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Color Alignment for Relative Color Constancy via
Non-Standard References

Yunfeng Zhao , Stuart Ferguson , Huiyu Zhou , Christopher Elliott , and Karen Rafferty

Abstract— Relative colour constancy is an essential require-
ment for many scientific imaging applications. However, most
digital cameras differ in their image formations and native sensor
output is usually inaccessible, e.g., in smartphone camera applica-
tions. This makes it hard to achieve consistent colour assessment
across a range of devices, and that undermines the performance
of computer vision algorithms. To resolve this issue, we propose a
colour alignment model that considers the camera image forma-
tion as a black-box and formulates colour alignment as a three-
step process: camera response calibration, response linearisation,
and colour matching. The proposed model works with non-
standard colour references, i.e., colour patches without knowing
the true colour values, by utilising a novel balance-of-linear-
distances feature. It is equivalent to determining the camera
parameters through an unsupervised process. It also works with
a minimum number of corresponding colour patches across the
images to be colour aligned to deliver the applicable processing.
Three challenging image datasets collected by multiple cameras
under various illumination and exposure conditions, including
one that imitates uncommon scenes such as scientific imaging,
were used to evaluate the model. Performance benchmarks
demonstrated that our model achieved superior performance
compared to other popular and state-of-the-art methods.

Index Terms— Relative colour constancy, colour correction,
colour alignment, camera colour calibration.

I. INTRODUCTION

THE rapid emergence of a great variety of portable dig-
ital cameras including smartphones has opened oppor-

tunities for on-site and consumer-oriented colorimetry [1],
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spectroscopy [2], and imaging [3] applications such as biosens-
ing [4] and medical imaging [5].

Despite the well-established adjustment processes embed-
ded in modern digital cameras such as White Balance (WB),
there are still colour distortions due to the very variable camera
properties and quality. This occurs because of differences
in the manufacturing process of optical sensors by different
manufacturers and differences in the algorithms applied during
the processing of native sensor data into the final images.
As a result, it has bought the challenge of achieving accurate
colour interpretation across a range of devices and imaging
environments.

The concept of relative colour constancy (RCC) was pro-
posed in a previous work with the aim of quantifying the
ability to align colours of same objects between images
independent of illumination and camera [6]. It was developed
from the colour constancy (CC) concept where only the illu-
mination was considered [7]. To achieve RCC, it is important
to understand the image formation in a commercial digital
camera.

Essentially, image formation can be generalized into two
phases: optical and signal processing phases. In the optical
phase, light emitted from the source of illumination is partially
absorbed by materials presented in the imaged scene [7]. Light
reflected from the scene is focussed through a lens system and
Bayer filtered into three colour channels before reaching the
image sensor on most commercial RGB cameras. In the signal
processing phase, the RAW sensor output is initially generated
as a function of the light irradiation received. It is then
processed by image post-processing procedures where often
nonlinear transforms are applied to the intensity of each colour
channel before producing the final image which is usually
in JPEG format [8]. The illumination power distribution E
received by the image sensor of a typical digital camera at a
specific spatial location x can be modelled as the product of the
spectral power distribution of the illumination L , and albedo of
the scene Lambertian surfaces R at the corresponding location,
and sensor spectral sensitivity function (SSF) C [9], [10]:

E (x) =

∫
L (λ, x) R (λ, x)C (λ) dλ+ ε1 (1)

Next, the illumination power distribution E processed by
the image sensor is transformed to the RAW pixel intensi-
ties through a sensor response function (SRF) s [11]. The
final JPEG or PNG image D is colour transformed by
applying numerous image post-processing procedures such as
WB, demosaic, gamma correction, gamut mapping, colour
rendering, and data compression as denoted by o [8]. The
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Fig. 1. An illustration of the RGB image formation model as a product of illumination, material reflectance, SSF, and CRF. The final image is in a perceptual
colour space which is compared with the albedo (reflectance of materials) in the spectral domain.

combined effect of s and o is known as the camera response
function (CRF) and is denoted by f :

R AW = s (E)+ ε2 (2)
D = o (R AW )+ ε3 (3)
D = f (E)+ ε4 = o (s (E)+ ε2)+ ε3 (4)

The random noise ε in every phase of the imaging pipeline
cannot be ignored due to the limited camera quality. The
image formation pipeline and the produced image are visually
illustrated in Fig. 1.

Modern commercial digital cameras are usually equipped
with multiple versions of image post-processing procedures
such as scene and portrait mode. In this context, ’camera’
refers to as the combination of camera hardware and fixed
image post-processing procedure. The same camera hardware
coupled with different image post-processing procedures are
considered different cameras.

There are other user changeable camera properties such
as camera lens, exposure, aperture, and image sensor gain
and offset that affect the amount of light processed by
image sensor. Also, unfortunately, image post-processing algo-
rithms are proprietary information for most commercial digital
cameras such as smartphones and are commercially sensi-
tive and unpublished, making step-by-step correction infeasi-
ble [12]. This handicaps their naive use as scientific measuring
instruments.

