion performance for each target spatial resolution.
The flexibility of the encoding structure has been increased
by adding spatial scalability in addition to the viewport and
quality scalabilities. This increased flexibility allows us to bet-
ter address the various trade-offs between encoding efficiency,
random access, and the different forms of scalability. A com-
prehensive analysis is carried out using a light field dataset
with a large parallax which is more challenging in terms of
encoding efficiency as well as low parallax light fields.

In a nutshell, we first downscale light field views to a lower
resolution to make two spatial layers: (i) Spatial Layer 1 (SL1)
and (ii) Spatial Layer 2 (SL2). Views in each spatial layer
are divided into Viewport Layers (V Ls). Fig. 3 depicts the
structuring of 5 × 5 light field views into spatial and viewport
layers. In each V L , the available views are used to synthesize
intermediate views and the synthesized views are used as
virtual reference images to predict their corresponding views.
To encode views in SL2, super-resolution is applied to their
corresponding encoded viewports in SL1 and they are also
added to the reference image list.
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Fig. 3. Light field view structuring in spatial and viewport layers.

The remainder of the paper is organized as follows. The
theoretical background for light field imaging is introduced
in Section II. The functionalities supported by our proposed
method are introduced in Section III. Section IV presents the
proposed light field encoding method. Experimental results are
provided in Section V and Section VI presents the concluding
remarks.

II. LIGHT FIELDS

A light field is a quantized representation of the 7D plenop-
tic function [33], i.e.,

P = P(φ, θ, x, y, z, λ, t) (1)

where all light rays at every possible location (x, y, z), at every
possible direction (θ, φ), at any time (t), over any range of
wavelengths (λ) are recorded. The light field representation
can be simplified based on some assumptions. First, light rays
are considered time-invariant, and monochromatic, resulting
in removing time (t) and wavelength (λ) dimensions. Second,
the light rays are assumed to travel in a free space, which
leads to removing another dimension. Therefore, a light field
is represented by a 4D function as follows:

L F = P(x, y, u, v) (2)

where (u,v) represents the view location, and (x,y) denotes
the pixel location in each view. A two-plane parameterization
can be used to model light fields, and they are represented as
multiview images as shown in Fig. 1. To acquire light fields,
multi-array or lenslet cameras are used. For lenslet cameras,
the spatial and angular domains are multiplexed into a single
2D image, known as a lenslet image. The lenslet image can
be converted into a multiview representation [34].

III. FUNCTIONALITIES IN LIGHT FIELD COMPRESSION

In this section, we highlight the functionalities supported by
our proposed light field coding method.

A. Viewport Scalability

Viewport scalability for light fields is provided by grouping
light field views into different layers. In this way the adaptation
to (i) capturing device, (ii) display, (iii) network condition,

(iv) processing power, and (v) storage capacity is enhanced.
For example, 2D displays might require the central view, while
3D/stereo displays need only the central view and two of its
side views. For light field displays, layers can be transmitted,
decoded, and displayed one after another. PVS-based methods
make all the views dependent on each other to highly utilize
redundancy among the views and increase the compression
efficiency. However, to access an arbitrary view, e.g., the
central view on a 2D display, all light field views should
be encoded, transmitted, and decoded. This will lead to both
bandwidth and processing power wastage as well as decoding
delay [35]. Monteiro et al. [36] divide the light field views
into multiple viewport layers and encode the views in each
layer by using the previously encoded/decoded views in the
same layer or in prior layers as references.

B. Quality Scalability

Through quality scalability, the adaptation to the network
condition is provided. In this way, light fields are encoded in
two (or more) quality layers and the quality of light fields can
be improved by transmitting enhancement layers when enough
bandwidth or processing power is available. In synthesizing
views, some approaches introduced in the previous section,
e.g., [18], [21] encode their residuals as a quality enhancement
layer to improve the quality of the synthesized image.

C. Spatial Scalability

To address various devices and display resolutions it is
important to provide spatial scalability. In this regard, images
are encoded at two (or more) spatial resolutions. The lower
resolution is encoded as the base layer and it is used as a
reference to encode the higher resolution(s), i.e., enhancement
layer(s).

