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Abstract— High dynamic range (HDR) imaging is of funda-1

mental importance in modern digital photography pipelines and2

used to produce a high-quality photograph with well exposed3

regions despite varying illumination across the image. This is4

typically achieved by merging multiple low dynamic range (LDR)5

images taken at different exposures. However, over-exposed6

regions and misalignment errors due to poorly compensated7

motion result in artefacts such as ghosting. In this paper,8

we present a new HDR imaging technique that specifically9

models alignment and exposure uncertainties to produce high10

quality HDR results. We introduce a strategy that learns to11

jointly align and assess the alignment and exposure reliability12

using an HDR-aware, uncertainty-driven attention map that13

robustly merges the frames into a single high quality HDR14

image. Further, we introduce a progressive, multi-stage image15

fusion approach that can flexibly merge any number of LDR16

images in a permutation-invariant manner. Experimental results17

show our method can produce better quality HDR images with18

up to 1.1dB PSNR improvement to the state-of-the-art, and19

subjective improvements in terms of better detail, colours, and20

fewer artefacts.21

Index Terms— High dynamic range imaging, set processing,22

permutation invariance.23

I. INTRODUCTION24

DESPITE recent advances in imaging technology, captur-25

ing scenes with wide dynamic range still poses several26

challenges. Current camera sensors suffer from limited or Low27

Dynamic Range (LDR) due to inherent hardware limitations.28

The maximum dynamic range a camera can capture is closely29

related to (a) the sensor’s photosite full well electron capacity30

or saturation point, and (b) the black point, which is generally31

constrained by the uncertainty in the reading due to the32

dominant presence of noise.33

Different solutions have been proposed to overcome these34

limitations. The principle behind most of them relies on cap-35

turing observations of the same scene with different exposure36
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values. This enables a richer coverage of the scene’s original 37

dynamic range, but also requires a mechanism to align and 38

unify the different captured observations [1]. Some approaches 39

make use of multi-sensor or multi-camera configurations, 40

e.g. Tocci et al. [2], McGuire et al. [3], Froehlich et al. [4], 41

where a beam splitter enables the light to be captured by 42

multiple sensors. However, such setups are normally expen- 43

sive, fragile, with bulky and cumbersome rigs, and they 44

may suffer from double contours, light flares, or polarization 45

artefacts [4]. 46

More pragmatic solutions include only a single sen- 47

sor and obtain multiple exposures by either spatial 48

(i.e. per-pixel varying exposure) [5], [6] or temporal mul- 49

tiplexing (i.e. capturing differently exposed frames) [1]. 50

This simpler hardware setup (and related algorithms) has 51

recently seen widespread adoption, and is now found 52

in cameras ranging from professional DSLR to low-cost 53

smartphones. 54

Early multi-frame exposure fusion algorithms work remark- 55

ably well for almost-static scenes (e.g. tripod, reduced motion) 56

but result in ghosting and other motion-related artefacts for 57

dynamic scenes. Various approaches have achieved success 58

in reducing artefacts such as patch-based methods [7], [8], 59

noise-based reconstruction [9], sparse correspondences [10] 60

and image synthesis [11] but in recent years, Convolutional 61

Neural Networks (CNNs) have greatly advanced the state- 62

of-the-art for HDR reconstruction, especially for complex 63

dynamic scenes [12]. 64

Most HDR CNNs rely on a rigid setup with a fixed, 65

ordered set of LDR input images, which assumes the medium 66

exposure to be the reference image. The most common 67

mechanism for the merging step is image or feature con- 68

catenation, and thus for methods where the feature encoder 69

is not shared among input frames [13], there is a depen- 70

dency between reference frame choice, relative exposure and 71

input image ordering. Optimal exposure parameters [14] or 72

fast object motion might constrain the amount of relevant 73

frames available, and in general, broader flexibility in terms 74

of number of frames and choice of reference is necessary to 75

extend applicability without the burden of model tweaking or 76

retraining. 77

As for frame registration, previous models largely rely on 78

pre-trained or classical off-the-shelf optical flow methods that 79

are rarely designed or optimized for the characteristics of 80

exposure-bracketed LDR images. Recent pixel rejection or 81

attention strategies are disconnected from the alignment stage 82

and mostly ignore uncertainty in exposure or motion. 83
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In this paper, we propose a novel algorithm that addresses84