To make scientific measurements from images acquired with
digital cameras/smartphones, an image processing procedure
that delivers image consistency across a wide range of devices
based on only the final JPEG/PNG images is required. Camera
response calibration where camera properties are calibrated in
advance for later correction is a widely applied strategy for
achieving RCC [6], [13]. Most camera calibration methods
are once-and-for-all methods, i.e., one calibration is done and
the calculated properties reused for later corrections. Standard
calibrations require professional operations and the use of
standard colour references such as standard colour charts and
monochromators with true colour or spectral values [14]. This
way, the colour outcome of the calibrated cameras can be
aligned with a standard or the physical nature of the light
to achieve a consistent colour performance across calibrated
cameras. However, these requirements have clearly become
an obstacle for the calibration of consumer-oriented portable
cameras as standard colour references are expensive and
inaccessible for ordinary consumers. Also, standard colour

charts can hardly be fitted in scientific imaging scenes with
microscope or light-box. Colour matching where the colour
of images are mapped with each other [13] is another pop-
ular strategy for achieving RCC. Existing colour matching
methods require a large number of corresponding colour
patches (CCPs) across the images in order to achieve an
accurate colour transformation from base images to corrected
images [15]. However, it is unusual to find a consistent set of
CCP locations across a range of images. A minimisation of
the number of CCPs (NoCCPs) required for colour matching
is needed before a transformation can be deployed in the field.

This paper presents a colour alignment model that calibrates
camera properties and corrects and matches colour of images
taken by different cameras and under varied illuminations
to achieve RCC. The model presumes inaccessible camera
properties, internal image formation, and raw sensor data.
And it demonstrates high applicability to be used on portable
devices. The work makes the following principal contributions:

1) The proposed colour alignment is modelled as a three-
step process: camera response calibration, response lin-
earisation, and colour matching.

2) The model works with non-standard reference, e.g.,
colour charts without true colour values, and in an
unsupervised manner by utilising a novel balance-of-
linear-distances (BoLD) feature.

3) It is applicable to be used on portable device and
operated by ordinary consumers as it can work with a
minimum requirement of utilising only four calibration
images and two CCPs for colour matching.

4) Finally, thorough evaluations and benchmarks of the
proposed model on three image datasets, i.e., two image
datasets of common scenes and an image dataset of
uncommon scenes mimicking scientific imaging scenes,
have been conducted, and their results indicate that
the proposed model achieved the state-of-the-art RCC
performance.

II. RELATED WORKS

A. White Balance

WB eliminates colour drift effects due to varied illumination
colours. It is the most widely used technique for achieving CC.
WB usually works in a two-step procedure: estimating the
colour of the light source and then compensating the colour
drift due to the illumination colours [7].

Illumination colour estimated from a single image can be
classified as arising from two analytical approaches: statistical
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and learning-based methods. Statistical methods estimate the
illumination colour mostly by statistical assumptions on a
single image. For instances, the Grey-World [7] assumes that
the world is grey on average and estimates the illumination
colour by combining the mean intensity of each colour chan-
nel. Similarly, the White-Patch combines the maximum of
each colour channel to estimate illumination colour [7]. The
Double-Opponent [16] achieves the estimation by mimicking
the physiological mechanism in human vision system. Other
statistical estimation methods include Shade-of-Grey [17],
Grey-Edge [18] and Spatial correlations [19]. The major
strengths of these statistical methods are their computational
efficiency and direct operation that does not need a training
or calibration process. The learning-based methods exploit
more comprehensive assumptions through a training phase.
The Bag-of-Colour-Feature automatically selects the optimal
statistical features for illumination colour estimation from
training images [20]. The Bayesian approach estimates the
illumination colour and reflectance of materials from the poste-
rior distribution of colour intensities [21]. Other learning-based
methods for achieving CC include those using k-nearest neigh-
bor [22], convolutional neural networks (CNN) [23], [24],
[25], [26], generative adversarial networks (GANs) [27], con-
volutional autoencoder (CAE) [28], [29], [30], etc.

In illumination colour correction, WB assumes the cam-
era obeys the von Kries hypothesis, i.e., linear independent
intra- and inter-sensor spectral sensitivities among all the
colour channels [31]. The illumination colour drift in images
taken by such cameras can be compensated by multiplying
a 3 × 3 diagonal matrix across each pixel on the pro-
duced images. The diagonal values of the matrix are the
channel-wise ratios between the perfect white and white-point
(i.e., the illumination colour) of the image.

B. Camera Response Calibration

Referenced and radiometric calibration are the two major
categories of methods for camera response calibration. Refer-
enced calibration methods mostly use standard colour refer-
ences, e.g., standard colour charts and monochromators. The
recommended operations to perform the referenced calibration
are standardized in ISO 17321-1:2012 [14]. Radiometric cali-
bration measures the nonlinearity in colour intensity. The non-
linearity in colour intensity is mainly caused by the nonlinear
CRF transformations during the image formation. Its presence
reduces the performance of computer vision tasks that require
linearity of colour intensity such as image mosaic [32], high
dynamic range imaging [33], and deblurring [34]. To estimate
the CRF, the most accurate way is to image a standard grey
chart [35] or a steady scene with multiple known expo-
sures [36], [37]. There are radiometric calibration methods
that measure the colour intensity nonlinearity in unsupervised
manners that without using the absolute properties such as true
colour values and pre-set camera exposures. Such methods
work by analysing histogram [38], geometry invariants [39],
and colour blending [40] in edge regions, and by using
probabilistic intensity similarity [41] and noise distribution

in each image [42]. Deep learning has also been utilised by
numeral recent works [43], [44].

A major obstacle in camera radiometric calibration is the
ambiguity between E , D, and CRF in the image formation
model [32], [40]. The root of this ambiguity is due to the
immeasurability of E that might have been scaled or off-
set by some value and inaccessible camera properties such
as exposure and aperture settings in the image formation.
This ambiguity is usually solved by presuming priori reg-
ularizations and constraints such as CRF monotonicity and
smoothness [37], [45].