D. Viewport Random Access

Navigation between various viewports is another important
factor to be considered in light field encoding solutions.
Since light field views in an inter-view prediction are highly
dependent on each other, navigation between different views
may require a huge amount of views to be decoded which can
have a high cost on decoding delay, bandwidth requirement,
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Fig. 4. Quality variation when a user navigates between the top-left and top-right views.

and processing power. To avoid these problems, random access
to the image views should be considered in light field cod-
ing [35], [37]. Therefore, JPEG Pleno defines various metrics
within its light field coding common test conditions [38]. The
random access metric (R A) is defined as:

R A = T otal amount o f encoded bits required to access a view (3)

The random access penalty metric (R Ap) is considered as the
maximum R A among all views as:

R Ap = max
all views

R A (4)

The relative random access penalty metric (R R Ap) is defined
as:

R R Ap =
R Ap

T otal amount o f encode bits to decode the f ull light f ield (5)

In PVS-based light field coding solutions, R R Ap is equal
to 1, which means to access a view, the whole encoded light
field should be transmitted and the whole bitstream should
be decoded (to access, e.g., the last view). In encoding light
fields, some compression methods focus on improving random
access to arbitrary views [36], [37], [39], [40], [41], [42], [43].

E. Uniform Quality Distribution

Light field views in a given number of encoded bits should
have similar quality at any view. It is undesirable to provide
light field views in a way that users face different quality
levels when navigating between viewports. Fig. 4 illustrates the
quality variation when a user navigates between the top-left
and top-right views in case there is a significant difference
between the quality of those image views.

IV. SCALABLE LIGHT FIELD CODING

To address the above-mentioned functionalities, a flexible
light field compression method is proposed in this paper.
To provide spatial scalability, a light field L F is spatially
downscaled to a lower resolution (× 1

2 in each direction).
Therefore, the light field views are provided in two spa-
tial layers; (i) SL1 (low resolution), and (ii) SL2 (original
resolution).

Fig. 5. V L3 comprises the views that are equidistant from views in V L1
and V L2. represents the view of V L1, represents views of V L2, and

represents views of V L3.

To support viewport scalability, both spatial layers are
divided into multiple viewport layers, each containing a subset
of views. (i) SLx V L1 consists of only the central view of the
spatial layer x. (ii) SLx V L2 consists of four corner views of
the spatial layer x. (iii) SLx V Lm (3 ≤ m ≤ n) comprises
the views that are equidistant from views in viewport layers 1
to m-1 in the spatial layer x, i.e., SLx V L1 to SLx V Lm−1.
A view is equidistant from two other views if it is the same
distance from them. For instance, as shown in Fig. 5, V L3
comprises the views that are equidistant from views in V L1
and V L2.

The maximum number of viewport layers (n) is determined
by the angular resolution of light fields. For example, a light
field of 5 × 5 views will be decomposed into four viewport
layers (n = 4), a light field of 9×9 views will be decomposed
into five viewport layers (n = 5), and a light field with 17 ×

17 angular resolution will be decomposed into six viewport
layers (n = 6) for each spatial resolution. Fig. 3 shows the
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way a light field with an angular resolution of 5 × 5 views
is structured into two spatial resolution layers, SL1 and SL2,
and four viewport layers per each spatial layer.

A. Compression of SL1

We encode views at different viewport layers in different
way. (i) SL1V L1: the central view is intra-coded, hence it can
be accessed independently. (ii) SL1V L2: views in the second
layer are encoded independently of each other, however, using
inter-coding taking the central view as a reference image.
(iii) SL1V Lm (3 ≤ m ≤ n): the remaining views are encoded
using a predictor based on a view interpolation method as
described in the following.

In video frame interpolation methods, the optical flow
between two input frames, i.e., a per pixel translational dis-
placement, is estimated and subsequently, the intermediate
frame guided by motion is synthesized. DNNs are promis-
ing techniques to generate intermediate frames or – in our
case – views. Many video frame interpolation methods using
DNNs have been introduced [44], [45]. In this paper, we use
RIFE [46] for view interpolation as it allows real-time flow
estimation without any limit on the maximum number of
interpolated views, which makes it flexible to support a varying
number of viewport layers (cf. Section V-F).

