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Abstract— The difficulties of obtaining sufficient labeled sam-
ples have always been one of the factors hindering deep
learning models from obtaining high accuracy in hyperspectral
image (HSI) classification. To reduce the dependence of deep
learning models on training samples, meta learning methods have
been introduced, effectively improving the classification accuracy
in small sample set scenarios. However, the existing methods
based on meta learning still need to construct a labeled source
data set with several pre-collected HSIs, and must utilize a large
number of labeled samples for meta-training, which is actually
time-consuming and labor-intensive. To solve this problem, this
paper proposes a novel unsupervised meta learning method with
multiview constraints for HSI small sample set classification.
Specifically, the proposed method first builds an unlabeled source
data set using unlabeled HSIs. Then, multiple spatial-spectral
multiview features of each unlabeled sample are generated to
construct tasks for unsupervised meta learning. Finally, the
designed residual relation network is used for meta-training
and small sample set classification based on the voting strategy.
Compared with existing supervised meta learning methods for
HSI classification, our method can only utilize HSIs without
any label for unsupervised meta learning, which significantly
reduces the number of requisite labeled samples in the whole
classification process. To verify the effectiveness of the proposed
method, extensive experiments are carried out on 8 public HSIs
in the cross-domain and in-domain classification scenarios. The
statistical results demonstrate that, compared with existing super-
vised meta learning methods and other advanced classification
models, the proposed method can achieve competitive or better
classification performance in small sample set scenarios.

Index Terms— Hyperspectral image, small sample set classi-
fication, unsupervised meta learning, multiview learning, deep
learning.

I. INTRODUCTION

S INCE the 1970s, remote sensing technology has become
one of the most important technical means to obtain earth

observation information. Compared with panchromatic and
multispectral images, HSIs contain both rich spectral details
and spatial structure information, providing the possibility for
accurate identification and classification [1].
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The main task of HSI classsification is to assign a unique
label to each pixel in the images, so as to produce classification
maps reflecting the distribution information of ground objects.
Classical machine learning classifiers such as support vector
machine (SVM) [2] and random forest (RF) [3] can directly
classify HSIs, but they cannot obtain satisfactory classification
results due to the high-dimensional and non-linear characteris-
tics of hyperspectral data. To make use of the potential features
in HSIs, principal component analysis (PCA) [4], extended
morphological profile (EMP) [5], local binary patterns (LBP)
[6], Gabor [7] and other feature extraction methods are com-
bined with the above classifiers, effectively improving classifi-
cation performance. However, these traditional methods based
on artificial features rely heavily on expert knowledge and lack
universality, so fail to obtain stable results for multi-source and
multi-resolution HSIs.

With the continuous development of remote sensing imaging
technology, high-performance computing unit and computer
vision theory, deep learning methods have been applied to
HSI classification and constantly refreshing the classification
accuracy in theoretical research [8]. Compared with traditional
methods, deep learning methods can automatically mine the
deep abstract features conducive to classification task from
input data, so as to obtain higher classification and recog-
nition accuracy. Stacked autoencoder (SAE) [9], recurrent
neural network (RNN) [10], deep belief networks (DBN) [11]
and convolutional neural networks (CNN) [12]–[16] are first
introduced, achieving better classification performance than
traditional methods with sufficient training samples. Compared
with the three deep learning models, CNN can directly operate
across high-dimensional data with grid structure using 2D or
3D convolution, thus effectively utilizing the spatial-spectral
information in HSIs. For example, Chen et al. explored the
feature extraction performance of 1D, 2D and 3D convolution
in HSIs, and made a detailed analysis on the hyperparame-
ters including the number of network layer, learning rate
and so on [17]. Liu et al. built a deep feature extraction
network using 3D convolution layers, further improving the
accuracy of HSI classification [16]. In addition, residual
structure [18], dense connection [19], capsule neuron [20],
attention mechanism [21] and Network In Network (NIN) [22]
structure are also combined with CNN model, to extract
the more abundant features and further improve classification
accuracy. To sum up, a large number of existing literatures
show that CNN has become the mainstream model in HSI
classification.
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As we all know, collecting a large number of high-quality
HSI labeled samples is very laborious and time-consuming
in practice. However, most supervised deep learning models
require sufficient labeled samples for parameter optimization.
This contradiction shadows the classification performance of
supervised deep learning models when the number of training
samples are limited. To this end, advanced learning methods
such as semi-supervised learning [23], unsupervised feature
extraction and transfer learning have been introduced suc-
cessively, to improve the classification accuracy with limited
training samples. Two semi-supervised models, Generative
adversarial networks (GANs) [24], [25] and graph convolu-
tional network (GCNs) [26], [27] have been widely used in
HSI classification. The former can effectively enhance training
process by generating synthetic samples, while the latter can
make full use of the potential features in unlabeled samples
by building graph models. Both can significantly improve
the classification performance with limited training samples.
Unsupervised feature extraction can learn deep abstract repre-
sentations by minimizing reconstruction errors, and is always
combined with machine learning classifiers such as multi-
layer perceptron (MLP) and SVM for classification [28]. For
example, Mei et al. designed an unsupervised spatial-spectral
features learning method by combining 3D CNN and SAE,
obtaining better results with insufficient training samples [29].
In transfer learning methods, the relevant data sets are used to
pre-train the model, to improve the classification performance
on target HSIs [30], [31]. In addition, active learning [32],
contrastive learning [33], metric learning [34], [35], data aug-
mentation [36] and deep forest [37] have also been introduced,
improving classification performance to a certain extent.