these limitations in a holistic and unified way. First, we design85

a HDR-specific optical flow network which can predict accu-86

rate optical flow estimates even when the input and target87

frames are under- or over-exposed. We do this by using88

symmetric pooling operations to share information between all89

n input frames, so any missing information in one frame can90

be borrowed from other frames. Further, we propose models91

of exposure and alignment uncertainties which are used by92

our flow and attention networks to regulate contributions from93

unreliable and misaligned pixels. Finally we propose a flexible94

architecture that can process any number of input frames95

provided in any order.96

The contributions of this paper are threefold:97

1) A lightweight HDR-specific optical flow network which98

can estimate accurate pixel correspondences between99

LDR frames, even when improperly exposed, by sharing100

information between all input frames with symmet-101

ric pooling operations, and is trained using an HDR-102

aware self-supervised loss that incorporates exposure103

uncertainty.104

2) Models of exposure and alignment uncertainty which105

we use to regulate contributions from unreliable and106

misaligned pixels and greatly reduce ghosting artefacts.107

3) A flexible architecture with a multi-stage fusion mech-108

anism which can estimate an HDR image from an109

arbitrary set of LDR input images.110

II. RELATED WORK111

In this section we review the HDR literature with a focus on112

relevant deep-learning multi-frame exposure fusion methods.113

For a broader overview we refer the reader to [15], [16].114

The seminal work of [12] was the first to introduce a training115

and testing dataset with dynamic scene content. Their proposed116

method for learning-based HDR fusion is composed of two117

stages: first, input LDR images are aligned using a classical118

optical flow algorithm [17] and then a CNN is trained to119

both merge images and potentially correct any errors in the120

alignment. Shortly after, [13] proposed a similar approach121

that does not perform a dense optical flow estimation, but122

rather uses an image-wide homography to perform background123

alignment, leaving the more complex non-rigid foreground124

motions to be handled by the CNN. However, this method125

is highly dependent on the structure of the reference image,126

and the magnitude and complexity of the motion. Thus,127

if certain regions are saturated in the reference image, it fails128

to accurately reconstruct them in the final result. Both [12]129

and [13] rely on the optimisation of the HDR reconstruction130

loss to implicitly learn how to correct ghosting and handle the131

information coming from different frames. However, neither132

provides an explicit mechanism to prevent incorrect informa-133

tion (e.g. overexposed regions) from influencing the final HDR134

estimation. Despite the noteworthy performance improvement135

over existing methods at the time, these approaches still suffer136

from ghosting, especially for fast moving objects and saturated137

or near-saturated regions.138

Yan et al. [18] address some limitations of its predeces-139

sors by establishing an attention mechanism to suppress140

Fig. 1. Our method, intermediate results, and comparisons. LDR input
images are shown on the left and our tone mapped result is in the centre.
The visualisations on the right are: I Input Image, II Exposure Map,
III Attention Map. The bottom row compares to several state-of-the-art
methods. Our uncertainty modelling more effectively handles regions of
overexposure and motion between input frames.

undesired information before the merging stage, e.g. misalign- 141

ments, overexposed regions, and focus instead on desirable 142

details of non-reference frames that might be missing in the 143

reference frame. In the work of Prabhakar et al. [19] parts 144

of the computation, including the optical flow estimation, are 145

performed in a lower resolution and later upscaled back to full 146

resolution using a guide image generated with a simple weight 147

map, thus saving some computation. [20] propose the first 148

end-to-end deeep learning based video HDR algorithm which 149

drastically improved inference speeds compared to classical 150

methods. 151

More recently, the state of the art in HDR imaging has 152

been pushed to new highs. [21] propose the first GAN-based 153

approach to HDR reconstruction which is able to synthesize 154

missing details in areas with disocclusions. Liu et al. [22] 155

introduce a method which uses deformable convolutions as 156

an alignment mechanism instead of optical flow and was the 157

winning submission to the 2021 NTIRE HDR Challenge [23]. 158

Contemporary work has explored and pioneered new training 159

paradigms, such as the weakly supervised training strategy 160

proposed by [24]. 161

Extending these methods to an arbitrary number of images 162

requires changes to the model definition and re-training. Set- 163

processing neural networks [25] can naturally handle those 164

requirements. In [26], a permutation invariant CNN is used 165

to deblur a burst of frames which present only rigid, 0-mean 166

translations with no explicit motion registration. For the HDR 167

task, [27] proposed a method that uses symmetric pooling 168

aggregation to fuse any number of images, but requires pre- 169

alignment [28] and artefact correction by networks which only 170

work on image pairs. 171

III. PROPOSED METHOD 172

Given a set of n LDR images with different exposure values 173

{I1, I2, . . . , In} our aim is to reconstruct a single HDR image 174

H which is aligned to a reference frame Ir . To simplify 175
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Fig. 2. Model architecture. Our model accepts any number of LDR images as input and aligns them with a HDR flow network which shares information
between frames with pooling operations. We then model exposure and alignment uncertainties which are used by our attention network to suppress untrustworthy
regions. Finally, the merging network consists of a grouped residual dense block with multi-stage max-pooling operations for gradual merging of input frames.