Fig. 6.a illustrates the use of RIFE to synthesize the top view
in the 3rd viewport layer (SL1V L3) from two input images,
i.e., the top-left and top-right views of the second viewport
layer (SL1V L2). The residual images between the ground
truth top view in SL1V L3 and these three images are also
shown in Fig 6.b. It is seen that the synthesized view has more
correlation with the target view and, thus, it can serve as a
better reference for predicting the top view in the 3rd viewport
layer (SL1V L3). We therefore use these three views, i.e., top-
left, top-right, and synthesized views, as reference images in
the reference lists of the standard video codec VVC [11] to
inter-code the top view in the 3rd viewport layer (SL1V L3).
The Rate-Distortion (RD) performance (see Fig. 6.c) shows a
significant improvement when the synthesized view is used as
the reference.

When a synthesized view is used for prediction, it is added
as a virtual reference frame to the Decoded Picture Buffer
(DPB), which stores pictures for future use as reference,
and into the two Reference Picture Lists (RPLs), i.e., RPL0
and RPL1 [11]. To encode such “intermediate” view, four
references are thus needed for inter-coding: (i) the central
view, (ii, iii) two views that are used for interpolation, and (iv)
the synthesized view. It should be noted that the synthesized
view corresponds to a first level of quality in all the viewport
layers, a second level of quality being obtained by transmitting
a prediction residue.

B. Compression of SL2

An upscaled view of SL1 can be used as an additional
reference to inter-code its corresponding view in SL2. The
views of the second spatial layer are encoded in a different
way depending on the viewport layer to which they belong
to. (i) SL2V L1: the central view of the second spatial layer

is inter-coded using the upscaled central view in SL1V L1
as the reference image. (ii) SL2V L2: the views of the sec-
ond viewport layer of the second spatial layer are encoded
independently of each other but using inter-coding, taking
(a) the central view in SL2 and (b) the upscaled version
of the co-located view in SL1V L2 as reference images.
(iii) SL2V Lm (3 ≤ m ≤ n): three references are used for
inter-coding views in SL2V Lm : (a) the central view in SL2,
(b) the synthesized view, and (c) the upscaled version of the
co-located view in SL1.

The views in SL2V Lm (3 ≤ m ≤ n) are synthesized similar
to the views in SL1V Lm (3 ≤ m ≤ n). That is, views in
SL2V L1 to SL2V Lm−1 are used to synthesize those views
which are equidistant from them in SL2V Lm using RIFE.

To upscale images, DNN based super-resolution methods
have shown a significant gain over the traditional methods.
Some methods have been proposed specifically for light field
super-resolution [47], [48], [49]. However, they typically use
all or a set of low resolution light field views for the super-
resolution task, which impairs the random access functionality
(cf. Section V-F). To avoid this problem, we use a conven-
tional single image super-resolution method in this paper, i.e.,
DASR [50]. It should be noted that in SL2, for the first quality
level, intermediate views can be either (i) synthesized using
a view interpolation method or (ii) reconstructed by applying
a super-resolution approach to the co-located view in SL1.
To produce the second quality level, they are enhanced by
adding the prediction residue to the above-mentioned reference
images. Fig. 7 shows the encoding workflow for the top view
in SL2V L3. The co-located view in SL1, i.e., the top view
located in SL1V L3, is upscaled using DASR and it is added
to the reference list. The central view in SL2, i.e., the view
located in SL2V L1 is also added to the reference list. Finally,
two views that the top view is equidistant from them, i.e.,
the top-left and top-right views of the second viewport layer
(SL2V L2), are used as inputs of RIFE, and the output of RIFE,
i.e., the synthesized view, is also added to the reference list.
The top view is inter-coded and the prediction residue is added
to the bitstream as the quality enhancement layer.