C. Camera Response Nonlinearity

Nonlinearity in a camera response due to nonlinear trans-
formations by optics and software processing is well known.
Camera responses can be decoupled into colour intensity and
chromaticity components. Colour intensity is defined as the
sum of all the colour channels. Blue-and-red (BR) chromaticity
of an RGB colour space is denoted b and r :

b =
B
I

=
B

R + G + B
(5)

r =
R
I

=
R

R + G + B
(6)

g =
G
I

=
G

R + G + B
= 1−r − b (7)

Colour intensity linearity is defined as the one-dimensional
space that is linear to the light irradiance in the spectral
domain. The most widely adopted camera response nonlin-
ear model is the non-deterministic empirical response model
(EMoR) [46]. In the model, a small number of eigenvectors
that represent the space of CRF were calculated by applying
principal component analysis (PCA) to a database of 201 real-
world CRFs obtained from film and digital cameras (DoRF).
A CRF represented by the EMoR has the form:

f = H0 + θT H1:k (8)

where H0 is the mean of all CRFs in the DoRF, θ is the
coefficients, and H1:k is the first k eigenvectors with largest
eigen values.

Other popular nonlinear CRF models reported in the litera-
ture include the polynomial [47] and the generalized gamma
curve model (GGCM) [39].

Chromaticity linearity has not been well studied nor specifi-
cally defined. One possible definition of chromaticity linearity
is the Luther condition, i.e., the colour spaces that are linearly
correlated to human visual sensitivities such as the CIE colour
spaces [8], [15]. Since human colour perception is complex
and hard to quantify, the main significance of this definition is
the accurate colour reproduction for human visual interpreta-
tion, and yet it is applicable for chromaticity nonlinear mod-
elling. Another possible definition of the chromaticity linearity
is the adaptation of the von Kries hypothesis, i.e., a linear and
independent intra- and inter-sensor spectral sensitivity among
all the colour channels [31].
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Fig. 2. The three-step colour alignment framework. The framework mainly consists of camera response calibration, response linearisation, and colour matching
steps. u and v denote calibration and test images, respectively. v′ denotes the colour-linearised images. v′′ denotes colour-aligned images. f −1 represents the
calibrated inverse-CRF. α and β are the transformation coefficients.

III. PROPOSED METHOD

In this section, a three-step colour alignment framework
is proposed. The camera response calibration and colour
matching steps in the framework are also explained.

A. Colour Alignment Framework

As illustrated in Fig. 2, the proposed colour alignment
framework consists of three main steps: camera response
calibration, response linearisation, and colour matching. The
camera response calibration estimates the inverse of the non-
linearity in colour intensities measured by a camera w.r.t the
scene radiance. The test images taken by that camera are
colour-linearised by the nonlinear camera response calibrated.
In the final step, the intensity and chromaticity of the colour-
linearised images taken by different cameras are aligned to
each other to produce the colour-aligned images.

The proposed framework can also be formulated mathemat-
ically. Given a list of images, the goal of colour alignment is
to determine the optimal inverse-CRF (iCRF) in the camera
response calibration step and minimise the colour intensity

and chromaticity variation between images in the response
linearisation and colour matching steps:

arg min
θ

J
(

f −1
θ (u)

)
(9)

v′
= f −1

θ (v) =

 f −1
θ (D1)
...

f −1
θ (Dm)

 (10)

where θ is the optimal camera-dependent parameters to be
calibrated, J represents the colour deviations between images
and is calculated as shown by Eq. 16-20, f −1

θ is the parametric
reconstruction of iCRF for a specific camera, u and v are the
calibration and test image vector, respectively.

For the quantification of colour deviations between images,
a two-dimensional CCP vector needs to be constructed by
extracting CCPs from the images. It has the general form:

w =

 w1
...

wm

 =

 p1
1 . . . pn

1
...

. . .
...

p1
m . . . pn

m

 (11)
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where w is the CCP vector, m is the number of images, n is
the number of CCPs in each image, and p is the pixel vector
that contains colour values, either intensity or chromaticity,
which is calculated by averaging each colour patch.

In the camera response calibration step, the optimal iCRF
is determined to be the one that produces the lowest colour
distortions among the CCPs gathered across the calibration
images:

arg min
θ

J
(

f −1
θ (wu)

)
(12)

where wu denotes CCPs collected from calibration images.
In the next response linearisation step, the images under

examination are colour intensity linearised to v′ by the
iCRF determined in the first step. This process is denoted
by Eq. 10.

In the final colour matching step, colour intensity and
chromaticity of the colour-linearised images produced in the
previous step are matched to each other based on the CCP
vector extracted from the test images which is denoted by wv .
Linear transformation coefficients α and β are firstly estimated
from CCP vector wv through a regression process by minimis-
ing the colour deviations between images as in Eq. 15. Two
is the minimum number of CCPs needed for this estimation
since two points determine a line.

arg min
α,β

= J


 α1 p1

1 + β1 . . . α1 pn
1 + β1

...
. . .

...

αm p1
m + βm . . . αm pn

m + βm




(13)

The calculated coefficients are then used to perform linear
colour matching on the colour-linearised images:

v′′
= αv′

+ β =

 α1v
′
1 + β1
...

αmv′
m + βm

 (14)

In the rest of this section, the proposed camera response
calibration is firstly detailed, and followed by an explanation
of the proposed colour matching algorithms.

B. Camera Response Calibration

In this paper, camera response calibration is seen as the
process of estimating the nonlinearity in colour intensity. Two
calibration approaches are proposed:

1) Selection of the optimal CRF from the DoRF by exhaus-
tive search.

2) Calculation of the optimal CRF model parameters by
machine learning based Optimisation.

The EMoR is used as the CRF representation model in the
Optimisation approach.