notation, we denote Ir = I1, but any input frame can be chosen176

as the reference frame. To generate the inputs to our model,177

we follow the work of [12], [13], [18] and form a linearized178

image L i for each Ii as follows:179

L i = I γ

i /ti , (1)180

where ti is the exposure time of image Ii with power-law non-181

linearity γ . Setting γ = 2.2 inverts the CRF, while dividing182

by the exposure time adjusts all the images to have consistent183

brightness. We concatenate Ii and L i in the channel dimension184

to form a 6 channel input image X i = [Ii , L i ]. Given a set185

of n inputs {X1, X2, . . . , Xn} our proposed network estimates186

the HDR image Ĥ by:187

Ĥ = h({X i } : θ), (2)188

where h(·) denotes our network, θ the learned weights of the189

network and Ĥ is the predicted radiance map in the linear190

domain. Our network accepts any number of frames n and191

is invariant to the order of the non-reference inputs. This is192

different from the work of [12], [13], [18] where the value193

of n is fixed to 3 and the order of inputs is fixed, and the194

work of [27] where only the fusion stage is performed on n195

inputs, but frame alignment and attention are performed on196

image pairs only. Our method performs alignment, regulates197

the contribution of each frame based on related alignment and198

exposure uncertainties and flexibly fuses any number of input199

frames in a permutation-invariant manner. Our network is also200

trained end-to-end and θ is learned entirely during the HDR201

training.202

A. Architecture Overview203

Our architecture is composed of: Learnable Exposure204

Uncertainty (Sec. III-C), HDR Iterative Optical Flow205

(Sec. III-D), Alignment Uncertainty and Attention (Sec. III-E),206

and Merging Network (Sec.III-F). An overview of the archi- 207

tecture can be seen in Figure 2. Our architecture makes use of 208

max-pooling operations to share information between frames 209

and to fuse frames together (Sec. III-B). This improves the 210

accuracy of our flow and attention networks and gives us 211

the advantage of an architecture that is flexible enough to 212

accept an arbitrary number of images. The flow network and 213

the attention network work together to align non-reference 214

frames to the reference frame and suppress artefacts from 215

misaligned and over-exposed regions. The merging network 216

then combines the aligned features to predict a single HDR 217

image. By explicitly modelling the two most common sources 218

of error, motion and exposure, we create a network that is 219

aware of uncertainty and is able to greatly reduce artefacts 220

compared to state-of-the-art methods, as shown in Figure 1. 221

B. Flexible Set Processing 222

Many state-of-the-art CNN HDR reconstruction methods 223

require a fixed number of inputs in fixed order of expo- 224

sure [12], [13], [18]. To overcome this limitation, we design 225

a set-processing network that can naturally deal with any 226

number of input images. Related concepts have previously 227

shown strong benefits for problems such as deblurring [26] and 228

we here propose to leverage set-processing and permutation 229

invariance tools for HDR fusion. 230

Given n input images, our network uses n identical copies 231

of itself with shared weights to process each image separately 232

in its own stream. We use a multi-stage fusion mechanism, 233

where features Fk
i of each individual stream i at an arbitrary 234

point k within the network can share information with each 235

other as follows: 236

Fmax
i = conv(

[
Fk

i , max(Fk
1 , . . . , Fk

n )
]
), (3) 237
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where max(·) denotes a max-pooling operation, [·] denotes238

concatenation and conv(·) denotes a convolutional layer (see239

Fig. 5). This operation is repeated at multiple points in the240

network. Finally, the outputs of each stream are then pooled241

together into a single stream with a global max-pooling242

operation Fmax
global = max(Fk

1 , . . . , Fk
n ). This result is processed243

further in the final layers of our network to obtain the HDR244

prediction. This allows the network to process any number245

of frames in a permutation invariant manner while still being246

informed by the other frames.247

C. Modelling Exposure Uncertainty248

A key limitation of LDR images is that any pixel values249

above the sensor saturation point results in information loss.250

Values approaching the saturation level are also unreliable due251

to negative post-saturation noise [14]. When reconstructing252

an HDR image from multiple LDR images, values at or253

close to the saturation point can produce artefacts in the final254

output. Furthermore, underexposed values close to zero are255

also unreliable due to dark current and low signal-to-noise256

ratio. We seek to regulate the contribution of such values by257

modelling our confidence in a given pixel value being correct.258

For a given input image Ii , we propose the following piecewise259

linear function where α and β are predicted by the network260

for each image:261

Ei =



1
α

Îi Îi < α

1 α ⩽ Îi ⩽ β

1
(1 − β)

(1 − Îi ) β < Îi

. (4)262

Here Îi denotes the mean value across the three RGB channels263

and Ei is the predicted exposure map which represents our264

estimated confidence in a given pixel. This function is plotted265

in Figure 4. We learn from data how to predict α and β by266

means of a shallow network, i.e. a convolution acting on the267

concatenation of [X i , Îi ] followed by a spatial average pooling.268

We constrain α and β such that 0 < α < 0.5 < β < 1.269

As Îi approaches 0 or 1, the pixel becomes increasingly270

unreliable and the value of the exposure mask approaches zero.271

The slope with which Ei approaches zero is determined by α272

and β. As shown in Figure 1 this allows us to regulate the273

contribution that improperly exposed regions in an image can274

have on our result.275

D. HDR Specific Efficient Iterative Optical Flow Network276

Recent learning based optical flow methods [29] typically277

do not work well for HDR. Successive frames can have large278

amounts of missing information due to overexposure, which279

makes aligning frames difficult. This is especially true if280

the reference and non-reference frames are both overexposed.281

We solve this issue by using max-pooling operations to share282

information between all n input frames in our flow network’s283

encoder, as described in Eq. (3). This lets the network fill in284

missing information from any of the n available input frames285

and predict more accurate flows.286

Fig. 3. Architecture of our HDR Iterative Optical Flow Network. The
feature encoder first downsamples the input features by 8x before the recurrent
convolutions iteratively refine the estimated optical flow field.