C. Bit Allocation and Quality Distribution

The bit allocation to different layers and views is flexible,
allowing users to allocate bits in a way that meets their needs.
In this paper, we allocate bits to provide uniform quality distri-
bution among the views. To this end, we encode SL1V L1 with
a base QP, and consider its quality as the reference quality
(qc1). We then empirically determine QPs for the views in
SL1V L2 in a way that similar quality to the reference quality
is achieved for views in SL1V L2, i.e., |qview−qc1| ≤ ϵ, where
ϵ is a threshold. When views in SL1V Lm (3 ≤ m ≤ n) are
synthesized, the prediction residue is encoded if the quality of
the synthesized view (i.e., interpolated view) does not meet the
uniform quality distribution criterion, i.e., |qview − qc1| ≰ ϵ.
QP is empirically determined for the prediction residue to
achieve |qview − qc1| ≤ ϵ. For SL2V L1, we consider the
super-resolved image of SL1V L1 as the first quality level
and we encode the prediction residue with the base QP to
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Fig. 6. (a) The top-left and top-right views in V L2 of spatial layer SL1 are used as inputs to synthesize the top view in V L3 of that layer. (b) The residual
images between the ground truth top view in V L3 and these three images are shown. The residual between the ground truth top view and the synthesized
view has less information. (c) These views (i.e., top-left, top-right, and synthesized views) are used as reference images in the reference list of the standard
codec VVC to compress the top view in V L3. The encoding efficiency of these three reference images shows a significant gain when the synthesized view
is used as a reference image.

Fig. 7. Encoding workflow for the top view located in SL2V L3.

provide quality scalability for SL2V L1 and its final quality
is referred to as qc2. For the views in SL2V L2, we consider
the super-resolved image of co-located views in SL2V L1 as
the first quality level and we encode the prediction residue
if |qview − qc2| ≰ ϵ by determining empirically QP to meet
|qview − qc2| ≤ ϵ.

For views in SL2V Lm (3 ≤ m ≤ n), the reconstruction
quality of the interpolated (synthesized) view and upscaled
image by super-resolution is measured and their maximum

value is calculated (qview) for each view. qview is then com-
pared with the reconstructed quality of the central view (qc2).
If the difference between qview and qc2 is not less than or equal
to the threshold (ϵ), i.e., |qview − qc2| ≰ ϵ, the prediction
residue is added to ensure |qview − qc2| ≤ ϵ and conse-
quently uniform quality distribution is guaranteed. Adding an
enhancement layer is equivalent to providing quality scala-
bility. Note that in this paper, the quality enhancement layer
is not provided for views in SL1V L1 and SL1V L2, which
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TABLE I
LIGHT FIELD TEST IMAGES TAKEN FROM THE STANFORD DATASET [39] AND JPEG PLENO DATASET [38]

Fig. 8. RD curves for light field test images of the Stanford dataset [39] and the JPEG Pleno dataset [38]. SL1 represents the first spatial resolution after
applying bicubic upsampling, SL1 + S R represents the first spatial resolution after applying super-resolution, and SL2 represents the compression efficiency
of the overall proposed method.

can be provided depending on the user’s need. Additionally,
in this paper, for the views that the uniform quality distribution
is satisfied with the interpolated or super-resolved images,
the quality enhancement layer is not provided. However,
the flexibility of the proposed method allows for a quality
enhancement layer for all views according to the user’s needs.

V. EXPERIMENTAL RESULTS

In this Section, we first introduce the test condition that we
used in this paper. We then provide experimental results for

compression efficiency and other functionalities that have been
discussed in the previous sections.

A. Test Condition

To evaluate the performance of the proposed method,
we have selected six light fields from the Stanford1 dataset [39]
and three light fields from the JPEG Pleno2 dataset [38]
to cover light fields from large to narrow parallaxes. The

1http://lightfield.stanford.edu/lfs.html; last access: Nov. 26, 2021
2http://plenodb.jpeg.org/lf/pleno_lf; last access: Nov. 26, 2021
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Fig. 9. Average spatial complexity of views (Emean ) for light field test
images.

characteristics of these images are summarized in Table. I. The
Stanford light field views were converted to 8-bits YUV420
format and the JPEG Pleno light field views were converted
to 10-bits YUV444 format to match the coding conditions of
the baseline codecs selected for comparison. VTM Encoder
Version 10.2,3 was used as the standard encoding software
for VVC. We encode light fields at four quality levels. The
base QPs used to encode each light field test image at four
quality levels are also summarized in Table. I. QPoffsets for
each viewport layer are selected in a way that the quality of
encoded views remains similar to each other. In this paper,
ϵ, was set to 1dB, which means that the quality difference
of all views and the central view at each quality level is less
than 1dB. For video interpolation, RIFE,4 and for video super-
resolution, DASR5 were used without fine tuning.

