
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022 5257

Extendable Multiple Nodes Recurrent Tracking
Framework With RTU++

Shuai Wang , Hao Sheng , Member, IEEE, Da Yang , Yang Zhang, Yubin Wu, and Sizhe Wang

Abstract— Recently, tracking-by-detection has become a pop-
ular paradigm in Multiple-object tracking (MOT) for its concise
pipeline. Many current works first associate the detections to
form track proposals and then score proposalns by manual func-
tions to select the best. However, long-term tracking information
is lost in this way due to detection failure or heavy occlusion.
In this paper, the Extendable Multiple Nodes Tracking frame-
work (EMNT) is introduced to model the association. Instead
of detections, EMNT creates four basic types of nodes including
correct, false, dummy and termination to generally model the
tracking procedure. Further, we propose a General Recurrent
Tracking Unit (RTU++) to score track proposals by captur-
ing long-term information. In addition, we present an efficient
generation method of simulated tracking data to overcome the
dilemma of limited available data in MOT. The experiments
show that our methods achieve state-of-the-art performance on
MOT17, MOT20 and HiEve benchmarks. Meanwhile, RTU++
can be flexibly plugged into other trackers such as MHT, and
bring significant improvements. The additional experiments on
MOTS20 and CTMC-v1 also demonstrate the generalization
ability of RTU++ trained by simulated data in various scenarios.

Index Terms— Multi-object tracking, data association, scoring
mechanism, recurrent network, simulated data.

I. INTRODUCTION

MULTI-OBJECT tracking (MOT) has always been a
crucial challenge in computer vision applications

such as urban surveillance, human-computer interaction, and
autonomous driving. Recently, with the progress in object

Manuscript received 31 October 2021; revised 2 June 2022 and 30 June
2022; accepted 10 July 2022. Date of publication 26 July 2022; date of current
version 8 August 2022. This work was supported in part by the National Key
Research and Development Program of China under Grant 2019YFB2102200,
in part by the National Natural Science Foundation of China under Grant
61872025, in part by the Science and Technology Development Fund, Macau
SAR under Grant 0001/2018/AFJ, in part by the Open Fund of the State Key
Laboratory of Software Development Environment under Grant SKLSDE-
2021ZX-03, and in part by HAWKEYE Group. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Prof. Clinton Fookes. (Corresponding author: Hao Sheng.)

Shuai Wang, Da Yang, Yubin Wu, and Sizhe Wang are with the State Key
Laboratory of Virtual Reality Technology and Systems, School of Computer
Science and Engineering, Beihang University, Beijing 100191, China, and
also with the Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon
City, Hangzhou, Yuhang 310023, China (e-mail: shuaiwang@buaa.edu.cn;
da.yang@buaa.edu.cn; yubin.wu@buaa.edu.cn; sizhewang@buaa.edu.cn).

Hao Sheng is with the State Key Laboratory of Virtual Reality Technology
and Systems, School of Computer Science and Engineering, Beihang Uni-
versity, Beijing 100191, China, also with the Beihang Hangzhou Innovation
Institute Yuhang, Xixi Octagon City, Hangzhou, Yuhang 310023, China, and
also with Faculty of Applied Sciences, Macao Polytechnic University, Macau,
SAR, China (e-mail: shenghao@buaa.edu.cn).

Yang Zhang is with the College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing 100029, China (e-mail:
yang_zh@mail.buct.edu.cn).

Digital Object Identifier 10.1109/TIP.2022.3192706

detection, tracking-by-detection (TBD) has become a popular
paradigm for its clear pipeline: (i) detect objects from images,
(ii) link detections to form track proposals, (iii) score track
proposals and select the best. However, despite such progress,
MOT remains a very challenging task due to many factors like
occlusions, especially in the scoring step. Many works [1]–[3]
take account of various information to score tracks, but they
often fail in crowded scenes due to heavy occlusion and
complex object interaction.

Many online approaches such as DeepSORT [4] and Fair [5]
filter track proposals by motion distance and regard appear-
ance similarity as the score of track proposal. This scoring
mechanism is limited because the appearance feature is easy
to be polluted by occlusion. Some other trackers like MHT [6]
and network flow [7] design manual scoring functions to com-
bine appearance and motion information. Whereas, the manual
scoring function is unsatisfactory under long-term detection
missing. In addition, although manual scoring functions com-
bine multiple clues, they can not explore historical information
because of the rigid functions. Thus, a general scoring mech-
anism is still urgently needed for long-term tracking.

Since neural network has shown its great potential in many
fields, some researchers begin to explore the network-based
scoring mechanism. Kim et al. [6] design multiple kinds
of LSTM [8] to combine motion and appearance to score
each track proposal. Their experiments show that LSTM is
effective for temporal tracking data. Zhang et al. [9] propose
a long-term tracking framework, including two LSTM-based
classification networks. Sheng et al. [10] introduce the STCC-
Net based on spatial-temporal attention to extract appearance
features. They indicate that the tracker is able to obtain more
accurate scores via this feature representation. Most of the
works aforementioned have indicated that the training data is
very important for their methods. Nevertheless, the available
data for training such a network is very limited. First, the
labeled MOT tracking data is expensive to collect, which limits
the exploration of deep learning-based methods. Secondly,
there is an unignorable difference in the dataset styles, which
results in the trained network is difficult to be directly applied
to another dataset.

In order to solve the problems mentioned above, a multi-
scene general Extendable Mutiple Nodes Tracking (EMNT)
framework is proposed in this paper, which introduces four
types of nodes to model the data association during tracking.
We implement an extendable global tracks optimization strat-
egy in EMNT, balancing the speed and accuracy. Furthermore,
a transplantable General Recurrent Tracking Unit (RTU++)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1570-6570
https://orcid.org/0000-0002-2811-8962
https://orcid.org/0000-0001-5782-894X

5258 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

is presented to accurately score track proposals. To cope with
the lack of available data in MOT, we introduce a Node-based
General Tracking Data Generation algorithm (NGTDG) to
generate sufficient simulated artificial tracks. Then RTU++
is trained on pure simulated tracking data with the guidance
from a reward mechanism. Experimental results show that
our methods achieve state-of-the-art performance on MOT17,
MOT20, and HiEve benchmarks. Our methods can handle
whether low or high density pedestrian tracking scenes. Even
on a cell tracking dataset, our methods still achieve stable
performance without any retraining. Moreover, we expand our
method to Multi-object Tracking and Segmentation (MOTS) to
validate its generalization. The results of EMNT on MOTS20
benchmark are comparable with other state-of-the-art methods
in MOTS.

The main contribution of this paper is in three folds:
• Construct a general Extendable Multiple Nodes Tracking

framework, which models the tracking by four types of
basic nodes: correct, false, dummy and termination. This
framework well illuminates the actual association under
detection failures and can be further extended to MOTS.

• Propose RTU++ to score track proposals, which captures
long-term information of nodes types to distinguish pro-
posals. It also can be flexibly plugged into other trackers
based on EMNT.

• Present a Node-based General Tracking Data Generation
method to generate simulated tracking data, which can
replace real data to train RTU++. The experiments show
that RTU++ trained by this data is able to be directly
applied to many different scenes. It provides a new solu-
tion to solve the lack of available data in MOT.

This paper is an extension of our previous conference ver-
sion [11]. The current work presents abundant technology in
great detail and introduces significant novelties. First, we inte-
grate more complete association strategy based on new types
of nodes and an extendable global tracks optimization strategy
into EMNT. The termination node is introduced to control the
exit of objects during tracking. Second, RTU++ computes the
increment of the score and introduces a temporal classification
loss to enforce the memory of historical nodes’ information.
Third, inspired by simulated annealing, we propose NGTDG
to approximate the distribution of real data. Moreover, we con-
duct considerable new experimental results including ablation
study, effectiveness analysis, state-of-the-art comparison and
generalization validation to fully validate our methodology.
Specially, we extend our method from MOT to MOTS and
evaluate it on the MOTS20 benchmark. The comparable results
prove the effectiveness of our framework.

II. RELATED WORK

In this section, we briefly reviewed the recent tracking-by-
detection paradigm and the related work in its core scoring
mechanism.

A. Tracking-by-Detection

Most early MOT methods derive from filter algorithms
such as Kalman filter [12], [13] and particle filtering [14].

Although these approaches achieve real-time performance,
they require manual initialization of a fixed number of objects
in the first frame [15]. However, recent tracking-by-detection
can discover new objects and terminate disappearing ones
automatically. Thus, this paradigm is more popular since
filter-based objects can not deal with the case that new objects
appear. In the tracking-by-detection paradigm, objects are first
detected and then associated to form trajectories. Thanks to
object detection techniques [16]–[18], MOT has seen great
improvement in the past few years. Commonly, the tracking-
by-detection paradigm is classified into online and batch
methods.