Fig. 4. We model exposure uncertainty as a piecewise linear function where α

and β are predicted by the network. Given the mean pixel values of an image,
Îi , our model predicts an image specific response of exposure confidence, Ei .

The architecture of our proposed flow network is inspired by 287

RAFT [29], however we design the network to be lightweight 288

and efficient. We do not use a context encoder, a correlation 289

layer or a convolutional gated recurrent unit, instead using only 290

simple convolutional layers to predict our optical flow field. 291

Given an input X i and an exposure mask Ei , we use 292

a convolutional layer to extract features Fi from X i . The 293

inputs into the flow network are then concatenated as follows: 294

[Fi , Fr , Ei ], where Fr corresponds to the features extracted 295

from the reference image. The flow network is informed 296

by Ei so that our predictions are aware of the exposure 297

uncertainty in the image. As recurrent convolutions can be 298

computationally expensive at full resolution, the flow network 299

first downsamples the input features by 8× using strided 300

convolutions. It then iteratively refines the predicted flow over 301

16 iterations, with a flow initialized to zero, to obtain the 302

optical flow field Oi via: 303

Oi = f ([Fi , Fr , Ei ]), (5) 304

where f (·) denotes our optical flow network. The optical 305

flow field is resized to the original resolution with bilinear 306

upsampling and used to warp our features Fi : 307

Fw
i = w(Fi , Oi ), (6) 308

where Fw
i are the warped features and w(·) denotes the 309

function of warping an image with an optical flow field. The 310

architecture of our flow network can be seen in Figure 3. 311

Unlike other methods which use fixed alignment [13], [27], 312

our flow network is trained in a fully self-supervised manner. 313

As ground truth optical flows for our datasets are unavailable, 314

we use the self-supervised photometric loss between the refer- 315

ence features Fr and the warped features Fw
i as supervision to 316
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guide the learning of the flow network. We multiply the loss317

by Er so that the reference frame is only used as supervision318

in regions where it is well exposed. We also apply the optical319

flow field to the exposure mask, so it remains spatially aligned320

with the warped features:321

Ew
i = w(Ei , Oi ), (7)322

where Ew
i is the warped exposure mask.323

E. Alignment Uncertainty and Attention324

Our attention network is informed by two measures of325

uncertainty: exposure and alignment. To model the alignment326

uncertainty we compute an uncertainty map Ui as:327

Ui = abs(Fw
i − Fr ) ◦ Er , (8)328

where abs(·) denotes the elementwise absolute value and329

◦ denotes element-wise multiplication. This map captures330

the difference in motion between the reference frame and331

the warped frame and helps inform our attention network332

of any inconsistencies in the alignment. We multiply by333

Er so that only the well exposed regions of the reference334

frame are used to calculate misalignments. By regulating the335

contributions from misaligned areas of the image, our network336

can significantly reduce ghosting in the final output. The337

exposure uncertainty is given by the warped exposure map Ew
i .338

The inputs to the attention network are then concatenated as339

follows [Fw
i , Fr , Ui , Ew

i ]. The attention network predicts a340

64 channel attention map Ai as follows:341

Ai = a([Fw
i , Fr , Ui , Ew

i ]), (9)342

where a(·) denotes our attention network. As in our flow343

network, we use max-pooling to share information between344

all n input frames. We then obtain our regulated features by345

multiplying the warped features Fw
i by the attention map and346

the exposure map:347

F ′

i = Fw
i ◦ Ai ◦ Ew

i , (10)348

where ◦ denotes element-wise multiplication and F ′

i denotes349

the regulated features. Multiplication by the exposure map350

enforces a strict constraint on our network and prevents unre-351

liable information leaking into our output. Our HDR-aware352

attention effectively regulates the contribution of each frame,353

taking into account both alignment and exposure uncertainty.354

F. Merging Network355

Our merging network takes the regulated features obtained356

from Equation 10 and merges them into a single HDR image.357

The merging network is based on a Grouped Residual Dense358

Block (GRDB) [30], which consists of three Residual Dense359

Blocks (RDBs) [31]. We modify the GRDB so that each360

stream can share information with the other streams for a361

multi-stage fusion of features. An overview of the fusion362

mechanism can be seen in Figure 5. Specifically we add363

a max-pooling operation after each RDB which follow the364

formulation described in Equation 3. This allows the network365

to progressively merge features from different streams, instead366

Fig. 5. An overview of our multi-stage fusion mechanism. The green
arrows show the direction of information flow between the different streams.
By sharing information between streams at multiple points, the network is
able to produce clear, detailed images.