Intensity distance is the intensity offsets between CCPs. The
intensity distances calculated from RAW images taken by a
digital camera (i.e., images with linear CRF) is visualised in
Fig. 3(a). It can be seen that they are almost symmetric along
the x-axis (i.e., w.r.t intensity of CCPs) when the applied

Fig. 3. Visual explanation of the BoLD feature. 20 images were taken
by each of these cameras. The images were taken under various uniform
illuminations. 24 CCPs were extracted from each of these images. The CCPs
were sorted based on their intensity values. The blue lines are rendered
from the calculated d. The green curve was drawn from the mean intensity
distance d̄. The area under the d̄ curve is marked yellow. And the red dashed
line denotes the symmetry axis of d̄.

CRF is linear. This is mainly due to the homogeneous and
normal noise distribution across the colour intensity range
during imaging. Images taken by another camera with a
nonlinear CRF led to asymmetric intensity distances as shown
in Fig. 3(b).

Based on this finding, both of the proposed approaches eval-
uate candidate iCRFs by a novel balance-of-linear-distances
(BoLD) feature which assumes a balanced intensity distances
from images produced with a linear CRF. The BoLD feature
is determined by the skewness of the mean intensity distance
curve. Based on this BoLD feature, a BoLD value is proposed
by combining the normalised feature with the area under the
mean intensity distance curve. Calculation of this value does
not require a knowledge of true colour values in the image
and works in an unsupervised process.

In order to calculate this BoLD value, colour intensity
values of the CCPs are firstly extracted from the images
used for calibration and encapsulated in a two-dimensional
CCP vector similar to that in Eq. 11. The rows of the vector
represent the different images used for calibration while the
columns represent varied intensities of the CCPs. The columns
of the CCP vector are sorted according to their mean values.
Then, colour intensity values in the CCP vector are converted
into irradiance values and aligned with each other based on
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the first and last columns in the sorted CCP vector:

arg min
α,β

= J


 α1 p1

1 + β1 α1 pn
1 + β1

...
...

αm p1
m + βm αm pn

m + βm


 (15)

w′
u =

 α1 f −1
θ

(
p1

1
)
+ β1 . . . α1 f −1

θ

(
pn

1
)
+ β1

...
. . .

...

αm f −1
θ

(
p1

m
)
+ βm . . . αm f −1

θ

(
pn

m
)
+ βm


(16)

where w′
u is the colour-aligned CCP vector.

The two-dimensional mean CCP vector W̄ is constructed by
joining m one-dimensional mean CCP vectors w̄ themselves
calculated by averaging colour-aligned CCPs along the cali-
bration images:

w̄ =

∑m
i=1 f −1

θ

((
w′

u
)

i

)
m

(17)

W̄ =

 w̄
...

w̄


 m (18)

Intensity distances are calculated as the element-wise dis-
tance between the colour-aligned CCP vector w′

u and mean
CCP vector W̄ :

d =
∣∣w′

u − W̄
∣∣ (19)

And the mean intensity distance curve is produced by
averaging d in the column direction:

d̄ =

∑m
i=1 di

m
(20)

Eventually, the BoLD value, denoted as B, is calculated by
the l2-norm of the normalised asymmetry coefficient and the
weighted area under the d̄ curve:

B = ∥η − λ1φ, λ2µ∥2 (21)

η =

∑
(x − x)3

s
(∑

(x−x)2
s

) 3
2

(22)

φ = max
(

d̄
)

+ min
(

d̄
)

− 1 (23)

µ =

∑
d̄ (24)

where η is the asymmetry coefficient, φ is the normalisation
term, µ denotes the area under the d̄ curve, x and x̄ are the
uniform sampled values on d and mean of the samplings. The
number of samplings s was empirically selected to be 100.
The normalisation term is included and weighted by λ1 to
minimise the effect due to skewed samplings in the colour
intensity range, i.e., intensities of CCPs in the images for
calibration are not normally distributed in [0, 1.0]. The area
under the curve is properly weighted by λ2 to adjust correction
magnitude.

The Selection approach directly chooses the optimal iCRF
from the DoRF. The optimal iCRF is selected by exhaustively
searching the 201 CRFs in the DoRF and choosing the best
one with minimum BoLD value as the cost.

Algorithm 1 Pixel-Wise Linear Colour Matching Algorithm

In addition to the BoLD value, smoothness terms are
added into the cost function of the Optimisation approach for
preventing discontinuous iCRF. Monotonicity in the CRF is
observed from CRFs in the DoRF. Thus, the iCRF is also
monotonic, and the monotonicity is included as a constraint
in the cost function for minimising ambiguity. The optimal
EMoR model parameters θ is calculated as:

θ = arg min
θ

∥∥∥∥∥∥∥∥∥∥
B, ψ1

∣∣∣ f −1
θ

′′
∣∣∣ , ψ2

√√√√√∑M
(

f −1
θ

′′
− f −1

θ

′′
)2

M

∥∥∥∥∥∥∥∥∥∥

2

2

subject to f −1
θ

′
> 0 (25)

where the second term is the micro-smoothness restriction that
prevents discontinuous iCRFs and is weighted by ψ1, the third
term is the macro-smoothness restriction that maintains the
overall shape of iCRF and is weighted by ψ2, M is the number
of homogeneous macro-samplings on the candidate iCRF and
was set to 10, the monotonicity is ensured by a positive first-
derived iCRF.

Eventually, the Optimisation approach reconstructs the
iCRF from the calculated EMoR parameters with a form
similar to that of Eq. 8:

f −1
= H−1

0 + θT H−1
1:k (26)

where H−1
0:k is the mean and first k eigenvectors of all iCRFs

in the DoRF.