Online methods [4], [19], [20] only use the past informa-
tion while batch method [21]–[23] can utilize both past and
future information to associate detections. Online methods are
usually applied on real-time and lightweight applications for
their high efficiency and low consumption [10]. SORT [19]
implements an efficient association scheme based on filtering
algorithm and Euclidean distance. Further, Wojke et al. [4]
combine a neural network-based feature extractor with SORT,
and obtain more outstanding results. Due to the limited past
information, online methods can hardly handle the identity
switches problem.

Batch methods often achieve better performance than online
methods. For example, Yang et al. [24] propose CRF to com-
bine various kinds of tracking clues. Afshin et al. [25] formu-
late the data association during tracking as maximum multiple
cliques problem. Jiang et al. [26] design a linear program-
ming algorithm to finds the best trajectories. Kim et al. [6]
reconstruct the multi-object tracking by maximum weight
independent set and introduce an online updated appearance
model in their trackers. To deal with the detection errors,
Zhang et al. [22] propose a heterogeneous association graph
fusion mechanism, in which both high-level detection and low-
level super-pixel are considered to build tracks. The methods
mentioned above usually require a large number of computing
resources, which limits their application in practice.

Recently, most online methods such as JDE [27] and
Fair [5] pay more attention to jointly detecting and embedding
model, while batch methods tend to find a new formulation to
solve the global optimization problem. The improvement of
JDE-based methods commonly benefit from their sufficiently
trained detectors, which decreases the detection error signifi-
cantly. However, the aforementioned approaches still directly
link the detection to describe the association. In this paper,
we define four types of basic nodes including correct, false,
dummy and termination. And the basic nodes are associated
to form track proposals instead of detections, so each proposal
gets a more accurate representation.

B. Scoring Mechanism

It is common to formulate data association as a graph,
in which each vertex represents a detection and each edge
indicates a possible link [28]. The weight of each edge, i.e.,
the score, is usually calculated based on multiple types of
tracking information.

WANG et al.: EXTENDABLE MULTIPLE NODES RECURRENT TRACKING FRAMEWORK WITH RTU++ 5259

Online methods prefer to construct a bipartite graph for
its efficient optimization. For example, Bochinski et al. [29]
develop the IoU tracker and regard the interaction over
union of two detections as the score. Although their meth-
ods run at 100K fps, they fail to handle detection errors.
Bewley et al. [19] introduce a filtering algorithm to refine the
object location, and score track proposals by the Mahalanobis
distance. Further, Wojke et al. [4] integrate an appearance
model to SORT and regard appearance similarity as the score,
combing both appearance and motion information. Fair [5]
combine the detecting step and feature extraction into one
stage, but it still considers appearance similarity as score.

Batch methods design more complex scoring mecha-
nisms, which take account of multiple kinds of informa-
tion. Kim et al. [6] design a least square-based appearance
model, then implement a manual scoring function that balances
appearance and motion information. Chari et al. [30] model
tracking by network flow, and propose an energy cost function
to score track proposals. To describe the frequent interactions
among objects, Zhang et al. [23] propose the HTBT tracker by
constructing and testing hypotheses. They score track hypothe-
ses by a spatio-temporal interaction graph and then formulate
tracking as a multi-dimensional assignment problem. However,
such manual scoring functions are limited since they can not
consider hidden long-term information.

With the development of Recurrent Neural Network (RNN),
many researchers begin to explore its potential on MOT.
In order to handle long-term tracking, TLMHT [9] design the
Motion Evaluation Network and Appearance Evaluation Net-
work to calculate the score of track proposals. Kim et al. [31]
implement different LSTM-based scoring networks to study
the best combination of appearance and motion features.
Amir et al. [32] use an LSTM with a linear layer to fuse
three types of features extracted from other LSTMs, and then
directly outputs the final score. Ran et al. [33] propose a
Pose-based Triple Stream Network, in which the score is
computed by combining appearance, motion and pose fea-
tures. Although these methods achieve outstanding results in
many tasks, they are still bounded by the limited training
data. First, MOT dataset is still scarce since the labeled
MOT data is expensive to collect. Second, it is difficult to
directly apply them to new scenarios with different styles,
since there is a nonnegligible gap between the distribution of
data.

In this paper, we also follow the tracking-by-detection par-
adigm but define four types of basic nodes. Then we build
a general tracking framework to model tracking. Based on
this, we proposed RTU++ to score track proposal. As for the
problem of limited data, we design a simulated tracking data
generation algorithm to generate artificial tracks.

III. MULTIPLE NODES TRACKING

In this section, we introduce the Extendable Multiple Nodes
Tracking framework (EMNT). Our work mainly concentrates
on building the association between targets and organizing
heterogeneous clues during tracking. Four types of basic nodes
including correct, false, dummy and termination are introduced

to describe the tracking procedure and the fusion state feature
is designed to integrate multiple clues regularly. In addition,
we design an extendable global track optimization strategy,
which extends EMNT to many other methods.

A. Overview

It is a core for tracking to build the association between
detections. The tracker is required to construct complete track
proposals and select trajectories correctly. There exist amount
of complex interactions among objects, which usually result in
association errors. Apart from the complex interactions, it is
also very significant to handle the status of objects, i.e., judge
whether the objects enter into or leave the scenes.

From this point of view, we propose EMNT to describe
the relationship among detections. To construct the trajectory,
EMNT builds a track tree for each target and updates it
with new detections in each frame. Different from previous
work [4], [5], [19], EMNT links four types of basic nodes to
build trajectories instead of detections as shown in Fig. 1.
Specifically, correct nodes represent those correctly associ-
ated detections while false nodes denote false associations.
We adopt the dummy nodes to handle the missing detections
in case of occlusion or detection failure. In addition, it is
obvious that those objects departed should not participate in
the association again. The false associations of the objects
that leave from the scene usually result in a large number of
false positives. Most of the current methods recognize those
departed objects by counting the number of consecutive miss-
ing associations. However, such a mechanism greatly relies
on the hyperparameter, which restrains the performance in
practical scenes. For the sake of handling the object’s status,
we introduce the termination node into EMNT to indicate
that the object has left the tracking scenes. Once an object
is linked with a termination node, it no longer join into the
future association.

Following the tracking-by-detection paradigm, all detections
are obtained from an object detector. Let Ft represents the t th

frame in a video sequence, d j
t and ni

t denote the j th detection
and the i th node respectively in Ft .

For frame Ft , existing trees are updated with new arrival
detections. As shown in Fig. 1, the track tree is extended
by appending new basic nodes as its children to construct
new branches. This paper designs the state feature (discussed
in Sec. III-B) for each node and leverage it to classify new
nodes via RTU++ (discussed in Sec. IV-A). The dummy node
is appended to each branch to describe missing detection.
Existing branch is linked with a termination node once the
object is predicted left. The termination node represents that
the object is lost and will not be extended.

In order to control the scale of the tree, a gating mechanism
including both appearance and motion information is applied
to filter detections. Let T = {nit−L

t−L, . . . , nit−1
t−1, nit

t } denotes a
certain track proposal (branch), where nit

t represents the it
th

node in the t th frame. In this paper, the appearance feature
of the node is the same with coresponding detection. The
appearance distance between detection d j

t and branch T is

5260 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 1. The illustration of the track tree transformation. Each branch represents a potential track proposal and will be scored by RTU++. All track trees are
formulated to an undirected graph, in which each branch is a vertex and an edge connects two conflicting branches. An example of the MWIS is highlighted
in orange. Only the selected node is reserved in the tree after finding the optimal solution.

defined as follow:
disa = max

nit
t ∈T

{
a

nit
t

· a
d j

t

�a
d j

t
��a

nit
t
�} (1)

where a
nit

t
and a

d j
t

represent the appearance features of node

nit
t and detection d j

t respectively.
It is necessary to take account of motion information as

well. In our framework, the location of a target is defined as
the center point of the bounding box. Meanwhile, EMNT holds
a Kalman filter for each target to predict the location in the
next frame. Thus, the motion gating distance dism between
detection d j

t and branch T is defined as follow:
dism = (τ

d j
t

− τ t
T)T(τ

d j
t

− τ t
T) (2)

where τ
d j

t
represent the location of detection d j

t , τ t
T denotes

the location predicted by Kalman filter of branch T in the t th

frame.
Detections far from the gating region (disa > θa &

dism > θm , θm and θa are gating thresholds) are not used
for updating existing trees but are initialized as the root node
(classified as correct) of a new tree.

As shown in Fig. 1, new nodes are created when detections
locate in the gating region. Then RTU++ classifies these
nodes and calculates the score of each branch based on the
fusion state feature.