of merging them together in a single concatenation step where 367

information might be lost. This is followed by a final global 368

max-pooling operation which collapses the n streams into one. 369

The merging network then processes this result further with a 370

global residual connection and refinement convolutions. 371

G. Loss Function 372

As HDR images are not viewed in the linear domain, 373

we follow previous work and use the µ-law to map from the 374

linear HDR image to the tonemapped image: 375

T (H) =
log(1 + µH)

log(1 + µ)
, (11) 376

where H is the linear HDR image, T (H) is the tonemapped 377

image and µ = 5000. We then estimate the ℓ1-norm between 378

the prediction and the ground truth to construct a tone mapped 379

loss as follows: 380

Ltm =

∥∥∥T (Ĥ) − T (H)

∥∥∥
1

. (12) 381

To improve the quality of reconstructed textures we also use 382

the perceptual loss as in [32]. We pass the tonemapped images 383

through a pre-trained VGG-19 [33] and extract features from 384

three intermediate layers. We reduce the ℓ1-norm between the 385

features of the ground truth and our prediction: 386

Lvgg =

∥∥∥φ(T (Ĥ)) − φ(T (H))

∥∥∥
1

, (13) 387

where φ is a pre-trained VGG-19 network. Finally, to provide 388

supervision for our optical flow network, we calculate a simple 389

photometric loss between the warped features Fw
i and the 390

reference features Fr and multiply by Er to limit supervision 391

to well exposed regions in the reference frame: 392

Lphot =
∥∥(Fw

i − Fr ) ◦ Er
∥∥

1 , (14) 393

where abs is the elementwise absolute value. Our total loss 394

function can be expressed as: 395

Ltot = Ltm + Lphot + 10−3Lvgg . (15) 396

H. Implementation Details 397

During training, we take a random crop of size 398

256×256 from the input image. We perform random horizontal 399

and vertical flipping and random rotation by 0◦, 90◦, 180◦ or 400

270◦ degrees to further augment the training data. We train 401
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using a batch size of 16 and a learning rate of 0.0001 with the402

Adam optimizer. During test time, we run inference on the full403

test image of size 1500×1000 for the Kalantari et al. dataset,404

and 1536 × 813 for the Chen et al. dataset. We implement405

the model in PyTorch, and train the model on 4 Nvidia V100406

GPUs for approximately 2 days.407

IV. RESULTS408

We conduct several experiments both comparing against409

well-known state-of-the-art algorithms and also individually410

validating the contributions in an extensive ablation study. The411

experimental setup is described below.412

1) Datasets: We use the dynamic training and testing413

datasets provided by Kalantari and Ramamoorthi [12] which414

includes 89 scenes in total. Each of these scenes include three415

differently exposed input LDR images (with EV of −2.00,416

0.00, +2.00 or −3.00, 0.00, +3.00) which contain dynamic417

elements (e.g. camera motion, non-rigid movements) and a418

ground-truth image aligned with the medium frame captured419

via static exposure fusion. Additionally we use the dynamic420

testing dataset provided by Chen et al. [34] for further evalua-421

tion. As this dataset does not have a corresponding training set,422

all methods are trained on the Kalantari dataset and evaluated423

on the Chen dataset. We test on the 3-Exposure setting which424

has the ground truth aligned to the middle exposure. To keep it425

consistent with training, we restrict the number of input frames426

to three with EVs of −2.00, 0.00, +2.00. For purely qualitative427

evaluation of our method, we include testing sequences from428

the Tursun [35] dataset.429

2) Metrics: We include seven different objective metrics430

in our quantitative evaluation. First, we compute the PSNR-L,431

which is a fidelity metric computed directly on the linear HDR432

estimations. HDR linear images are normally tonemapped for433

visualization, and thus we include PSNR-µ, which evaluates434

PSNR on images tonemapped using the µ-law, as defined in435

Eq. (11), which is a simple canonical tonemapper. We also436

calculate PSNR-PU, which uses the perceptual uniform encod-437

ing (PU21) for HDR images introduced by [36] which aims438

to improve the correlation between standard metrics and439

subjective scores on HDR images. For each of the three image440

domains (linear, µ-tonemapped, PU21), we also calculate the441

SSIM (Structural Similarity Index) metric introduced by [37]442

which aims to evaluate perceived changes in the underlying443

structure of the image. This gives us three further metrics,444

namely SSIM-L, SSIM-µ and SSIM-PU. Lastly, we also com-445

pute the HDR-VDP 2.2 [38], which estimates both visibility446

and quality differences between image pairs. For each metric,447

we also report a confidence interval calculated using a t-test448

at the 95% significance level. We compute the confidence449

intervals per image and report the mean across the test set.450

A. Ablation Studies451

We evaluate the contribution of the different parts of our452

model architecture on the Kalantari dataset.453

In Table I, we evaluate the quantitative impact of using our454

multi-stage fusion mechanism as well as the performance gain455

TABLE I
AN ABLATION STUDY SHOWING THE CONTRIBUTIONS OF OUR PROPOSED

FUSION MECHANISM, HDR ITERATIVE FLOW, LEARNABLE EXPOSURE
MODELLING AND ALIGNMENT UNCERTAINTY

Fig. 6. Qualitative evaluation of our model on a test scene from the Tursun
dataset with large foreground motion and severe over/under-exposure. Our
exposure uncertainty is able to regulate the contributions of overexposed pixels
in the window panes while our max-pooling mechanism restores details which
are not visible in the reference frame.