C. Pixel-Wise Linear Colour Intensity and
Chromaticity Matchings

After the optimal iCRF has been calibrated, images taken
with the same camera can be transformed into a response-
linear space by interpolation on the estimated iCRF as shown
in Eq. 10. Once linearisation is complete, the colour intensity
and chromaticity of any two such images are linearly matched.
The colour intensity and chromaticity of a second image is lin-
early matched to that of the first using Algorithm 1. Note that
the α and β coefficients in this algorithm is the same to those
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Algorithm 2 Pixel-Wise Independent Colour Modification
Algorithm

in the previous sections except that they are in general forms
in the previous sections and are specific, i.e., for intensity and
chromaticity, in this algorithm. The algorithm to independently
modify the colour intensity and chromaticity without affecting
the other component is summarized in Algorithm 2.

IV. EXPERIMENTAL SETUP

This section details the experimental setup used to examine
and test the proposed model. Firstly, the three image datasets
used for the performance evaluations are introduced. Then, the
evaluation procedure and metrics and comparison methods for
evaluating are explained. Finally, the implementation details
used are described.

A. Image Datasets
Most existing image datasets for CC research

[49], [50], [51] lack of images taken by different smartphone
cameras. In order to thoroughly evaluate RCC performance
of the proposed model, three image datasets were used for
performing the validations and benchmarks. These datasets
include a newly created image dataset and two image
datasets modified and rendered from the Middlebury [48] and
Gehler-Shi [21], [22] datasets. Sample images of these three
datasets are demonstrated in Fig. 4.

The created image dataset, namely Belfast, contains
120 images taken by six different cameras. Images by each
camera were taken under 20 various and uniform illumina-
tions. The six cameras used were rear cameras of a Samsung
Galaxy S7 (Samsung, South Korea), a Hisense H10 (Hisense,
China), an iPhone6P (Apple, USA), and an iPad (Apple,
USA), and two digital single lens reflex (DSLR) cameras:

Fig. 4. Sample images taken by one of the camera in the three datasets
being used.

a Canon 60D (Canon, Japan) and an Olympus E-M10II
(Olympus, Japan). Among the 20 illuminations, 16 of them
were indoor and the rest were outdoor. Two 24-patch colour
charts in a Spyder SCK100 (Datacolor, USA) ColorChecker
were included in a common everyday-life scene in each image.
The colour charts in the images were all placed near the centre
of the imaging field and perpendicular to the line of camera
sight. The images were captured without High Dynamic Range
(HDR) and using auto-WB.

The modified Middlebury [48] dataset contains a total of
112 images with eight images taken by each of the 14 selected
DSLR cameras from the original dataset. These cameras were
selected due to their higher cross-channel response uniformity.
Images were taken under two illuminations and four exposures
for each of the 14 camera models. Each image is a Macbeth
colour chart without any other content. This dataset can imitate
scientific imaging scenes.

A total of 336 images were rendered and selected from the
Gehler-Shi [21], [22] dataset. These images were generated
from 14 different profiles of WB and image post-processing
procedures. A Macbeth colour chart was placed in common
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everyday-life scenes in the images. Four images with varied
illuminations were selected to be the calibration images for
each profile.

The CCP locations in the images (48 CCPs for each image
in the created Belfast dataset and 24 CCPs for each image
in the other two datasets) were carefully labelled by utilising
a custom-developed Python script so that the CCPs can be
aligned and compared with each other across different images.
The reason for including colour charts in the images is for the
ease of CCP extraction and comparison. The true colour values
of the CCPs on colour charts such as reflective spectrum, white
point, and CIE colour values were not included in the labels
since RCC evaluates colour alignment between measurements
rather than that between measurements and a standard.

B. Evaluation Procedure

All the three datasets were divided into two subsets, one
used for calibration, and the other used for testing and evalu-
ation. For the Belfast and modified Middlebury [48] datasets,
the number of images taken by each camera is evenly allocated
to the calibration and testing subsets, i.e., ten calibration and
ten testing images for each camera in the Belfast dataset and
four calibration and four testing images for each camera in the
modified Middlebury [48] dataset. While it is four calibration
images and 20 testing images for each profile in the rendered
Gehler-Shi [21], [22] dataset. For the Belfast dataset, only
the Macbeth colour chart (24 CCPs) was used for calibration,
while both of the colour charts (48 CCPs) were used for
performance evaluation. For the other two datasets, both the
calibration and performance evaluation used 24 CCPs.

To produce the colour-aligned images for evaluation, the
CCP vector was firstly extracted from the colour patches of
the colour charts appeared in the images used for calibration.
The iCRF of each camera was calibrated by using the extracted
CCPs. Then, the calibrated iCRF of each camera was used to
linearise every test image taken by that camera. The colour-
linearised image was colour matched to the image to be
compared to produce the colour-aligned image. Eventually,
the CCPs were extracted from the colour-aligned images and
quantitatively evaluated for the RCC performance.

C. Evaluation Metrics

The root-mean-square error (RMSE) [21], [40], [43],
[44], [46] recovery angular error (RAE) [18], [20], [21],
[52], [53] and 1E 2000 [22], [29] are common metrics to
quantify colour difference. The RMSE is an ideal metric
for quantifying colour intensity difference as it measures the
Euclidean distance between two compared CCPs. However,
the RMSE is inefficient when measuring chromaticity dif-
ference since chromaticity is the ratio of a colour channel
to the intensity. The RAE measures the angular difference
between two pixels or colours as directed vectors and is seldom
affected by colour intensity. Thus, it is used for estimating
the chromaticity difference between the compared CCPs. And
the 1E 2000 is used to quantify colour difference in visual
perception.