B. Multi-Clue Fusion in Extendable State Feature

Although there are many clues underlying tracking, most
methods only utilize appearance or motion information. Many
works such as [31] and [34] tend to concatenate appearance
and motion features. However, it is difficult to balance two
types of features due to the huge gap in the dimension. The
concatenation leads to low computation efficiency in training
or testing. To solve these problems, this paper designs the
fusion state feature.

Let Xn denotes the state feature of node n. Since appearance
information makes contributions to distinguish one target from
each other, it is introduced in state feature first. Some previous
works [5], [19], [27] store the appearance feature and take

account of manual or deep learning methods to model the
trend of appearance feature. Different from them, we store the
appearance similarity in the state feature instead of appearance
feature. Firstly, the experimental results show that the appear-
ance similarity between a linked node and its parent drops
greatly under identity switches. This phenomenon indicates
that the sequence of appearance similarity can reflect some
tracking failures such as identity switches in some way. Sec-
ondly, storing appearance similarity contributes to decreasing
the negative influence of the difference in various original
features distribution. Thus, the high dimensional appearance
feature is compressed to a concise representation, which occu-
pies less memory in the real application. Meanwhile, state fea-
tures are still efficient with new types of appearance features,
since appearance features have already guaranteed the high
appearance similarity of the same target.

The second dimension of the state feature takes account
of motion information, which is usually more effective under
long-term occlusion. Some existing methods calculate the
euclidean distance between the predicted location and the
real location, but the range of this distance is not definite.
We estimate the motion consistency by composing the Kalman
filter and multivariate normal distribution. The Kalman filter
is used to predict the future location, and then the motion
consistency between node nit

t and detection d j
t is obtained as

follows:
dismc = max

nit
t ∈T

{ex p(−(Pof f − Z)Tcov−1(Pof f − Z)/2)} (3)

where Z is a 4-order zero matrix, cov is the covariance matrix
of the Kalman filter, Pof f is the location offset between node
nit

t and detection d j
t .

It is proved by Sheng et al. [10] that detection response
reflects occlusion in some way. Considering that the detection
confidence is provided by most detectors, we set it as the third
dimension of the state feature. As discussed in Sec. III-B,
EMNT describes missing detections by the dummy node.
To distinguish the true nodes and the dummy nodes, a dummy
indicator is initialized in the fourth dimension. It is set as
1 when the node is dummy otherwise 0. The first three dimen-
sions of a dummy node state feature are set the same as its

WANG et al.: EXTENDABLE MULTIPLE NODES RECURRENT TRACKING FRAMEWORK WITH RTU++ 5261

Fig. 2. The illustration of the track tree transformation by the bipartite
graph. Each branch represents a track proposal and will be scored by RTU++.
All track proposals are formulated to a bipartite graph, in which each edge
corresponds to a track proposal.

parent node. In addition, the length of a track is also important,
because it reflects the life period of a target. Usually, the
longer track is more reliable than the short tracks, which is
not mentioned in previous conference version. So we defined
the fifth dimension of state feature as the current length of this
track.

This fusion of various clues is efficient for its concise feature
representation. Meanwhile, it can be extended by appending
a normalized feature as the new dimension. In fact, the node
as a basic structure exists in many tracking frameworks. Our
proposed state feature is designed for the basic node, so it can
be applied to other methods as well.

C. Extendable Global Tracks Optimization

Each branch in the tree represents a potential track proposal.
It is very important for tracking to calculate the score of each
track and select the highest one. The detail of obtaining scores
is discussed in Sec. IV-A. Due to the failure in detection or
association, different trees may represent the same trajectory.
Thus it is necessary to handle the conflict between trees. The
global track selection can be described as a global optimization
problem. Our target is to find the optimal solution of the graph
formed by all track trees. After obtaining the optimal solution,
EMNT takes the pruning strategy similar to [6]. The other
branches are pruned except the selected one, so only one node
survives at the end of a frame. The efficiency of the tracker
has critical importance in its practical application. In order to
balance the speed and accuracy, the extendable global tracks
optimization strategy is designed to find the optimal solution.

When the pruning depth Pd is more than 2, the global
optimization problem is NP-hard. We follow the idea in [6] to
formulate this problem as a maximum weighted independent
set (MWIS) to find the most likely set of trajectories according
to their scores obtained by RTU++. As shown in Fig. 1, new
nodes are built after gating and form new branches. RTU++
takes the state features of the nodes in the branch as input and
outputs the final score s. An undirected graph G = (V , E)
is constructed by assigning each branch Ti to a graph vertex
xi ∈ V with the weight si . An edge (i, j) ∈ E connects two
vertexes xi and x j if two tracks have conflicts due to shared
detections or having the same ancestor.

However, the MWIS-based optimization strategy is limited
by the number of tracks. Since the real-time response is more
important in some practice scenarios, we reconstruct the track
trees as the bipartite graph when the pruning depth is 1.
As shown in Fig. 2, the track trees are transformed to a
bipartite graph G = (V , E), in which each edge is assigned
the weight calculated by RTU++ as well. In the bipartite
graph, the left vertexes represent the parent nodes while the
right denote the detections in the current frame. An edge
(i, j) ∈ E connects two vertexes ni

t−1 and d j
t if the detection

d j
t corresponds to a branch in track trees. Then Hungrainan

algorithm can be used to find an optimal solution in this
bipartite graph.

On the one hand, we integrate two optimization methods in
EMNT to balance the speed and accuracy. On the other hand,
such integration makes that it is easy to reconstruct some other
trackers by EMNT, which lets RTU++ can be flexibly plugged
into them.

D. Generalize to MOTS

Although EMNT is designed for MOT at the beginning, it is
also convenient to be extended to MOTS. In EMNT, all the
trajectories are represented by the basic nodes. For MOT, the
basic nodes actually correspond to detections as described in
Sec. III-A. But as to MOTS task, EMNT takes the masks as
input instead of detections. In other words, the basic nodes of
EMNT represent the input mask regions in MOTS task.

Considering the mask regions are usually in irregular
shapes, we leverage the enclosing rectangles to describe the
boundaries of the masks. These rectangles regions are cropped
from the original image, and the pixels except the mask regions
are pad as zero. The appearance features of masks can be
extracted by CNNs like PCB [35]. Then EMNT takes the same
scheme as MOT to process the mask input. In conclusion, the
core of data association and object status handling is the same
for both MOT and MOTS. The reasonable adjustments lay in
the types of input and some adaption to the mask such as the
appearance feature. As mentioned above, EMNT implements
a general tracking strategy for MOT and MOTS.

IV. GENERAL RECURRENT TRACKING UNIT WITH

NODE-BASED DATA GENERATION

Based on EMNT, each trajectory is represented by a
sequence of nodes. The various clues of the targets are stored
in the temporal sequence of state features in nodes. In this
section, we first introduce the structure of RTU++ in great
detail to process the temporal sequence. Then we present a
method of generating tracking data to overcome the defect of
limited available data in MOT.

A. General Recurrent Tracking Unit

In recent multi-object tracking approaches, it has been a
difficulty to incorporate long-term information to efficiently
score object tracks under severe occlusion and detection miss-
ing. Batch approaches such as MHT, network flow utilize man-
ual scoring function, while online methods tend to compare

5262 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 3. The structure of RTU++. It takes three inputs (previous hidden
feature ht−1, previous score St−1 and the state feaure Xt) at each step and
outputs the hidden feature ht , class Ct and score St .

the information between a pair of detections. However, these
methods are limited because they only model the information
in the short term. Recurrent Neural Network (RNN) is applied
on Single Object Tracking (SOT) [36] firstly, and nowadays
some researchers [31], [37], [38] utilize it in MOT to learn
appearance or motion model. Although MOT is a more chal-
lenging problem due to the amount of occlusion and identity
switches problem, RNN still shows its great potentiality, espe-
cially in processing sequence data.

The common usage of RNN includes two types, regression
and classification. Our previous conference version [11] RTU
follows the regression paradigm to score potential tracks. But
in further experiments, we find that this paradigm results in
the unstable regression for those very long tracks. Because in
the previous version, we leverage RTU to directly compute the
total score of a potential track. That means the range of the
network output is [−∞,+∞] as a regression paradigm. For
some extremely long tracks, the corresponding scores grow
greatly large, which goes against the training of the network.
Meanwhile, RTU only utilizes the node types to generate
the training labels, whereas does not learn to classify nodes
explicitly. For these reasons, we combine both the regression
and classification into one network. By learning historical
information such as the node types, RTU++ computes the
increment of the track score instead of the total score. The
output range is reduced so as to train RTU++ more stably.