Fig. 7. Qualitative evaluation of our model on a test scene from the Tursun
dataset with a fast moving object. Our efficient flow network reduces ghosting
artefacts while our exposure uncertainty reduces exposure artefacts.

from our proposed flow network and our uncertainty mod- 456

elling. Our baseline model uses the same architecture as our 457

proposed method, but with the flow network, uncertainty mod- 458

elling and multi-stage max-pooling removed, instead using 459

concatenation as the fusion mechanism, and the attention 460

mechanism from [18]. We also qualitatively evaluate the 461

impact of our contributions in Figures 6, 7 and 8. 462

1) Fusion Mechanism: We show in Table I that using 463

our multi-stage fusion mechanism (MSM) outperforms con- 464

catenation (Baseline Model) by 0.39dB PSNR-L and 0.27dB 465

PSNR-µ. The progressive sharing of information between 466

streams allows the network to retain more information and 467

produce sharper, more detailed images. 468
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TABLE II
QUANTITATIVE RESULTS ON THE KALANTARI et al. [12] DATASET. BEST PERFORMER DENOTED IN BOLD AND

RUNNER-UP IN UNDERSCORED TEXT. † VALUES AS REPORTED BY AUTHORS

Fig. 8. Qualitative evaluation of our model on a test scene from the Tursun
dataset with multiple fast moving objects which are present in all input frames.
The baseline model struggles with ghosting artefacts, indicated by the green
arrows. Our method is able to eliminate these artefacts entirely.