Recently, with the rapid increase in the volume of hyper-
spectral data, how to use a few labeled samples to achieve
rapid and accurate classification on target HSIs, that is, HSI
small sample set classification, has attracted a lot of attention.
In HSI small sample set classification, most deep learning
models fail to obtain satisfactory results, because in the target
HSIs, only 1-10 labeled samples per class are available, which
makes the deep learning model suffer from overfitting in the
training process. To improve the accuracy of HSI small sample
set classification, meta learning methods are introduced and
has achieved encouraging results. Different from conventional
deep learning methods, meta learning methods take tasks
containing support sets and query sets as the basic units for
training, enabling the model to acquire the ability of learning
how to learn [38]–[40]. Typically, meta learning methods first
learn more general-purpose knowledge on the source data sets,
and then fine-tune the model using a few labeled samples in the
target HSIs, to quickly adapt to new classification tasks [41],
[42]. Liu et al. take the lead in exploring the performance of
meta learning methods in HSI classification [43]. Specifically,
Liu et al. proposed a novel classification method based on
prototype network, and constructed the source data sets using
different HSIs, effectively improving the accuracy of HSI
small sample set classification. Then, Gao et al. and Ma et
al. introduced the relation network into HSI small sample
set classification, further improving classification performance
[44], [45]. Furthermore, Li et al. fully considered the domain
shift between data sets, and designed a novel classification

framework by combining a domain adaptation method and
the relation network, obtaining more excellent results [46].
In addition, induction network [47], model-agnostic meta
learning algorithm [48] and temporal convolution [49] are also
applied in HSIs small sample set classification, obtaining better
results than most existing deep learning models.

The above meta learning-based methods can effectively
improve the accuracy of HSI small sample set classifica-
tion, but they all carry out supervised learning on a labeled
source data set, which means that a large number of labeled
samples are still required in advance. For example, Liu et
al. constructed a source data set containing 55 classes and
11000 labeled samples using four HSIs [43]. In fact, collecting
a large number of high-quality labeled samples from different
HSIs and constructing source data sets is still time-consuming
and labor-intensive. In contrast, we can quickly collect a
large number of unlabeled HSIs. Therefore, how to utilize
unlabeled HSIs for unsupervised meta learning, to further
reduce the number of requisite labeled samples and improve
the performance of HSI small sample set classification, is more
meaningful in practical application. Two typical unsupervised
meta learning methods, CACTUs (Clustering to Automatically
Construct Tasks for Unsupervised meta learning) [50] and
UMTRA (Unsupervised Meta learning with Tasks constructed
by Random sampling and Augmentation) [51], have achieved
promising results on the Omniglot and Mini-Imagenet few-
shot learning benchmarks. Briefly, the two methods allocate
pseudo labels to unlabeled samples through clustering and data
augmentation respectively, to construct the support sets and
query sets for unsupervised meta learning. However, according
to our experiments, simply applying CACTUs and UMTRA to
HSIs cannot obtain satisfactory classification results, because
the two methods designed for natural image cannot fully
consider the characteristics of high-dimensional, nonlinearity,
and spatial-spectral information fusion in hyperspectral data.