In EMNT, each track proposal is represented by a node
sequence in unfixed size. So the sequential state features in
the track proposal compose time data, which can be input to
RTU++.

Fig. 3 shows the graphical depiction of RTU++. For time
steps t , RTU++ takes three inputs: the old hidden state ht−1,
the old score St−1 and the state feature Xt of the current node.
In the first time t0, the hidden state and score is initialized to
zero and 0.01 respectively.

First, RTU++ projects the state feature to the hidden space
R

1×Dh . Then the reset gate r is computed by:

X �
t = Wx Xt

rt = σ(Wr [ht−1, X �
t] + br) (4)

where σ is the sigmoid function, Wr and Wx are learned
weight matrices, br represents the bias.

Similarly, the update gate z is computed by:
zt = σ(Wz[ht−1, X �

t] + bz) (5)

The update of the hidden state is computed by:
ĥt = tanh(Wĥ [rt ∗ ht−1, X �

t])
ht = (1 − zt)ht−1 + zt ĥt (6)

In this formulation, the reset gate chooses to ignore the
previous hidden state and reset with the current input only.

Different from RTU, we take account of the node types
in RTU++. Concretely, RTU measures the changing trend of
appearance and motion and then estimates the scores of track
proposals. It assigns lower scores to those track proposals
with worse temporal consistency. Although it can learn to
distinguish what is a good track or bad, sometimes it can
not select the best one in good tracks. Obviously, the best
track proposal should have the maximum correct nodes and
the minimum false nodes. In order to mimic this principle,
the Classification Module (CLM) is introduced into RTU++,
which is calculated as follow:

Ct = so f tmax(W 2
c (relu(W 1

c ht + b1
c)) + b2

c) (7)

where W 1
c and W 2

c are learned weight matrices, b1
c and b2

c are
biases, so f tmax is the activation function.

In each time step, RTU++ updates the hidden state ht−1
to ht , then ht is transferred to classificiation space R

1∗Dh .
Finally, the hidden state is projected to the score increment
Ŝt , after two linear layers. Then the score St is computed by
adding the score increment Ŝt and the score St−1 at previous
time. It is formulated as:

St = Ŝt + St−1 = W 2
s (relu(W 1

s ht + b1
s)) + b2

s + St−1 (8)

where W 1
s and W 2

s are learned weight matrices, b1
s and b2

s are
biases.

In RTU++, the hidden state encodes the long-term clues
of one track proposal, which helps to exploit historical infor-
mation to score robustly. In order to differentiate proposals
more accurately, it remembers the information of node types
in hidden states simultaneously. All track proposals are scored
by RTU++ during tracking, then the scores are assigned to
the weights of vertexes or edges as discussed in Sec. III-C.

B. Node-Based General Tracking Data Generation

It is a common challenge for deep learning-based methods
to generate the training data. Previous works such as [31]
and [9] generate the training sequence from the public MOT
datasets. Each training sequence includes detection from the
same target and one detection from a different object at the
end. However, these approaches are limited by the original
dataset like MOT17 and may poorly represent actual track
proposals in actual scenes. First, the training data generated
from ground truth is still insufficient due to the scale of the
original dataset. Secondly, the generated training data is easy
to be influenced by the style of the original dataset, i.e., they

WANG et al.: EXTENDABLE MULTIPLE NODES RECURRENT TRACKING FRAMEWORK WITH RTU++ 5263

Fig. 4. The similarity of two kinds of features. We calculate the similarity
distribution of the same targets and different targets respectively. The fitted
probability density function (pdf) is also showed in each sub-figure.

can not generalize satisfactorily in new datasets. We design a
node-based tracking data generation methodology in order to
solve these problems.

The tracking procedure is illuminated by the association
between different types of nodes in EMNT. Actually, all the
trajectories are represented by the node sequence. In turn,
it means that we can combine different types of nodes to
generate artificial trajectories. Meanwhile, multiple clues in
tracking are encoded in the state feature for each node. Thus
we can obtain various nodes by adjusting the state feature.

EMNT introduces four types of nodes, correct, false,
dummy and termination nodes. Generally, the correct node
keeps a high correlation in terms of appearance and motion,
which reflects in the high appearance similarity and motion
consistency. On the contrary, the false node usually has a worse
correlation. With this assumption, we pick some ground truth
track annotation to analyze the distribution of types of nodes.

The trajectories from ground truth compose of sequential
detections. In order to robustly analyze the distribution of
appearance similarity, we extract two kinds of Re-ID appear-
ance features for each detection including PCB [35] and
Fair [5]. We count the appearance similarity of detection pairs
picked from the same ground truth trajectory to emulate the
correct nodes. As for the false nodes, we randomly pick the
detection pairs from the different trajectories. As shown in
Fig. 4, the statistic results indicate that the appearance similar-
ity of the correct nodes is approximately a half-normal distri-
bution N (μca1, σ

2
ca1). Although the distributions of similarity

within different features present a little difference, they still
show some important commons. For example, even the domain
has been stretched by the standard deviation factor σ , the mean
values of two distributions are close to 1. In fact, the standard
deviation reflects the distinguishing ability of different features
to some extends. And we can inference that about 99.7% data
are within three standard deviations according to the 3-sigma
rule. Thus the lower bound of the similarity of the same target
in various features can be defined as follows:

βapp = min{μca1 − 3σca1, μca2 − 3σca2, . . .} (9)

where σcai and μcai represents the standard deviation and
mean value of the appearance similarity distribution in i th

feature representation respectively.
Similarly, we analyze the distribution of motion consistency

in the correct node or false node. The static results show that
the motion consistency is nearly a half-normal distribution but

Fig. 5. The illustration of a pruning process and the change of node
ratio during this process. The pruned branches are drawn as transparent. The
distribution of nodes is changing along with the pruning process.

it has a bigger standard deviation than appearance similarity.
So the the lower bound of motion consistency of the same
target can be defined as follows:

βmot = μcm − 3σcm (10)

where σcm and μcm represents the standard deviation and mean
value of the motion consistency distribution respectively.

As for the confidence in each node, it lies more randomly
within the range of [0, 1]. Here we donote the distribution
of confidence as D(0, 1). In addition, considering that each
correct or false node corresponds to a true detection in fact, the
dummy indicators of them are assigned to 0 directly. In terms
of the dummy node, we assume that its first to third dimensions
of state feature fit the same distributions as correct node, but its
dummy indicator is assigned to 1. Based on these observations,
the correct node and false node should satisfy Eq. 11 and
Eq. 12 during the random generation.

βapp ≤ X1
c ≤ 1 and βmot ≤ X2

c ≤ 1 (11)

0 ≤ X1
f < βapp or 0 ≤ X2

f < βmot (12)

s.t . X1
c ∼ N (

μca1 + μca2

2
,
σ 2

ca1 + σ 2
ca2

4
)

X2
c ∼ N (μcm , σ 2

cm)

X1
f ∼ N (μ f 1, σ

2
f 1)

X2
f ∼ N (μ f 2, σ

2
f 2)

X3
c| f ∼ D(0, 1) (13)

where Xi
c and Xi

f represents the i th dimension of the state
feature in correct node and false node respectively.

It is simple to directly build artificial track proposals by
generating four types of nodes in complete random. In this
way, the generated track proposals T nearly fit a conditional
probability distribution:

p(T) = p(nl ∪ nl−1 ∪ nl−2 ∪ . . . ∪ n1)

=
l∏

i=1

p(ni |ni−1, . . . , n1) (14)

where l represents the length of the generated track proposals
T , ni represents the i th node in T .

Although this simple method can generate numerous poten-
tial track proposals, it is not efficient due to the exponen-
tial growth of proposal space. We find that lots of track
proposals exist only in the theory but are pruned in fact.
As shown in Fig. 5, we draw two possible track trees during
tracking and analyze the change of node ratio when prun-
ing. At time i − 1, the node ratio is 2:3:2 before pruning.

5264 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Algorithm 1 Node-Based General Tracking Data Generation
Algorithm

After pruning, abundant dummy and false nodes are pruned
(drawn transparent), which results in the change in node ratio.
Therefore, the node distribution is under dynamic changing
during generation. Considering that the pruning is correct in
most cases, most of the previous nodes in the final track tree
are correct, while the latest nodes (like nodes at t = i in
Fig. 5) present another distribution. Therefore, we design a
Node-based General Tracking Data Generation algorithm to
mimic this phenomenon.

Let γc and γ f denotes the ratio of correct nodes and false
nodes in each time step respectively. In Eq. 15, we introduce a
simulated annealing mechanism to decrease the ratio of false
nodes in the case of the aforementioned pruning.

γ f = e
i
τ

γc = 1 − γd − γ f (15)

Furthermore, we can generate different nodes according
to their state feature distribution. The complete algorithm is
shown in Alg. 1.