2) Motion Alignment and Modelling Uncertainty: We look469

at the performance of our proposed flow network and uncer-470

tainty modelling in Table I. Our flow network (MSM + Flow)471

improves PSNR-L by a large 0.7dB, and PSNR-µ by 0.05dB.472

compared to using just MSM. We validate the contribution of473

our learnable model of exposure uncertainty by comparing it to474

the non-learnable fixed exposure model used by [12]. We fix475

the values of α and β to match the triangle functions used476

to generate the ground truths of the Kalantari dataset, which477

are in essence the oracle α and β parameters. Our learnable478

exposure modelling (MSM + Flow + Exposure Uncertainty)479

shows an improvement in PSNR-µ of 0.07dB and PSNR-L480

of 0.08dB compared to the fixed exposure model (MSM +481

Flow + Fixed Exposure) In this case, the gain from learning482

exposure values is small as it is possible to easily fix the values483

to their optima due to prior knowledge of how the dataset484

was created. However, this is not always possible, especially485

in scenarios with different numbers of input images and486

exposure levels, where the underlying ideal weights are not487

known. Our decision to learn the weights allows our model to488

handle any number of input frames without any manual tuning.489

We also validate the contribution of our alignment uncertainty490

(MSM + Flow + Fixed Exposure + Alignment Uncertinaty),491

which gives an improvement in PSNR-µ of 0.07dB and492

PSNR-L of 0.32dB when compared to using only exposure 493

uncertainty. 494

B. Performance Evaluation 495

We evaluate the performance of our proposed method for 496

the HDR estimation task and compare it to other state-of-the- 497

art methods both quantitatively and qualitatively. The methods 498

included in our benchmark cover a broad range of approaches, 499

namely: the patch-based method of Sen et al. [7], methods 500

which use traditional alignment followed by CNNs to correct 501

dense and global alignment, [12], [13], [24], the flexible 502

aggregation approach of [27] that also uses dense alignment, 503

methods which rely on attention or feature selection followed 504

by a CNN to deghost and merge images [18], [40], a GAN- 505

based approach which can synthesize missing details in areas 506

with disocclusions [22] and a method which uses deformable 507

convolutions as an alignment mechanism [22]. For the 508

Chen et al. test set, we also compare against the HDR video 509

method proposed by [34], which uses a coarse to fine archi- 510

tecture to align and reconstruct input frames. As this method 511

requires seven input frames for the three exposure setting, 512

we do not re-train this on the Kalantari dataset and instead 513

use the pre-trained weights provided by the authors. We show 514

in Table II the quantitative evaluation on the Kalantari test 515

set. The differences in PSNR between our method and the 516

runners up on the Kalantari dataset are large (i.e. +1.1dB 517

PSNR-PU, +0.4db PSNR-µ, +0.8dB PSNR-L). Similarly, the 518

HDR-VDP-2 score obtained by our method outperforms all 519

others by a wide margin (i.e. 0.8). Furthermore, we outperform 520

all methods on all seven metrics, showing our method is 521

consistently better across different evaluation criteria. To fur- 522

ther evaluate the consistency of our improvement over other 523

methods, we look at the distribution of PSNRs per image 524

across the Kalantari test set. In Figure 12, we show the 525

improvement achieved in PSNR-µ of our method and other top 526

performers over AHDR [18], which is a well known and strong 527

baseline method in HDR imaging. Our method demonstrates a 528

consistent and significant improvement over AHDR, being the 529

only method which achieves an improvement in performance 530

on every single test image. Apart from a few exceptions, our 531

method also outperforms the existing state-of-the-art methods 532

for most images. We observe similar performance on the 533
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Fig. 9. Qualitative evaluation of our method for an image from the Kalantari test set. Our method obtains images with noticeably less ghosting artefacts,
together with sharper and finer details. Best viewed zoomed-in.

Fig. 10. Qualitative evaluation of our method for an image from the Kalantari test set. Our method obtains images with noticeably less ghosting artefacts,
together with sharper and finer details. Best viewed zoomed-in.

Chen et al. dynamic test set, demonstrating the generalization534

ability of our model on out of domain data. Our method is best535

or second best in six out of seven metrics, with a significant536

improvement in PSNR-µ (i.e 0.5dB) over the runner up537

Chen et al. [34]. We outperform Chen et al. on several key 538

metrics such as PSNR-PU, PSNR-µ, SSIM-PU and SSIM-µ 539

despite the fact their method is trained on video data and has 540

an in-domain advantage. 541
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Fig. 11. Qualitative evaluation of our model on different numbers of input frames of varying exposures. The quality of the reconstruction clearly increases
with the number of input frames used. Our model can utilize information from all 9 input frames, despite having only seen 3 input frames during training.

Fig. 12. We show performance per image on the Kalantari test set of the
best performing methods and associated confidence intervals as shaded areas.

We also quantitatively evaluate the performance of our542

optical flow network compared to previous optical flow meth-543

ods in Table V. We compare against the traditional method544

introduced by Liu et al. [17] which is used by [12] and [24]545

in their HDR pipelines, as well as the deep learning based546

approach introduced by Sun et al. [28] which is used by [27]547

to pre-align input frames. We substitute our optical flow548

network with the comparison methods but we keep the rest549

of our proposed architecture the same. We show that our flow550

network improves on the runner up by 0.55dBs in PSNR-µ and551

0.12dBs in PSNR-L, while having the additional advantages of552

being end-to-end trainable and requiring no pre-training with553

ground truth optical flows.554

Fig. 13. Qualitative evaluation of our method for an image from the Chen test
set. Our method performs well even in low light conditions while other deep
learning methods suffer from ghosting and artefacts. Best viewed zoomed in.

In Figures 9, 10, and 13 we show some visualizations of our 555

algorithm compared with the benchmarked methods for qual- 556

itative, subjective evaluation. All other methods present traces 557

of ghosting artefact around the edges near a moving object, 558

especially where disocclusions happen and one or more frames 559

have overexposed values in those locations (e.g. moving head, 560

moving arm). Our method tackles such challenges effectively 561

thanks to the exposure confidence awareness, and strongly 562

suppresses the ghosting artefact. Additionally, our method also 563

demonstrates better performance when it comes to edges and 564
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TABLE III
QUANTITATIVE RESULTS ON THE CHEN et al. [34] DYNAMIC DATASET. BEST PERFORMER DENOTED IN BOLD AND RUNNER-UP IN UNDERSCORED

TEXT. *CHEN IS TRAINED ON A SYNTHETIC VIDEO DATASET WHILE ALL OTHER METHODS ARE TRAINED ON KALANTARI

Fig. 14. Qualitative comparison of our model trained on all permutations with different input frames. When the medium frame is well exposed, our model
can attain a high quality prediction with just one frame. There is no noticeable increase in image quality when more inputs are provided.

Fig. 15. Qualitative comparison of our model trained on all permutations with different input frames. When the medium frame is overexposed, our model is
not able to completely hallucinate details in large overexposed regions. The short frame is essential to reconstruct the missing details. There is no noticeable
improvement in image quality from including the extremely overexposed long frame.

textures (e.g. building facade), as well as out of domain low-565

light performance.566

C. Flexible Imaging567

We show that our model is flexible enough to accept an568

arbitrary number of images without the need for re-training.569

In Table IV we evaluate the performance of our proposed570

model when trained and tested on different numbers of images571

with different exposures. We use the following input frame572

configurations for training and testing: Short + Medium +573

Long (S + M + L), Short + Medium (S + M), Medium +574

Long (M + L), Medium (M). The reference frame in all575

settings is the medium frame, which is spatially aligned to 576

the ground truth. As expected, performance is best when 577

the testing configuration is seen during training. Our model 578

trained on all permutations achieves competitive cross-setting 579

performance, obtaining the best results for the S + M and 580

M + L settings. It is also competitive with our best model 581

for the M and S + M + L settings, without needing any 582

extra training time, and is capable of accepting a range of 583

different input configurations without the need for re-training. 584

In fact, we show that our model using only two frames 585

(S + M) can obtain results outperforming current state-of- 586

the-art methods using all three frames in PSNR-µ [21] and 587
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Fig. 16. Qualitative evaluation of our model using just the short frame
as input. When the input frame is severely underexposed (top), we see
quantization and noise related artefacts. However when the input frame is
well exposed (bottom), the output is free of artefacts.