Multiview learning aims to model the features of the same
object under different views and conduct joint optimization,
so as to improve the classification performance and gener-
alization ability [52]. Obviously, different spectral bands in
HSIs can be regarded as different views. Our previous studies
have shown that using the spatial-spectral features of the
same sample in different bands for multiview learning can
effectively improve the accuracy of HSI classification [33].
This also indirectly indicates that, constructing tasks with the
multiview features of the same sample has great potential
for unsupervised meta-learning on HSIs. Therefore, based on
the idea of meta learning and multiview learning, this paper
proposes a novel unsupervised meta learning method with mul-
tiview constraints, UM2L, to further improve the performance
of HSI small sample set classification and reduce the depen-
dence on requisite labeled samples. Specifically, the proposed
method first generates multiple spatial-spectral multiview fea-
tures by combining different bands of the same sample and
data augmentation, to constract the tasks for unsupervised
meta learning. Then, the designed residual relation network is
adopted for meta-training and small sample set classification
based on the voting strategy. Extensive experiments are carried
on four pre-collected HSIs and four target HSIs. The statistical
results show that, compared with existing supervised meta



GAO et al.: UNSUPERVISED META LEARNING WITH MULTIVIEW CONSTRAINTS FOR HSI SMALL SAMPLE SET CLASSIFICATION 3451

learning methods and other advanced classification models,
the proposed method can achieve competitive or better results,
and can significantly reduce the number of requisite labeled
samples in training process.

The main contributions of this paper are as follows.

1) We propose a novel unsupervised meta learning method
with multiview constraints for HSI small sample set clas-
sification. Experimental results show that the proposed
method can significantly reduce the number of requisite
labeled samples and effectively improve the accuracy
of HSI small sample set classification. To the best of
our knowledge, our method is the first one based on
unsupervised meta learning in HSI classification.

2) Based on the idea of multiview learning, a task construc-
tion method for unsupervised meta learning is proposed.
In this method, multiview features along the spectral
dimension are obtained by combining different bands of
the same sample, and multiview features along the spatial
dimension are obtained by data augmentation such as
rotation and flipping, to generate multiple spatial-spectral
multiview features belonging to the same sample together.

3) To make full use of the spatial-spectral information in
HSIs, we design an deep residual relation network for
metric learning. The designed network can extract deep
features with short inner-class distance and long inter-
class distance, effectively enhancing separability.

4) In the experiments, two classification scenarios,
cross-domain and in-domain HSI small sample set
classification, are used to fully verify the effectiveness
of the proposed method. The statistical results show
that, compared with existing supervised meta learning
methods and other advanced classification models, the
proposed method can achieve competitive or better
results.

The remainder of this paper is structured as fol-
lows. Section II introduces the general process of meta
learning-based methods for HSI small sample set classifica-
tion. Section III describes the proposed method in detail. IV
presents the experimental results and detailed analysis. Finally,
conclusions are provided in Section V.

II. META LEARNING-BASED HSI SMALL SAMPLE

SET CLASSIFICATION

A. Supervised Meta Learning

Fig. 1 illustrates the general process of supervised meta
learning methods classifying HSIs, including three phases:
meta-training, fine-tuning and classification. To illustrate the
whole process more clearly, let’s first explain several concepts.
The labeled source data set is constructed with pre-collected
HSIs, including a large number of labeled samples belonging
to different classes. The pre-collected HSIs possess different
spatial resolutions and spectral ranges, which can effectively
increase the diversity and richness of samples in the source
data set, thus improving the effectivesess of meta-training.
The target HSI are completely different from the pre-collected
HSIs, and are used to evaluate classification performance.
Specifically, only a few labeled samples are randomly selected

Fig. 1. HSI small sample set classification based on supervised meta learning.
Different colors distinguish different classes.

from the target HSI to fine-tune the model, and then the
remaining unlabeled samples are used to evaluate the classifi-
cation results. In conclusion, in the supervised meta-learning
methods for HSI small sample set classification, the model
first utilizes the labeled source data set for meta-training,
developing the ability of learning how to learn, and then
utilizes only a few labeled samples from the target HSI for
fine-tuning, to quickly adapt to the new and unseen classes,
and finally classifies the target HSI.

B. Tasks-Based Learning Strategy

Indeed, meta learning transfers the knowledge learned from
the source data set to the target data set. However, different
from the general transfer learning, meta learning takes tasks
as basic units for training. A task contains a support set and a
query set. In a task, the support set and the query set contain
the same classes, and the number of samples in the support
set is usually smaller than that in the query set, to simulate
the situation of small sample set classification. A task can
be described using three keywords: way, shot , and query.
The number of classes in a task is denoted by way, and the
number of samples per class in the support set and query set
are denoted by shot and query, respectively. For example,
in Fig. 1, the task in the meta-training phase can be denoted
as 3-way 1-shot 2-query. Each task is generated by a random
combination of classes in the same data set, and the number
of classes in a task is less than that in the corresponding data
set, to increase the diversity of tasks. In the learning process,
the samples in the support set are clearly labeled, while the
samples in the query set are regarded as unknown. The model
updates its parameters by predicting the labels of the query
samples and calculating the loss.