Alg. 1 takes the length L of track proposal as input and
output an artificial proposal. It samples a probability p to
decide to generate which types of node. In each loop, the
ratio of correct node is updated according to Eq. 15 as shown
in line 3. Then the algorithm chooses one node based on its
distribution. In the last step, a termination node nT is appended
to the track proposal T . With this generation algorithm, we can
generate sufficient data to train the proposed RTU++.

C. Training RTU++ With Generated Data

Nowadays, substantial dataset is a key for many deep
learning-based methods. Such methods [9], [31] take appear-
ance features as input and are trained on the public datasets.
However, they need to be retrained when facing new datasets
or combing with new feature extractors. Current data-driven
methods perform worse on testing data when the training
data has a great difference from testing data. Moreover, since

Fig. 6. Three potential track proposals with the same number of cor-
rect/false/dummy nodes.

labeled multi-object tracking datasets are expensive to collect,
it is challenging to train a multi-scene robust model. But our
proposed state feature can decrease the influence from the
dataset style. Meanwhile, the aforementioned tracking data
generation algorithm is able to generate substantial training
data. Thus, we train RTU++ on pure generated data.

In the last subsection, the data is generated by combining
various artificial nodes. In order to guide RTU++ to learn
a scoring model, all generated training data are assigned a
label. As shown in Fig. 6, all track proposals have the same
number of correct, false and dummy nodes. Obviously, the
label should assure that all track proposals can be sorted in
strict order since only one track proposal represents the best.
Thus we introduce a reward mechanism to ensure the order
of data. Different types of nodes are assigned with different
rewards. The correct nodes deserve the biggest reward rc, the
dummy node is paid a lower reward rd , but the false node
obtains a ‘penalty‘’ r f instead. Finally, considering that the
length is another key property of a track, we give each track a
length reward rl . Different from our previous version, RTU++
is designed to calculate the score increment, so the training
label is a score increment as well. Hence the training label,
that is, the ground truth score of each simulated track proposal
is computed by:

S = rc ∗ �c[Xt] ∗
2∑

i=0

X (i)
t

+ rd ∗ �d [Xt] ∗
2∑

i=0

X (i)
t

− r f ∗ � f [Xt] ∗
2∑

i=0

X (i)
t

+ rl ∗ X (4)
t (16)

where * represents the element-wise product, �c[.] is a boolean
variable that is 1 when Xt belongs to a correct node otherwise
is 0. �d [.] and � f [.] are the corresponding boolean variable
for the dummy node and false node. X (i)

t denotes the i th

dimension of Xt .
This design ensures that the track proposals are strictly

ordered by the total reward, which is of great benefit to select
the best track. Furthermore, in order to guide the training of
RTU++, we firstly define the score loss function Ls as follow:

Ls = �sT − S�2 (17)

where �.�2 is the L2 norm, S is the objective score given by
Eq. 16, sT denotes the score increment computed by RTU++.

WANG et al.: EXTENDABLE MULTIPLE NODES RECURRENT TRACKING FRAMEWORK WITH RTU++ 5265

To learn the hisrotical node types information, the temporal
classification loss Lc is introduced:

Lc =
T∑

t=1

(−log
ect,C

∑4
j=1 ect, j

)) (18)

where C represents the target class, ct is the output of RTU++
at time t . Finally, the total loss of our approach can be
expressed as:

LG = λLs + Lc (19)

where λ is the weight to balance two objectives.
Based on this, we can utilize aforementioned generation

algorithm to generate sufficient data and train RTU++ in an
end-to-end way.

V. EXPERIMENTS

In this section, the network details and metrics are described
first. Then, we design a group of ablation study experiments
to demonstrate the effectiveness of each component. In order
to validate the effectiveness of our method, a series of com-
parison experiments are conducted to prove the generalization
of RTU++. Finally, we report the results of the proposed
approach compared to other state-of-the-art tracking methods
on MOT17 [39], MOT20 [40] and HiEve [41] benchmarks.
In addition, we extend our methods to cell tracking and MOTS
scenarios to validate its generalization.

A. Implementation Details

1) Datasets and Evaluation Metrics: Five datasets are uti-
lized for evaluation in this paper including MOT17, MOT20,
HiEve, MOTS20 and CTMC-v1 [42]. These datasets are of
a great difference in style, motion pattern, crowd density
and etc. MOT17 contains 7 training sequences and 7 testing
sequences. These sequences are of different resolutions and
cameras types. MOT20 contains 8 more challenging video
sequences in extremely crowded scenes. All sequences are
taken by fixed cameras. HiEve includes one of the largest
number of trajectories in complex events. CTMC-v1 dataset
is different from the previous two since it pays attention to
cell tracking. This dataset consists of 86 live-cell imaging
videos that represent 14 different cell lines of various shapes
and sizes. And MOTS20 extends MOT benchmark to a new
benchmark defined on a pixel-level with precise segmentation
masks.

For quantitive evaluation, we adopt the CLEAR MOT met-
rics [43] and MOTS metric [44]. The most important indi-
cators are MOTA↑, IDF1↑ [45] and HOTA↑ [46]. MOTA
denotes multi-object tracking accuracy that combines FP↓
(false positives), FN↓ (missed targets) and IDs↓ (identity
switches), while IDF1 is the ratio of correctly identified detec-
tions over the average number of ground-truth and computed
detections. HOTA is the higher order tracking accuracy, which
better aligns with human visual evaluation of tracking per-
formance. sMOTSA↑ denotes mask-based soft multi-object
tracking accuracy, which accumulates the mask overlaps of
true positives.

Fig. 7. MOTA and IDF1 curves when adjusting the dimension of hidden state.
Both IDF1 and MOTA become higher first and then drop as the dimension
of the hidden state increases.

2) Network Architecture and Training: All the experiments
are conducted on the following specifications: Intel i9-10900K
CPU, 128 GB RAM, and RTX 3090 GPU using PyTorch 1.8.
We adopt the Adam optimizer to train RTU++ for 200 epochs.
The learning rate is set as 1e-5. According our previous exper-
iments, We take βapp = 0.8, βmot = 0.6, μca1 = 0.9, σca1 =
0.03, μcm = 0.7, σcm = 0.05, μ f 1 = 0.25, σ f 1 = 0.1, μ f 2 =
0.1, σ f 2 = 0.1, λ = 1. In RTU++, the hyperparameters rc, rd

and r f has a great influence on its performance. Thus we first
take the similar searching strategy as [11] and adopt rc = 5,
rd = 4.5, r f = 10 and rl = 1. Then, considering that the tem-
poral information is stored in the hidden state, we confirm the
dimension of hidden state by the experiments shown in Fig. 7.
The experimental results show that both MOTA and IDF1
climb first as the hidden state dimension increase, because
the bigger dimension brings a more powerful representation
ability. However, an over-high dimension actually contains
redundant information, so the performance drops when the
dimension is bigger than 512. Finally, we take a 256 dimension
hidden state in all other experiments.

B. Effectiveness Analysis

To demonstrate the effectiveness of our method, we first
compare our method with RTU and TT17 on some typi-
cal tracking scenarios within different lengths. These video
sequences are in different density and occlusion degrees,
reflecting different challenges in tracking. In this group of
experiments, all the trackers take the same input detections
and appearance features provided by [5]. Experimental results
are listed in Tab. I.

We pick two pairs of long-short video sequences from
MOT17 and MOT20 datasets. The results show that in longer
or more crowded sequences, TT17 [10] conducts worse per-
formance, especially on the IDF1 indicator. Different from
RTU++, it regards the scoring step as a binary classification
problem, which limits the gap between false and correct tracks.
In addition, we find that TT17 can not generalize well on new
datasets such as MOT20 since it is trained on ground truth.
But in MOT20, there is an obvious difference between the
ground truth and the testing dataset. Thus, it suffers a more
serious identity switches problem.

Different from TT17, both RTU and RTU++ are trained
on simulated tracking data instead of ground truth. So they
achieve more stable performance on MOT20. The results show

5266 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE I

THE EFFECT ANALYSIS EXPERIMENTS ON MOT17 AND MOT20 DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.
↑ / ↓ INDICATES THE HIGHER/LOWER VALUES DENOTE THE BETTER PERFORMANCE

TABLE II

THE EFFECT ANALYSIS EXPERIMENTS ON MOT17 TRAINING DATASET. ALL METHODS TAKE THE SAME INITIAL INPUTS PROVIDED BY [5]

that RTU++ performs better than RTU. We attribute this
improvement to two aspects. First, RTU++ no longer learns
the total score of a track but learns the increment of the score.
It means that the output range of the network shrinks so that
the projection of scoring is easier to be learned. Second, RTU
only considers historical information and does not remember
the node types. But RTU++ leverages the temporal classifi-
cation loss to remember the node types in memory explicitly.
Thus in those tracking scenarios with very complex associa-
tions, RTU++ achieves significant improvement compared to
RTU. Fig. 8 shows the tracking results of RTU++ in different
scenarios. Even MOT20-05 is an extremely crowded scenario,
RTU++ still acquires the lowest IDs at 710. In other low or
high-density tracking scenarios, RTU++ also achieves stable
as well as outstanding results, which proves the effectiveness
of our methodology.