A smaller RMSE, RAE, or 1E 2000 value indicates a better
result. A 0 value illustrates identical colour of the compared
CCPs measured by that metric.

D. Comparison Methods

The handshake comparison strategy was used to evaluate
the RCC performance of an image collection. Each item,
i.e., either an image or a camera, will have a chance to be
compared with every other item in the comparison collection.
The number of comparisons is therefore 1

2 N (N − 1) where
N is the number of items in the comparison collection, e.g.,
number of images or camera models [6].

The handshake comparison results, either in RMSE, RAE,
or 1E 2000, of images taken by each camera, e, known as
single camera RCC performance, were firstly produced. For
cross camera RCC performance evaluation, different cameras
were also handshake-compared. The comparison results from
the handshake comparisons were collected into a result vector
z for statistical analysis:

z =

 e0
...

e−1


 1

4
m (m − 1) c (c − 1) (27)

where m is the number of images by each camera, and c is
the number of camera models to be compared.

The Median was calculated from the handshake comparison
results z. It was selected to be the best overall RCC perfor-
mance indicator as z is not normally distributed, and impacts
due to outliers can be minimised.

E. Implementation Details

The linear interpolation provided in NumPy [54] was used
to interpolate the iCRF. SciPy [55] was selected for conducting
the linear regression in the proposed colour matching algo-
rithms. Tensorflow [56] was used as the machine learning
framework for implementing the Optimisation approach. Since
the solution space is non-convex, 50 random initialisations
were applied for each optimisation. The Adam optimiser [57]
was applied for executing the optimisation. An exponential
decayed learning rate with an initial value of 0.5, decay step
of 1000, and decay rate of 0.9 was adopted to the optimiser.
The optimisation was performed for a maximum of 600 epochs
or terminated by a delta-cost less than 10−3.

All the processing and evaluations were performed on a
laptop computer with a 2.6-GHz Intel Core i7 processor and
a 16-GB memory. To accelerate the optimisation process,
a NVIDIA GeForce RTX 2060 GPU was employed.

V. EXPERIMENTAL RESULTS

This section demonstrates the outcomes of the experiments
and tests that reflect performance of the proposed colour
alignment model. Initially, the overall RCC performance of
the proposed model with utilising the BoLD feature and
Selection calibration approach (namely, BoLD-alignment) is
demonstrated. Then, the key model parameters and compo-
nents are evaluated and ablation studied. Finally, performance
benchmarks that compare the proposed model with the other
popular and state-of-the-art methods are illustrated.
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Fig. 5. Heatmap visualisation of the single and cross camera RCC performance on the Belfast (left), modified Middlebury [48] (middle), and rendered
Gehler-Shi [21], [22] (right) datasets. The BoLD-alignment performance was measured by 1E 2000.

Fig. 6. Single (blue curves) and cross (orange curves) RCC performance of the Optimisation (dashed curves) and Selection (solid curves) calibration
approaches with applying different NoCIs (2, 4, 6, 8, and 10) and NoCCP-CAs (6, 12, and 24). The grey area indicates the standard derivation (SD, n = 3)
by the Optimisation approach.

A. The Overall RCC Performance

Fig. 5 demonstrates the heatmap visualisations of the hand-
shake comparison results. NoCI, NoCCP-CA, and NoCCP-CM
used for producing these results were four, 24, and two,
respectively. Cross-validation was applied for performance
evaluation. The RCC performance of the proposed BoLD-
alignment were evaluated in terms of the 1E 2000 on all the
three image datasets.

The diagonal values of each heatmap reflect single camera
colour alignment performance, while the rests represent cross
camera performance. A homogeneous heatmap with minimum
error is ideal, which indicates close single and cross camera
RCC performance. The results reveal that the handshake
comparisons are not symmetric, i.e., colour alignment from
image A to B does not equal to that from image B to A,
yet, are symmetrically correlated. We can also see from the
figure that there are cameras consistently generated significant
larger errors, e.g., iPad and F_A4 in the Belfast and rendered
Gehler-Shi [21], [22] dataset. This is probably due to inac-
curate response calibration or more sophisticated image post-
processing applied on images taken by these cameras.

B. Model Parameters

In this section, the created Belfast dataset was used for
all the evaluations. A total of four model parameters were
investigated.

1) Number of Calibration Images (NoCI): The minimum
NoCI required for the proposed calibration to perform is an
important factor to be considered as the NoCI needed to be
prepared by a user should be as low as possible, while still
delivering satisfactorily accurate. The results demonstrated in
Fig. 6 were produced from both of the Optimisation and
Selection calibration approaches while applying the process
calibrated with a different NoCIs (i.e., 2, 4, 6, 8, and 10)
but keeping NoCCP-CA fixed at 12 and NoCCP-CM fixed
at 24. It can be observed from these results that the Selec-
tion approach outperformed the Optimisation approach for
both single and cross camera RCC performance in terms
of the RMSE. In addition, the single and cross camera
RCC performance in terms of the RMSE produced by the
Selection approach were closer to each other compared to
those produced by the Optimisation approach. While the RAE
performance did not show significant difference between the
Selection and Optimisation approaches, nor between the single
and cross camera RCC performance. In general, a larger
NoCI helped enhance the overall camera colour calibration
performance in terms of the RMSE yet has no effect on the
performance in terms of the RAE. In terms of the RMSE,
four was the minimum NoCI for the Selection calibration
approach to perform satisfactorily, while it is over ten for
the Optimisation approach. This indicates that the Selection
approach is more applicable because of the smaller NoCI
needed.
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Fig. 7. Single and cross camera RCC performance in terms of the RMSE and
RAE using different number and composition of CCPs for colour matching.
In this figure, n stands for neutral, c represents colourful such as red (r ),
green (g), and blue (b) CCPs. Colour matching using all the colour patches
on a Macbeth chart (24 CCPs) was the comparison baseline. The CCPs used
for each matching are indicated on top of the diagram where each coloured
square represents an applied CCP.