As shown in Fig. 1, in the meta-training phase, tasks are
constructed with the samples in the labeled source data set.
In the fine-tuning phase, tasks are constructed with only a
few labeled samples from the target HSI. In the classification
phase, tasks are constructed with the selected labeled samples
in the previous phase as support sets and the remaining labeled
samples as query sets.
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Fig. 2. Schematic of different task construction methods in unsupervised
meta learning. Different colors distinguish different samples.

C. Unsupervised Meta Learning

Unsupervised meta learning attempts to utilize unlabeled
HSI source data sets for meta-training, enabling the model to
learn more general-purpose knowledge from tasks constructed
with unlabeled samples. What distinguishes unsupervised meta
learning from supervised meta learning is the unlabeled source
data set. Therefore, how to utilize unlabeled source data set to
construct tasks for meta-training is the key problem that must
be solved in unsupervised meta learning. As far as we know,
there are few studies related to unsupervised meta learning.
CACTUs and UMTRA are two representative unsupervised
meta learning methods designed for natural image. CACTUs
first conducts clustering on the unlabeled samples and utilizes
the obtained results with pseudo labels to construct tasks
for meta-training. UMTRA performs data augmentation, such
as random shift and flipping, on each unlabeled sample,
and treats each sample and its augmentation samples as a
class. The proposed method constructs tasks by generating
spatial-spectral multiview features of the same sample. Fig. 2
briefly depicts the three task construction methods.

Supervised meta learning requires a large number of
labeled samples for meta-training. Therefore, in the theoretical
research on HSI small sample set classification, most of the
existing methods utilize several labeled HSIs to build source
data sets [43], [44], [46]. This means that the model per-
forms meta-training on the pre-collected HSIs, and performs
cross-domain classification on another completely different
HSI. However, in the unsupervised meta learning methods,
only one target HSI can be used to complete meta-training and
evaluation. Similar to most supervised deep learning methods,
the target HSI is first treated as unlabeled data set for meta-
training, and then the original labeled samples in the target
HSI are used for fine-tuning and evaluation. This means that
the methods based on unsupervised meta learning can perform
cross-domain and in-domain small sample set classification.

III. THE PROPOSED METHOD

A. Workflow

To further improve the performance of HSI small sample
set classification and alleviate the dependence of the model
on requisite labeled samples, we propose a novel method,
UM2L, based on unsupervised meta learning and multiview

learning. Similar to the existing meta learning methods for
HSI classification, the proposed method includes three phases:
unsupervised meta learning (meta-training), fine-tuning and
classification. Fig. 3 shows the workflow of the proposed
method performing unsupervised meta learning. First, spatial-
spectral multiview features are generated for each sample in
the unlabeled source data set. Then, each sample and its
multiview features are treated as a class, and the tasks are con-
structed by random selection. Next, the designed residual rela-
tion network performs meta-training on the tasks constructed
with multiview features, to learn more general-purpose feature
knowledge. It should be noted that, HSIs without any label
information are used to build the unlabeled source data set,
and multiview features of unlabeled samples are used to
construct the tasks for meta-training. Therefore, the proposed
method is actually an unsupervised meta learning method with
multiview constraints. After meta-training, the designed model
is fine-tuned with only a few labeled samples in the target
HSIs, to quickly adapt to the new unseen classes. Finally,
based on the voting strategy in Fig. 6, the classification
performance of the model is evaluated with the remaining
labeled samples in the target HSIs.

B. Spatial-Spectral Multiview Features

In real world applications, multiview data are very common.
Data describing the same object are often collected from dif-
ferent measuring methods as particular singleview data cannot
comprehensively describe the information of all examples [52].
It is significant to make good use of the information from
different views. Obviously, different bands in HSIs can be
regarded as different views because they can reflect different
properties. Therefore, based on the idea of multiview learning,
we propose a novel task construction method, i.e., generating
the spatial-spectral multiview features of the same sample.