As discussed in Sec. III-C, EMNT can be extended to many
famous trackers, then RTU++ is able to be flexibly plugged
into them. Here we reconstruct two classic trackers including
TT17 and DeepSORT. TT17 is a tracklet-based batch method
while DeepSORT is a real-time online algorithm. Their scoring
modules are replaced with RTU++ but other components are
reserved. We provide the same input detections and appearance
feature to them and the corresponding results are shown in
Tab. II.

It can be seen that both TT17 and DeepSORT benefit from
RTU++, especially on the IDF1 indicator. Compared to the
original DeepSORT, RTU++ utilizes five types of features
to compute the score, while DeepSORT regards appearance
similarities as scores. So RTU++ can still distinguish good
track proposals, but DeepSORT is usually influenced by the
heavy occlusion. The results show that RTU++ can improve
IDF1 to 79.1 for DeepSORT. This proves that our RTU++

trained by simulated data can be applied on some bipartite-
graph-based methods.

TT17 trains two LSTM-based networks on MOT17 ground
truth to classify track proposals, combing appearance and
motion information. But the available groud truth is limited
due to the dataset scale. And the networks trained by ground
truth can not generalize well on the test dataset. Thus when we
add RTU++ into TT17, IDs drops significantly by 258. Their
LSTM-based networks regard scoring as binary classification,
which decreases the gap between scores of tracks. After adding
RTU++, we can see that IDF1 and MOTA reach 80.9 and
83.7 respectively, which shows that RTU++ is still effective
for MHT-based methods.

C. Ablation Study

We conduct the ablation study experiment on the MOT17
training dataset. In this experiment, we train RTU++ on the
pure simulated tracking data, the MOT17 training dataset is
only used for estimation since it has the labeled ground truth.
All the detection and appearace featuers in ablition study are
provided by [5].

Our baseline (denoted by B) is a naive MHT [6] framework,
which only contains data association, pruning and a manual
scoring function. As shown in Eq. 20, the manual scoring func-
tion only considers two kinds of information. The distinguish
between multiple nodes is not implemented in the baseline.

S = Wa Sa + Wm Sm (20)

where Ws and Wm are the weights.
First, we add the dummy node D to the baseline (denoted as

B+D) and still utilize the manual scoring function. An object
is regarded as lost when it has 30 dummy nodes. As shown in

WANG et al.: EXTENDABLE MULTIPLE NODES RECURRENT TRACKING FRAMEWORK WITH RTU++ 5267

Fig. 8. The tracking result on different tracking scenarios. The lines behind the bounding boxes represent the historical trajectories of objects. Our tracker
shows outstanding results on both low-density and high-density. Even on the MOTS scene, it still tracks targets stably. No matter on the outdoor street or in
the market, the masks are associated with targets accurately.

Tab. III, after adding dummy nodes, the IDs and FN indicators
decrease greatly by 305 and 6477 respectively, which proves
that dummy nodes can handle the detection missing. They
link the fragmented tracks to complete trajectories, so IDF1
improves by 16.4 as well. But FP becomes worse, since part
of dummy nodes can not estimate the status of occluded target
correctly. These false dummy nodes result in the increase of
FP. Simutenously, the dummy nodes bring extra computation,
leading to the reduce in FPS (from 19.5 to 19.1).

Secondly, RTU++ is added to replace the original manual
scoring function. But in this experiment, RTU++ is only
trained with the score loss LS and the termination node is
froze (denoted by B + D + R∗ + LS). The results show that
FN is lower than B + D by 2519. The IDs indicator drops
as well, because RTU++ is capable to give correct tracks
higher scores compared to the manual scoring function. The
correct and false track proposals are well distinguished by
RTU++, since it stretches the score gap between correct and
false proposals. Thus IDF1 and MOTA improves to 81.7 and
83.9 respectively. Because all the potential track is organized
as batch data, RTU++ is able to score them in one inference.
The runtime speed decreases slightly from 19.1 to 18.4.

Then we add RTU++ trained with total loss LG including
score and classification loss. This experiment is denoted by
B+D+R∗ +LG . We can see that IDs decrease again by 48.
Meanwhile, both FP and FN drop, especially FN is 659 lower
than before. This is because the classification loss contributes

TABLE III

ABLATION STUDY OF VARIOUS SETTINGS OF

NODE TYPES AND SCORE MECHNISM

to remembering historical information of node types in the
hidden state of RTU++.

Furthermore, we integrate the termination node E to mark
the terminated objects (B + D + R∗ + LG + E). Since the
object location is constantly updated for each objects, EMNT
can predict whether the object leaves the tracking scenario.
Compared with directly counting the number of dummy nodes,
the termination nodes make the termination of tracking more
flexibly. Those missing objects but acutually existing in the
scenario is still represented by dummy nodes. But the missing
objects that are predicted leaving will be terminated. Most
reduncant dummy nodes are reduced. Thus, we can see that
FP decreases by 773 and MOTA increase to 85.3. Since the
inference of RTU++ is not changed in this experiment, the
speed is almost the same as before.

5268 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE IV

TRACKING PERFORMANCE ON MOT17 BENCHMARK

TABLE V

TRACKING PERFORMANCE ON MOT20 BENCHMARK

Finally, we validate the efficiency of the proposed extend-
able global tracks optimization (denoted by O). As shown
in the last row, the extendable optimization strategy brings
remarkable improvement to FPS. Since many complex track
trees are transformed to bipartite graph, the computation is
simplified when the tracker finds the optimal solution. Mean-
while, there exists some inherent difference in the solutions
from two types of optimization strategies, which results in the
change in some indicators. But such changes are acceptable
with the improvement on speed.

These results demonstrate that RTU++ is stronger than
RTU and the total loss is more effective to train RTU++. The
extendable optimization strategy is also efficient to reduce the
computation.

D. State-of-the-Art Comparison

We report the quantitative results obtained by our method
on MOT17 and MOT20 benchmarks in Tab. IV and Tab. V
respectively. The results show that our method obtains state-
of-the-art results on both benchmarks. In these experiments,
we use the detection extracted from [57].

As shown in Tab. IV, our RTU++ achieves outstanding per-
formance on most indicators. It achieves the highest IDF1 and
HOTA by 79.1 and 63.9 respectively. Meanwhile, it holds a
real time performance. In our methods, the track is represented
by four types of nodes, which is suitable to describe the associ-
ation under occlusion. Based on this, many fragmented tracks
are linked to a complete track. So we achieve the lowest Frag.
Our RTU++ trained by the reward mechanism gives differ-
entiated scores to potential tracks to select the correct tracks.
Thus compared to other methods, RTU++ maintains the low-
est IDs by 1302. The results show that RTU++ has a lower

FP than RTU. Since RTU also implements dummy nodes,
but those false dummy nodes are regarded as FPs. RTU++
encodes the nodes types information in hidden state, then
many false associations are pruned. In this way, the dummy
nodes are estimated more accurately, which decreases the FP
indicator. Even on the latest evaluation indicator HOTA, it still
achieves the best performance at 63.9, which is 0.8 higher than
the second tracker.

As for the latest benchmark MOT20, the results listed in
Tab.V show that our methods outperform other trackers obvi-
ously on IDF1, HOTA and IDs. As shown in Fig. 8, MOT20 is
of great difference from MOT17 for its very crowded scenes.
Many trackers [3], [5] have to retrain or finetune their networks
on MOT20 or external datasets. Our RTU++ is only trained
on pure simulated data and not finetuned anymore on MOT20.
The results show that RTU++ achieves the highest IDF1
at 76.8. Even ByteTrack acquires higher MOTA, it performs
worse on IDs, because it can not handle the heavy occlusion.
The association in crowded scenes is more complex than in
others. For a long-term association in crowded scenes, RTU
may select a false track due to the great complex interaction.
As discussed in Sec. IV-A, RTU can not give correct scores
for those extremely long tracks. But RTU++ not only lever-
ages the node types information but also adjusts to learning
the score increment. That is very suitable for long tracks in
crowded. Thus it achieves the lowest IDs at 971, and the
highest HOTA at 62.8. The entire results demonstrate that
our methods are general and robust in extremely crowded
scenarios.