B. Compression Efficiency and Quality Distribution

To evaluate the compression efficiency of the proposed
method, we consider three points in its workflow: (i) SL1:
the compression efficiency of the first spatial resolution after
applying the bicubic upsampling, (ii) SL1 + S R: the compres-
sion efficiency of the first spatial resolution after applying
super-resolution, and (iii) SL2: the compression efficiency
of the overall proposed method. We compare the encoding
efficiency of these three points with the JPEG Pleno anchor
(x265) [38], MV-HEVC [51], and Shearlet Transform Based
Prediction (STBP) approach [21] for Stanford light fields, and
with the JPEG Pleno Verification model 2.1 (4D Prediction)
(VM2.1) [38] for JPEG Pleno light fields. Note that different
baseline codecs have been selected for each dataset since they
perform differently on each of them. VM2.1 performs well
on the JPEG Pleno dataset, which mainly includes light fields
with a narrow disparity. However, it does not perform well for
large disparity light fields such as those of the Stanford dataset.
On the other hand, STBP, which is based on MV-HEVC,
provides limited compression efficiency for narrow disparity

3https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM; last access: Nov.
26, 2021

4https://github.com/hzwer/arXiv2020-RIFE; last access: Nov. 26, 2021
5https://github.com/LongguangWang/DASR; last access: Nov. 26, 2021

light fields [21]. Fig. 8 shows the RD curves using the mean
PSNR of the Y component of all the views as the objective
metric.

For the Eucalyptus Flower light field, which has lots of
fine geometry, the proposed method fails to outperform the
state-of-the-art scheme. This might happen because of the inef-
ficiency of video frame interpolation or super-resolution DNNs
for these images or the lack of this type of image in their
training dataset. For other light fields the proposed method
(SL2) shows superior performance compared to its competi-
tors, particularly at lower bitrates. This is more significant
for a light field with simple geometry such as Jelly Beans.
The superiority of SL1 + S R to SL1 shows the importance of
super-resolution in improving the compression efficiency.

Note that the compression efficiency of SL1 and SL1 + S R
is low for some light fields such as Sideboard and T arot ,
while it is high for some light fields such as Jelly Beans.
We have calculated the spatial complexity (E) for each light
field view using Video Complexity Analyzer (VCA6) [52] and
computed their average value (Emean). The Emean values for
all test light fields are shown in Fig. 9. It is observed that, with
increasing the spatial complexity, the compression efficiency
is reduced.

C. Scalability

In this paper, to support spatial scalability, the light fields
are compressed at two spatial resolutions. Therefore, the final
bitstream consists of two parts: (i) bSL1 : the bits allocated to
compress the lowest resolution, and (i) bSL2 the bits allocated
to compress the highest resolution. The allocated bits to each
spatial layer are also divided into multiple viewport layers (i.e.,
{bV L1 , . . . , bV Ln }) to support viewport scalability and uniform
quality distribution. Finally, the allocated bits to each viewport
layer are used to improve the quality of viewports in that
layer, in other words, to support quality scalability. Fig. 10
shows the bits allocated to spatial and viewport layers the
encoded Bunny light field. It is observed that with increasing
the number of encoding bits, the larger portion of the whole
bitstream is allocated to SL2. It is also observed that at the
higher number of encoding bits, the smaller portion of each
spatial resolution is allocated to the first viewport layer of
each spatial layer, i.e., SL1V L1 and SL2V L1, which have
been differentiated from the other viewport layers in Fig. 10.
To subjectively analyze the scalability of the proposed method,
Fig. 11 shows the Eucalyptus Flower light field when the
whole light field is encoded at 0.04 bits per pixel (bpp).
The central view of SL1, before and after applying super-
resolution, as well as the central view of SL2 are compared
with the original central view. It is shown how applying
super-resolution and adding an enhancement layer improves
the quality of the decoded central view.