2) Number of Corresponding Colour Patches for Calibra-
tion (NoCCP-CA): NoCCP-CA is also an important param-
eter to be investigated as obtaining a CCP is expensive
in consumer-oriented imaging applications. The results were
produced from the proposed model while applying varied
NoCCP-CA (i.e., 6, 12, and 24) yet keeping NoCI fixed at
eight and NoCCP-CM fixed at 24. Fig. 6 presents that the
Selection approach produced better overall single and cross
camera RCC performance in terms of the RMSE and the
RAE. Cross camera RCC performance in terms of the RMSE
of the Optimisation approach improved as the NoCCP-CA
increased. The performance indicators remained stable across
all the NoCCP-CAs tested. This suggests that the Selection
approach was the better choice due to the superior and more
stable RCC performance. The smallest NoCCP-CA tested
(n = 6) was good enough to be used for the Selection
approach.

3) Number of Corresponding Colour Patches for Colour
Matching (NoCCP-CM): In this experiment, the effect and
performance of applying different NoCCP-CM and the selec-
tion of which colour patches to use were examined. Experi-
mental results were produced from the BoLD-alignment while
applying different number of and composition of CCPs for
colour matching yet keeping NoCI fixed at eight and NoCCP-
CA fixed at 24. Applying the colour matching step that uses all
the colour patches on a Macbeth chart as CCPs was assumed
to provide an upper limit performance, i.e., the best possible,
and was the comparison baseline. As shown in Fig. 7,
the results generated by using three, four, and 24 Macbeth
CCPs indicated that when a larger NoCCP-CM was used
it generally led to higher RCC performance. As CCPs are
expensive to be obtained, a balance between the NoCCP-CMs
and the RCC performance needs to be struck. Based on the
experimental results, a two mixed-colour CCPs (n = 2) is the
best option when CCPs for colour matching need to be limited
as it still gives a satisfactory performance, even though it
strongly depends on the selection of CCP colour composition.
24 Macbeth CCPs (n ≥ 4) is the better option when the
performance and stability of the algorithm take priority.

Fig. 8. Single (blue bars) and cross (orange bars, i.e., colour alignment
between images taken by different cameras) camera RCC performance con-
tributions in terms of the RMSE and RAE of the different components in the
BoLD-alignment are evaluated, compared and discussed in the text.

4) Selection of Colour Patches:

ratiorb =


b
r
, b > r

r
b
, r > b

∈ [1,+∞) (28)

The colour matching performance strongly depends on the
careful selection of the CCPs. When looking at two mixed-
colour CCPs that used red, green, and blue as the colourful
CCP, the performance generated with a red or a blue CCP were
satisfactory yet unacceptable for that generated with a green
CCP. This is due to the large BR chromaticity ratios (Eq. 28)
for the red (2.90) and blue (2.67) CCPs and small ratio in the
case of a green (1.27) CCP. This indicated that CCPs with
larger BR chromaticity ratio led to better correction accuracy.
Comparison of different compositions of CCPs (neutral or
colourful patches only and mixed patches) in Fig. 7 illustrated
that a mix of neutral and colourful CCPs improved the RCC
performance. This is due to the larger colour intensity and
chromaticity covering range they provide. These findings w.r.t
CCP selection also apply to CCPs for camera calibration.

C. Ablation Studies

In the ablation study, the effectiveness of the four major
components of the proposed BoLD-alignment, i.e., camera
calibration, colour intensity matching, chromaticity matching,
the new linear matchings, were studied. The effectiveness of
each component was evaluated by removing that component
to visualise each component’s contribution to the overall
performance by comparing the resulting performance with that
of the baseline. The Belfast dataset was used for conducting
these studies. The baseline performance was evaluated with
all processing steps applied except for a WB.

1) Ablation Study on the Colour Intensity Matching: The
test disabled the colour intensity matching and resulted in
a large increase in RMSE. It indicated that colour intensity
matching contributed greatly to the accuracy of colour inten-
sity correction (+3.93 RMSE).

2) Ablation Study on the Chromaticity Matching: This test,
with chromaticity matching disabled, resulted in a dramatic
increase in RAE. This validated the importance of chromaticity
matching on chromaticity correction accuracy (+3.93 RAE).
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TABLE I
SINGLE AND CROSS CAMERA RCC PERFORMANCE BENCHMARK EVALUATED IN TERMS OF THE RMSE (IN INTENSITY), RAE (IN DEGREE),

AND 1E 2000 USING THE THREE IMAGE DATASETS. OUR BOLD-ALIGNMENT ACHIEVED THE BEST PERFORMANCE

3) Ablation Study on the Proposed Linear Matchings:
In this test, conventional linear matchings were performed
without utilising our proposed linear matching algorithms.
The performance reduction compared to baseline high-
lights the important contribution of our proposed algorithms
(+4.31 RMSE and +2.02 RAE).

4) Ablation Study on the Camera Response Calibration:
This test disabled the camera response calibration and that
resulted in an increased RMSE showing the calibration’s con-
tribution to colour intensity correction accuracy. By including
the camera response calibration, the colour intensity correction
performance improved but had little effect on that of chro-
maticity (+5.32 RMSE and −0.03 RAE). This is because the
proposed model only corrects nonlinearity in colour intensity.