Besides, we evaluate our methods on the HiEve bench-
mark, which contains large-scale video data in complex events.
As shown in Tab. VI, our method achieves the highest IDF1

WANG et al.: EXTENDABLE MULTIPLE NODES RECURRENT TRACKING FRAMEWORK WITH RTU++ 5269

TABLE VI

TRACKING PERFORMANCE ON HIEVE BENCHMARK UNDER THE PRIVATE PROTOCOL

TABLE VII

TRACKING PERFORMANCE ON MOTS BENCHMARK

TABLE VIII

TRACKING PERFORMANCE ON CTMC-V1 DATASET.
ALL METHODS TAKE THE SAME INITIAL INPUTS

by 67.0 and the lowest IDs by 598. Since our method utilizes
different types of nodes to model the association, it is suitable
to describe the object interaction in complex scenes. The
results show that RTU++ get the lowest Frag simultaneously.
Compared to other methods, IDs and Frag indicators drop
about 50%. This proves that RTU++ has advantage on main-
taining the identities of objects. Naturally, although MOTA
indicator is slightly lower than ByteTrack, RTU++ acquires
a comparable performance on IDF1 by 67.0. This shows the
stable performance of RTU++ in large-scale complex scenes.

E. Generalization in MOTS and Cell Tracking

In order to validate the generalization ability of our method,
we conduct the comparison on the MOTS20 and CTMC-v1
benchmarks.

For MOTS20, our method takes the same initial masks as
MAF_HDA [59]. Tab. VII shows the entire results on MOTS20
benchmark. As discussed in Sec. III-D, RTU++ is extended
to MOTS with some necessary changes. Although MOTS
is more challenging than MOT, RTU++ still achieves the
best performance on IDF1 by 77.0. We attribute this to the
robustness of our data association mechanism. Compared with
other methods, RTU++ conducts the fastest processing speed,
since it does not have much complex computation for object
masks. Especially, with the same mask inputs as MAF_HDA,
our method obtains 10% inprovement on IDF1 and nearly 35%
reduction on IDs, which proves the efficiency of RTU++.
Fig. 8 shows the tracking results on the MOTS20 benchmark.

Fig. 9. The tracking result of CV-1-run01 sequence. Even though the shapes
of cells vary greatly, RTU++ still obtains accurate trajectories.

We find that RTU++ still accurately tracks targets even in
different scenes.

As shown in Tab. VIII, we compare our methods with two
other famous open-sourced trackers. All the trackers are pro-
vided the same detection from YOLOV4 [63]. The IoU tracker
only uses motion information but DeepSORT and ours use
appearance information. For a fair comparison, all appearance
features are extracted by a ResNet50 pre-trained on ImageNet.

The results show that RTU++ achieves the best perfor-
mance on IDF1 and IDs indicators. We can see that DeepSORT
obtains a worse performance than IoU tracker. That is the
appearance model trained on ImageNet is not suitable for cells.
However, our RTU++ also utilize the appearance informa-
tion, but still obtains outstanding result. Even the motion and
appearance pattern of cells is of great difference from pedes-
trian, our methods still correctly track most cells. We attribute
this to our general tracking and score methodology. First,
the EMNT is still suitable for cells. Second, as discussed
in Sec. III-B and Sec. IV-B, the state feature and simulated
tracking data decrease the influence of dataset style. Fig. 9
shows a visualization result of our tracker, we can see it tracks
most cells even there is a great size change in some cells. This
demonstrates that our method can generalize well to wilder
datasets.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose an Extendable Multiple Nodes
Tracking framework to illuminate tracking. We define four
types of basic nodes to build the essential association, in which

5270 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

various clues are integrated into state features. Furthermore,
we design RTU++ to solve the scoring problems in tracking.
It utilizes the historical tracking clues in state feature and
remembers node types information into memory. Then tracks
can be scored by RTU++ recurrently. In addition, we present
a Node-based General Tracking Data Generation method to
overcome the lack of available data in MOT. By analyzing
the experimental results, our EMNT combined with RTU++
shows convincing performance in MOT17, MOT20, HiEve,
MOTS20 and CTMC-v1. We also conduct more detailed
experiments to demonstrate the generalization of our method-
ology. In these experiments, we find that our methods often
obtain larger FP. This is caused by the imprecise estimation of
track state under illumination changes or deformation, which
are deeply studied in single object tracking. These advanced
technologies [64]–[66] provide a new direction to further
enhance our method. Moreover, it is also a good choice to
extend RTU++ to wider fields such as CATER [67], so as to
perform more tasks of video analysis.

REFERENCES

[1] W. Ren, X. Wang, J. Tian, Y. Tang, and A. B. Chan, “Tracking-by-
counting: Using network flows on crowd density maps for tracking
multiple targets,” IEEE Trans. Image Process., vol. 30, pp. 1439–1452,
2021.

[2] P. Dai, R. Weng, W. Choi, C. Zhang, Z. He, and W. Ding, “Learn-
ing a proposal classifier for multiple object tracking,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 2443–2452.

[3] Y. Zhang, H. Sheng, Y. Wu, S. Wang, W. Ke, and Z. Xiong, “Multi-
plex labeling graph for near-online tracking in crowded scenes,” IEEE
Internet Things J., vol. 7, no. 9, pp. 7892–7902, Sep. 2020.

[4] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2017, pp. 3645–3649.

[5] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMOT: On the
fairness of detection and re-identification in multiple object tracking,”
Int. J. Comput. Vis., vol. 129, no. 11, pp. 3069–3087, 2021.

[6] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking
revisited,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 4696–4704.

[7] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal
greedy algorithms for tracking a variable number of objects,” in Proc.
CVPR, Jun. 2011, pp. 1201–1208.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[9] Y. Zhang et al., “Long-term tracking with deep tracklet association,”
IEEE Trans. Image Process., vol. 29, pp. 6694–6706, 2020.

[10] H. Sheng et al., “Near-online tracking with co-occurrence constraints
in blockchain-based edge computing,” IEEE Internet Things J., vol. 8,
no. 4, pp. 2193–2207, Feb. 2021.

[11] S. Wang, H. Sheng, Y. Zhang, Y. Wu, and Z. Xiong, “A general recurrent
tracking framework without real data,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 1–8.

[12] G. Bishop et al., “An introduction to the Kalman filter,” in Proc.
SIGGRAPH, Course, vol. 8, 2001, p. 41.

[13] M. Hoshiya and E. Saito, “Structural identification by extended Kalman
filter,” J. Eng. Mech., vol. 110, no. 12, pp. 1757–1770, Dec. 1984.

[14] P. M. Djuric et al., “Particle filtering,” IEEE Signal Process. Mag.,
vol. 20, no. 5, pp. 19–38, Sep. 2003.

[15] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, “Multiple
object tracking: A literature review,” Artif. Intell., vol. 293, Apr. 2021,
Art. no. 103448.

[16] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440–1448.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 28, 2015, pp. 91–99.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 2961–2969.

[19] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2016, pp. 3464–3468.

[20] W. Choi, “Near-online multi-target tracking with aggregated local flow
descriptor,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3029–3037.

[21] H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, and J. Yu, “Iterative mul-
tiple hypothesis tracking with tracklet-level association,” IEEE Trans.
Circuits Syst. Video Technol., vol. 29, no. 12, pp. 3660–3672, Dec. 2019.

[22] H. Sheng, Y. Zhang, J. Chen, Z. Xiong, and J. Zhang, “Heteroge-
neous association graph fusion for target association in multiple object
tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 11,
pp. 3269–3280, Nov. 2019.

[23] H. Sheng et al., “Hypothesis testing based tracking with spatio-temporal
joint interaction modeling,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 30, no. 9, pp. 2971–2983, Sep. 2020.

[24] B. Yang and R. Nevatia, “An online learned CRF model for multi-target
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 2034–2041.

[25] A. Dehghan, S. M. Assari, and M. Shah, “GMMCP tracker: Globally
optimal generalized maximum multi clique problem for multiple object
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 4091–4099.

[26] Z. Jiang et al., “Detecting and tracking of multiple mice using part
proposal networks,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Mar. 29, 2022, doi: 10.1109/TNNLS.2022.3160800.

[27] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, “Towards real-time
multi-object tracking,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Cham,
Switzerland: Springer, 2020, pp. 107–122.

[28] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 941–951.

[29] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed tracking-by-
detection without using image information,” in Proc. 14th IEEE Int.
Conf. Adv. Video Signal Based Surveill. (AVSS), Aug. 2017, pp. 1–6.

[30] V. Chari, S. Lacoste-Julien, I. Laptev, and J. Sivic, “On pairwise costs
for network flow multi-object tracking,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 5537–5545.