D. Random Access
Random access to an arbitrary view decreases memory

footprint and bandwidth requirements. The bitrates required

6https://cd-athena.github.io/VCA/; last access: Jul. 20, 2022
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Fig. 10. Division of Bunny bitstream into spatial and viewport layers. The blue portions represent the portion of bits allocated to SL1, and the red portions
represent the portion of bits allocated to SL2. With increasing the number of encoding bits, the larger portion of the whole bitstream is allocated to SL2.

to access views and their maximum (R Ap) are shown in
Fig. 12. R R Ap is also shown in Fig. 12 as embedded plots.
It is seen that at the higher number of encoding bits, where
random access is crucial, only a small portion of the whole
bitstream is required to access an arbitrary view. Note that
the flexibility of the proposed method allows to address the
trade-off between the compression efficiency and random
access. For instance, if the synthesized views are removed
from the reference list and only the super-resolved images
are used as virtual reference images to encode views in SL2,
random access is improved while the compression efficiency is
reduced. It should be mentioned that the baseline codecs, i.e.,
JPEG Pleno anchor (x265), MV-HEVC, STBP, and VM2.1
(4D Prediction) show low random access performance since
they are highly dependent on the inter-view prediction between
the different views. JPEG Pleno anchor (x265) converts all
views into a single PVS and encodes them sequentially;
thus, it does not provide random access to views. Similarly,
in STBP, the prediction residuals of all views are converted to
a PVS and compressed with a video encoder, which makes all
views dependent on each other and significantly impairs the
random access performance. VM2.1 (4D Prediction), which
is based on WaSP, is also highly dependent on the amount of
reference views that are warped and merged using one optimal

least-squares merger. Fig. 13 compares the performance of
R R AP of the proposed method with the one of MV-HEVC for
the Bunny light field. It is shown that the proposed method
achieves a better random access performance compared to
MV-HEVC. The superiority is more significant at higher
number of encoding bits, where random access is more crucial.

E. Error Resiliency

Compressed data is always vulnerable to channel errors and
bandwidth constraints. However, our proposed method can
synthesize all views even with a small portion of the whole
bitstream, i.e., bSL1V L1 and bSL1V L2 . When corner views are
available in the first spatial layer, all other views can be
synthesized and super resolved to generate the whole image
views but at a lower quality. For example, as shown in Fig. 10,
at bpp3, with only bSL1V L1 + bSL1V L2 = 1.7% + 2.3% = 4%
of the whole bitstream, all other views can be synthesized.
To show how much quality improvement can be achieved by
additionally downloading each layer (and loosing next layers),
we plot quality vs. downloaded bits for the Bunny light field
in Fig. 14. It is seen that the proposed method is resilient
to channel errors and can retrieve image views even when a
significant portion of a bitstream is lost.
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Fig. 11. Subjective evaluation of the scalability of the proposed method for the Eucalyptus Flowers test image when the whole test image is encoded at
0.04 bpp. (a) central view, (b) [top-left] SL1, (b) [top-right] SL1 + S R, (b) [bottom-left] SL2, (b) [bottom-right] Original image.

F. Flexibility

Due to its high flexibility, the proposed approach can
address different trade-offs including compression efficiency,
random access, uniform quality distribution, and error
resiliency with adaptive bit allocation to different layers. In this
paper, the bits were empirically allocated among different
layers in a way that they yield image views with similar
qualities. For example, Fig.15a shows the standard deviation
for PSNR of views of the Bunny light field for SL1, SL1+S R,
and SL2 points. The scatter plot for the absolute difference
between PSNR of each view and PSNR of the central view (for
SL2) is also shown in Fig.15b to validate the uniform quality
distribution. It is seen that the criterion of |qview − qc| < 1dB
for all views has been met. However, the bits can be allocated
in a way to yield a higher compression efficiency or random
access performance.

RIFE is capable of interpolating intermediate viewports
without any limits on the maximum number of interpolated
views at the same inference time. In this paper, it is used
to interpolate only one intermediate view, i.e., equidistant
intermediate views. However, with interpolating more than
one intermediate view, each viewport layer may contain more
views, and the number of viewport layers and the inference
time for interpolation may be reduced. This will allow us
to have flexibility in the number of viewport layers (n). For
example, we encode only the first and second viewport layers
in the first spatial layer (i.e., SL1V L1 and SL1V L2), and
we then use corner views in SL1V L2 as inputs of RIFE to
interpolate all intermediate views between the corner views
without adding any quality enhancement layer. In this way,

we need to run RIFE at most thrice to access any arbitrary
view in SL1 and additionally DASR once to access any
arbitrary view in SL2 without any need to encode/decode any
enhancement layer (See Fig. 16a). Note that in this structure,
the number of viewport layers (i.e., four viewport layers
for SL1 and one viewport for SL2) is independent of the
light field’s angular resolution. The compression efficiency
of the above-mentioned structure (SL1 + S R (2)) for the
Bunny light field is shown in Fig. 16b. It is seen that this
structure shows lower performance in terms of compression
efficiency; however, it results in fast access to any arbitrary
view. Additionally, since the quality enhancement layer is not
applied to views, the average standard deviation of PSNR of
views for all quality levels is increased from 0.24 for SL2 to
1.04 for SL1 + S R(2).