5) Ablation Study on the WB: The final test enabled the
WB step prior to applying the proposed BoLD-alignment.
Its results did not show significant difference in accuracies
(+0.75 RMSE and +0.15 RAE). This indicated that a WB
ahead of the proposed model had little influence on the model
performance.

D. Benchmarks

Two benchmarks were conducted to compare RCC perfor-
mance in terms of the RMSE, RAE, 1E 2000, and execution
times achieved by popular, state-of-the-art, and our proposed
methods.

1) Single and Cross Camera RCC Performance Benchmark
in Terms of the RMSE, RAE, and 1E 2000: Table I presents
the results of the benchmark where the proposed BoLD-
alignment was compared with the other popular and state-
of-the-art methods. The best performance of each metric is
highlighted in bold.

The first item listed in Table I is the evaluated RCC
performance on the original image datasets without applying
any correction. This acted as the baseline for the comparisons.

Subsequently, eight WB methods that correct images to
a neutral illumination were compared in the White Balance
category of the benchmark. Four neural network-related meth-
ods were included in this category. Default gamma correction
(γ = 2.2) was applied in each WB method. However, Most
results in this category did not demonstrate significant better
performance than baseline. An explanation is the failure of
scene assumptions used in these methods, e.g., the image is
assumed grey in average by the Grey-World yet the images in
the Belfast dataset, for example, have an averaged 4.29 RAE
from the closest neural colours which could lead to a miscal-
culated illumination colour that then distorted the correction.
Another explanation is that most of the WB methods are
designed to work on RAW images rather than on the sRGB
images, and the uniform default gamma correction applied did
not consider the device variances. And the colour distortions
due to image post-processing procedures in imaging pipelines
are complex and also vary from camera to camera. These
facts make the images hard to be corrected by simple WB.
C5 [30] produced very well RCC performance in terms of
RAE, especially on the two image datasets with common
scenes, by constructing a filter bank and uv histograms during
analysis.

In the Colour Matching category, the methods by
Cheung et al. [59] and Finlayson et al. [60] and the Vander-
mond method [15] used three CCPs (Colour patch number 1,
9 and 11 on the Macbeth chart). The explanation for their
results is the inadequate nonlinear mapping that results from
the limit in NoCCP-CMs (n = 3).
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TABLE II
EXECUTION TIME (IN SECONDS) BENCHMARK OF THE POPULAR AND
PROPOSED CALIBRATION (I.E., CAMERA RESPONSE CALIBRATION)

AND COLOUR CORRECTION (I.E., RESPONSE LINEARISATION
AND COLOUR MATCHING) METHODS

By comparison, our method that used only two (Colour
patch number 1 and 9) or three (Colour patch number 1,
9 and 11 on the Macbeth chart) NoCCP-CMs achieved the
best overall RCC performance on the three datasets, especially
on the modified Middlebury dataset of uncommon scenes that
imitates scientific imaging scenes. It outperformed the tested
statistical and learning-based WB methods that considered
only the illuminations. It also achieved superior performance
than colour matching methods that used identical or even
larger NoCCP-CMs.

2) Computation Time Benchmark for Calibration and
Correction: This benchmark compared the time taken to
calibrate each camera and correct an image. Table II presents
the results of this benchmark.

The Reference and Exposure camera response calibration
approaches are used for comparison purposes. In the Reference
approach that polynomial regressed (d = 6) on the standard
reference values accomplished within 0.005s. It was extremely
fast due to the well-optimised and relatively simple polynomial
regression code implementation. The Exposure calibration
approach calculated the optimal iCRF from a pre-set exposure
times and machine learning based optimisation. In contrast
to the relatively fast Reference approach, it took 165.77s for
the Exposure approach to complete. For our proposed camera
response calibration, the Selection approach took only 3.50s
to accomplish the task compared to 1812.33s taken by the
Optimisation approach.

In the second section it shows that our method (0.92s)
performed slightly slower than the statistical-based WB meth-
ods due to the nonlinear interpolation during the response
linearisation, yet faster than the learning-based methods.

VI. DISCUSSIONS

When it comes to the choosing between the Selection and
Optimisation calibration approaches, the experimental results

have unequivocally indicated that the Selection approach
almost always outperformed the Optimisation approach in its
accuracy, precision, and execution speed. Hence, the Selection
approach is almost certainly to be the better option.

Even though colour charts were imaged and utilised for the
ease of model validation and evaluation, the proposed colour
alignment model can certainly work with non-standard colour
references that are more accessible and easier-to-operate than
the colour charts. An automatic CCP detection method can
also be added to the model to further improve its applicability.

Finally, it can be said that the tests and benchmarks
demonstrate that the BoLD feature works as a procedure for
camera response calibration. Given its generality there is much
potential for applications in other fields where nonlinearity
needs to be measured and calibrated without the availability
of standard references.

VII. CONCLUSION

In this paper, a high-performance colour alignment model
that aligns colour of images taken by different cameras and
under varied illuminations has been proposed. The model
consists of three steps: camera response calibration, response
linearisation, and colour matching. The initial step needs
only be performed once for each device and is applicable to
commercial digital cameras that do not give access to internal
imaging sensor data. Access to standard colour references is
not required. The second step works much faster than a neural
network based method and is suitable to be used even for
portable devices, e.g., smartphones. While in the third step,
only two CCPs are needed as the minimum requirement to
perform the colour matching. It improves its applicability as
CCP is also expensive to obtain in consumer-oriented imaging
applications. Overall, our proposed model has achieved the
best RCC performance on three image datasets but still only
requires an acceptable complexity in terms of execution time
(3.50s for camera response calibration and 0.92s for correcting
an image) in the benchmarks.
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