[31] C. Kim, F. Li, and J. M. Rehg, “Multi-object tracking with neural gating
using bilinear LSTM,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 200–215.

[32] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable:
Learning to track multiple cues with long-term dependencies,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 300–311.

[33] N. Ran, L. Kong, Y. Wang, and Q. Liu, “A robust multi-athlete tracking
algorithm by exploiting discriminant features and long-term dependen-
cies,” in Proc. Int. Conf. Multimedia Model. (ICME). Cham, Switzerland:
Springer, 2019, pp. 411–423.

[34] W. Zhang, H. Zhou, S. Sun, Z. Wang, J. Shi, and C. C. Loy, “Robust
multi-modality multi-object tracking,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 2365–2374.

[35] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part models:
Person retrieval with refined part pooling (and a strong convolutional
baseline),” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 480–496.

[36] S. E. Kahou, V. Michalski, R. Memisevic, C. Pal, and P. Vincent,
“RATM: Recurrent attentive tracking model,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017,
pp. 1613–1622.

[37] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H. Yang, “Online
multi-object tracking with dual matching attention networks,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 366–382.

[38] K. Yoon, D. Y. Kim, M. Jeon, and Y. C. Yoon, “Data association for
multi-object tracking via deep neural networks,” Sensors, vol. 19, no. 3,
p. 559, 2019.

[39] A. Milan, L. Leal-Taixe, I. Reid, S. Roth, and K. Schindler, “MOT16:
A benchmark for multi-object tracking,” 2016, arXiv:1603.00831.

[40] P. Dendorfer et al., “MOT20: A benchmark for multi object tracking in
crowded scenes,” 2020, arXiv:2003.09003.

[41] W. Lin et al., “Human in events: A large-scale benchmark for human-
centric video analysis in complex events,” 2020, arXiv:2005.04490.

[42] S. Anjum and D. Gurari, “CTMC: Cell tracking with mitosis detec-
tion dataset challenge,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 982–983.

http://dx.doi.org/10.1109/TNNLS.2022.3160800

WANG et al.: EXTENDABLE MULTIPLE NODES RECURRENT TRACKING FRAMEWORK WITH RTU++ 5271

[43] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object track-
ing performance: The clear MOT metrics,” EURASIP J. Image Video
Process., vol. 2008, pp. 1–10, Dec. 2008.

[44] P. Voigtlaender et al., “MOTS: Multi-object tracking and segmenta-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 7942–7951.

[45] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance
measures and a data set for multi-target, multi-camera tracking,” in Proc.
Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer, 2016,
pp. 17–35.

[46] J. Luiten et al., “HOTA: A higher order metric for evaluating multi-
object tracking,” Int. J. Comput. Vis., vol. 129, no. 2, pp. 548–578,
Feb. 2021.

[47] B. Pang, Y. Li, Y. Zhang, M. Li, and C. Lu, “TubeTK: Adopting
tubes to track multi-object in a one-step training model,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 6308–6318.

[48] Y. Wang, K. Kitani, and X. Weng, “Joint object detection and multi-
object tracking with graph neural networks,” 2020, arXiv:2006.13164.

[49] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,”
in Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer,
2020, pp. 474–490.

[50] J. Wu, J. Cao, L. Song, Y. Wang, M. Yang, and J. Yuan, “Track
to detect and segment: An online multi-object tracker,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 12352–12361.

[51] C. Liang, Z. Zhang, X. Zhou, B. Li, S. Zhu, and W. Hu, “Rethinking
the competition between detection and Reid in multi-object tracking,”
2020, arXiv:2010.12138.

[52] Y. Zhang et al., “ByteTrack: Multi-object tracking by associating every
detection box,” 2021, arXiv:2110.06864.

[53] F. Yang, X. Chang, S. Sakti, Y. Wu, and S. Nakamura, “ReMOT:
A model-agnostic refinement for multiple object tracking,” Image Vis.
Comput., vol. 106, Feb. 2021, Art. no. 104091.

[54] B. Shuai et al., Application of Multi-Object Tracking With Siamese
Track-RCNN to the Human in Events Dataset. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 4625–4629, doi:
10.1145/3394171.3416297.

[55] Y. Jing, B. Guo, Y. Liu, Z. Wang, Z. Yu, and X. Zhou, “CrowdTracker:
Object tracking using mobile crowd sensing,” in Proc. ACM Int. Joint
Conf. Pervasive Ubiquitous Comput. Proc. ACM Int. Symp. Wearable
Comput., 2017, pp. 85–88.

[56] A. Wu, C. Lin, B. Chen, W. Huang, Z. Huang, and W.-S. Zheng,
“Transductive multi-object tracking in complex events by interactive
self-training,” in Proc. 28th ACM Int. Conf. Multimedia, Oct. 2020,
pp. 4620–4624.

[57] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021,” 2021, arXiv:2107.08430.

[58] Y.-m. Song, Y.-c. Yoon, K. Yoon, M. Jeon, S.-W. Lee, and W. Pedrycz,
“Online multi-object tracking and segmentation with GMPHD filter and
mask-based affinity fusion,” 2020, arXiv:2009.00100.

[59] Y.-M. Song, Y.-C. Yoon, K. Yoon, H. Jang, N. Ha, and M. Jeon,
“Multiobject tracking and segmentation with embedding mask-based
affinity fusion in hierarchical data association,” IEEE Access, vol. 10,
pp. 60643–60657, 2022.

[60] Z. Wang, H. Zhao, Y.-L. Li, S. Wang, P. Torr, and L. Bertinetto,
“Do different tracking tasks require different appearance models?” in
Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 726–738.

[61] (2021). Costa Tracker. [Online]. Available: https://motchallenge.net/
method/MOTS=87&chl=17

[62] F. Yang et al., “ReMOTS: Self-supervised refining multi-object tracking
and segmentation,” CoRR, vol. abs/2007.03200, 2020. [Online]. Avail-
able: https://arxiv.org/abs/2007.03200

[63] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal
speed and accuracy of object detection,” 2020, arXiv:2004.10934.

[64] J. Shen, Y. Liu, X. Dong, X. Lu, F. S. Khan, and S. C. H. Hoi, “Distilled
Siamese networks for visual tracking,” IEEE Trans. Pattern Anal. Mach.
Intell., early access, Nov. 11, 2021, doi: 10.1109/TPAMI.2021.3127492.

[65] W. Han, X. Dong, F. S. Khan, L. Shao, and J. Shen, “Learning to fuse
asymmetric feature maps in Siamese trackers,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 16570–16580.

[66] X. Dong, J. Shen, L. Shao, and F. Porikli, “CLNet: A compact latent
network for fast adjusting Siamese trackers,” in Proc. Eur. Conf. Comput.
Vis. (ECCV). Cham, Switzerland: Springer, 2020, pp. 378–395.

[67] R. Girdhar and D. Ramanan, “CATER: A diagnostic dataset for com-
positional actions and TEmporal reasoning,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2020, pp. 1–16.

Shuai Wang received the B.S. degree from the
School of Computer Science and Engineering,
Beihang University, China, in 2019, where he is
currently pursuing the Ph.D. degree with the School
of Computer Science and Engineering. His research
interests include computer vision and multiple object
tracking.

Hao Sheng (Member, IEEE) received the B.S. and
Ph.D. degrees from the School of Computer Science
and Engineering, Beihang University, in 2003 and
2009, respectively. He is currently a Professor and
the Ph.D. Supervisor with the School of Computer
Science and Engineering, Beihang University, China.
His research interests include computer vision, pat-
tern recognition, and machine learning.

Da Yang received the B.S. degree from the School
of Computer Science and Engineering, Beihang Uni-
versity, Beijing, China, in 2012, where he is cur-
rently pursuing the Ph.D. degree with the School of
Computer Science and Engineering.

Yang Zhang received the B.S. and Ph.D. degrees
from the School of Computer Science and Engi-
neering, Beihang University, in 2014 and 2020,
respectively. He is an Associate Professor with the
College of Information Science and Technology,
Beijing University of Chemical Technology, China.
He is working on computer vision and machine
learning.

Yubin Wu received the B.S. degree from the School
of Computer Science and Engineering, Beihang Uni-
versity, China, in 2016, where he is currently pursu-
ing the Ph.D. degree. His research interests include
computer vision and multiple object tracking.

Sizhe Wang received the B.S. degree from the
Xi’an University of Technology in 2012 and the
M.S. degree from Xi’an Jiaotong University in 2014.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Engineering,
Beihang University, China. His research interest
includes computer vision.

http://dx.doi.org/10.1145/3394171.3416297
http://dx.doi.org/10.1109/TPAMI.2021.3127492

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