TABLE IV
COMPARISON OF DIFFERENT TRAINING REGIMES ON THE KALANTARI

TEST SET USING OUR PROPOSED MODEL. * BATCHES SAMPLED
UNIFORMLY FROM THE TWO OPTIONS. ** BATCHES SAMPLED

UNIFORMLY FROM ALL FOUR OPTIONS. THE FOUR
OPTIONS ARE: S + M + L, S + M, M + L, M

TABLE V
QUANTITATIVE COMPARISON OF DIFFERENT OPTICAL FLOW

METHODS ON THE KALANTARI TEST SET

PSNR-L [24]. We qualitatively show the performance gains588

from our flexible architecture in Figure 11. The figure shows589

that our method works with 3, 5, 7, or 9 input frames with590

varying exposures from −4.00 to +4.00, without the need to591

re-train. As the number of frames increases, the reconstruction592

quality also clearly increases (i.e. the colour and detail of the593

flames improves as we go from 3 to 9 frames). Our proposed594

method is capable of utilizing the information provided in595

all 9 input frames. In Figure 14 we show that our model596

is also capable of producing high quality HDR outputs with597

fewer than 3 input frames. Furthermore we show in Figure 17598

Fig. 17. Our method is flexible enough to accept any frame as the reference
frame without re-training, providing superior choice to the user.

TABLE VI
A COMPARISON OF RUNTIMES OF OUR METHOD ON DIFFERENT INPUT

RESOLUTIONS AND NUMBER OF INPUT FRAMES, COMPUTED
ON AN NVIDIA V100 GPU

TABLE VII
BREAKDOWN OF OUR MODEL PARAMETERS

BY MODEL SUB-COMPONENTS

that our method can use any frame as the reference frame 599

without re-training, providing superior flexibility and choice 600

when compared to state-of-the-art methods. 601

D. Parameters and Runtime 602

We provide a breakdown of our model parameters by sub- 603

components in Table VII and provide a comparison of our 604

flow network with state-of-the-art optical flow methods in 605

Table VIII. Our flow network is an order of magnitude smaller 606

than [28], which is used by [27] to align images, and 6× 607

smaller than RAFT [29]. We also explore how the runtime of 608

our model varies depending on both the input resolution and 609

the number of input frames in Table VI. The model runtime 610

grows approximately linearly with the number of input frames, 611

and quadratically with the input resolution. 612

E. Limitations 613

One limitation of our method is that it is not able to 614

hallucinate details in large over-exposed regions, as seen in 615

Figure 15. The missing information needs to be provided in 616

one of the input frames for our model to be able to accurately 617

reconstruct the HDR image. This is not surprising given that 618
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TABLE VIII
A COMPARISON OF THE NUMBER OF PARAMETERS IN OUR EFFICIENT

FLOW NETWORK AND OTHER STATE-OF-THE-ART
FLOW NETWORKS

the loss functions used during training have a focus on HDR619

reconstruction. There is potential to improve our single image620

HDR performance by exploring a training strategy similar621

to those used for inpainting. Similarly our model can not622

fully denoise extremely underexposed regions, as shown in623

Figure 16. We also note that for the datasets used in our624

work, the CRF is a simple fixed gamma curve with γ = 2.2,625

as defined by the dataset authors. However in a general case,626

the gamma correction we use is only a coarse approximation627

of the CRF and we rely on the network to implicitly perform628

finer adjustments. We expect accurate and explicit estimation629

of the CRF [41], [42] to positively impact the reconstruction630

performance of our model, especially for cases where the CRF631

is non-trivial. Finally, although our model can theoretically632

accept any number of input frames, the amount of activation633

memory required increases linearly with the number of input634

frames. On a single Nvidia V100 GPU, we can process up to635

nine full sized input frames from the Tursun dataset as shown636

in Figure 11.637

V. CONCLUSION638

In this paper we explored modelling exposure and alignment639

uncertainties to improve HDR imaging performance. We pre-640

sented (1) an HDR-specific optical flow network which is641

capable of accurate flow estimations, even with improperly642

exposed input frames, by sharing information between input643

images with a symmetric pooling operation. (2) We also644

presented models of exposure and alignment uncertainty which645

we use to regulate contributions from unreliable and mis-646

aligned pixels and greatly reduce ghosting artefacts. (3) Lastly647

a flexible architecture which uses a multi-stage fusion to648

estimate an HDR image from an arbitrary set of LDR input649

images. We conducted extensive ablation studies where we650

validate individually each of our contributions. We com-651

pared our method to other state-of-the-art algorithms obtaining652

significant improvements for all the measured metrics and653

noticeably improved visual results.654
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