Light field super-resolution (LFSR) approaches [53],
[54], [55] may result in views with higher reconstruction
quality compared to single image super-resolution (SISR)
approaches [50], [56] since they better preserve angular con-
sistency. However, it should be noted that LFSR approaches
usually utilize all or a huge set of low resolution views as
inputs to super resolve all of them, which harms the random
access performance and viewport scalability. To evaluate the
impact of super-resolution on the performance of the proposed
method, we take the 5×5 central views of the T arot light field
and encode SL1 with the proposed method (Section IV-A). For
super-resolution, we select EDSR [56] as an SISR approach
and LFT [55] as an LFSR approach from BasicLFSR,7 an

7https://github.com/ZhengyuLiang24/BasicLFSR
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Fig. 12. R A p and R R A p for light field test images. R A p denotes the maximum number of encoded bits requited to access an arbitrary view at each
bitstream. The embedded plots represent R R A p , i.e., the relative number of encoded bits required to access an arbitrary view at each bitstream.

Fig. 13. R R AP of the proposed method (SL2) and MV-HEVC for the Bunny
light field. The lower is R R A p , the better is the random access performance.

open-source light field super-resolution toolbox. EDSR and
LFT have been selected since they have been both trained with
the same light fields allowing a fair comparison. We super
resolve views using EDSR and encode views in SL2 using
the proposed method (Section IV-B). When EDSR is replaced
with LFT, all views in SL1 are used as inputs of LFT and the
output of LFT will be all views that have been super resolved.

Fig. 14. PSNR vs. downloaded bits for the Bunny light field. The more the
layers are downloaded, the higher is the quality. In this way, error resiliency
is achieved in the case of channel errors and/or bandwidth constraints.

Therefore, SL2 comprises only one viewport layer with LFT
approach. We show the compression efficiency and random
access performance of both methods in Fig. 17. It is seen that
utilizing the LFSR approach for super-resolution improves the
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Fig. 15. (a) The standard deviation of the quality of views for the Bunny light field. (b) The absolute quality difference between all views and the central
view in SL2.

Fig. 16. Corner views in the first spatial layer are used as inputs of RIFE to interpolate all intermediate views between the corner views without adding any
quality enhancement layer. In this way, RIFE is run at most thrice to access any arbitrary view in SL1. Additionally, DASR is run once to access any arbitrary
view in SL2 without any need to encode/decode any enhancement layer. (a) The example structure for a 5 × 5 light filed. (b) The compression efficiency of
the Bunny light field using this structure.

Fig. 17. Comparison between the use of EDSR (SISR) and LFT (LFSR) approaches on the performance of the proposed method in terms of (a) compression
efficiency and (b) random access.

compression efficiency at the cost of reduced random access
performance.

G. Future Directions

RIFE has been trained for video frame interpolation and
its training for light field view synthesis may improve its
efficiency for the view synthesis. Both RIFE and DASR have
been trained with uncompressed images but we deploy them

to interpolate and super resolve compressed images. Fine
tuning these DNNs with compressed images may improve their
accuracy.

VI. CONCLUSION

In this paper, we propose a novel light field com-
pression method based on video interpolation and image
super-resolution techniques. Light field views are compressed
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in two spatial layers to support spatial scalability. Views at
each spatial layer are divided into various viewport layers. The
previously encoded views are used to synthesize their equidis-
tant intermediate views and the synthesized views are then
used as virtual reference frames to inter-code the intermediate
views and improve their quality. A super-resolution method
is applied to the compressed views at the lowest resolution
and they are used as additional reference images to inter-code
their corresponding views at the highest resolution. In addition
to the spatial, viewport, and quality scalabilities, the proposed
structure improves the flexibility of light field compression,
provides random access to the viewports, and increases error
resiliency.
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