Fig. 4 describes the process of generating the spatial-spectral
multiview features. For a cube sample with m × m pixels
and c bands, band random selection and data augmentation
are successively adopted. HSIs possess dozens to hundreds
of bands, and there is a strong correlation between adjacent
bands. Taking each band as a view will undoubtedly increase
the complexity of meta learning. Therefore, multiview fea-
tures along the spectral dimension are obtained by random
selection. Specifically, three bands are randomly selected from
the original spectral bands and stacked, which is repeated
several times to generate multiple different spectral multiview
features. After that, the spatial information is transformed
using several data augmentation methods, such as crop, flip,
rotation and cutout, to generate the multiview features along
the spatial dimensions.

In brief, multiview features along the spectral dimension
are obtained by band random selection, and multiview features
along the spatial dimension are obtained by data augmentation,
to generate the spatial-spectral multiview features together.
After generating multiple multiview features, each sample
could be treated as a particular class. This effectively increases
the size of the source data set and provides pseudo label
information for task construction.



GAO et al.: UNSUPERVISED META LEARNING WITH MULTIVIEW CONSTRAINTS FOR HSI SMALL SAMPLE SET CLASSIFICATION 3453

Fig. 3. Workflow of the proposed method performing unsupervised meta learning.

Fig. 4. Schematic of generating the spatial-spectral multiview features.

C. Residual Relation Network

To make full use of the spatial-spectral information in
HSIs, a deep residual relation network is designed. As shown
in Fig. 3, the designed model consists of three parts: fea-
ture extraction module, concatenation operation and relation
learning module. The feature extraction module and relation
learning module are explained more detailedly in Fig. 5. The
designed network possess an end-to-end structure, which takes
tasks as input and directly outputs the predictive class labels
of the query sample.

Formally, a task containing C classes is denoted as T =
{S,Q} where S = {(xi , yi )}C×K

i=1 represents the support set,
Q = {(x j , y j )}C×N

j=1 represents the query set, K and N denotes
the number of samples per class in support and query set
respectively. Firstly, the feature extraction module is used to
map each sample in the input task into a deep metric space.
Specifically, the feature extraction module is mainly composed
of convolution blocks, residual connections and max pooling
layers. As shown in Fig. 5(a), a convolution block including
a convolution layer, a batch normalization layer and a ReLU
(Rectified Linear Unit) activation layer. Convolutional layer
is the most important part in convolutional block, which is
responsible for extracting abstract features from the input
data. Batch normalization layer can effectively alleviate the
problem of vanishing gradient and improve the training speed.
ReLU activation function can increase the nonlinearity of the
model and accelerate convergence. Max pooling layers are
added between convolution blocks, to gradually reduce the
spatial size of feature maps and ensure that the convolution
kernels at deep level have a larger receptive field. Furthermore,
residual connection is introduced to establish shortcuts, so as
to improve the reuse rate of feature maps at different levels
and the training effect of the designed deep network. Fig. 5(b)
shows the overall structure of the designed feature extraction

module. Actually, The feature extraction module is equivalent
to a nonlinear embedding function f that maps input samples
xi and x j to deep features f (xi ) and f (x j ).

The feature extraction module maps each sample in the
input task to a feature vector. For subsequent relation learning
and class prediction, the vectors obtained from support set are
averaged according to class, to generate the class vectors. This
means that, no matter how many support samples are included
in a task, the support set will always produce C feature vectors.
After that, each feature vector obtained from the query set is
concatenated with the class vectors, to generate C × C × K
concatenations C( f (xi ), f (x j )).

The relation learning module, responsible for calculating
the similarity between two feature vectors in the concate-
nations, could also be regard as a nonlinear transformation
function g. Compared with feature extraction module, the
relation learning module is simple and shallow. As shown
in Fig. 5(c), a convolution block is first used to process the
input concatenations, so as to reduce the dimensions of the
vectors while learning the cross-channel features. Then, two
fully connected layers are added to enhance the fitting ability
of the module and output the relation score. The relation score
denoted as ri, j = g[C( f (xi ), f (x j ))] represents the similarity
between the feature vectors f (xi ) and f (x j ). If the similarity
between two feature vectors is high, the relation score should
be high; otherwise, the relation score should be low. Finally,
the class of the query sample will be determined by the support
sample corresponding to the max relation score.

The designed residual relation network is trained with mean
square error (MSE) as loss function (Equation 1). If the
support sample and query sample in the concatenations belong
to the same class, i.e. yi == y j , the relation score is
optimized to 1, otherwise 0. Under the constraints of MSE
loss function, the model can effectively learn the relationship
between features and predict classes by comparison.

L M S E =
C×K∑

i=1

C×N∑

j=1

(ri, j − 1 · (yi == y j ))
2. (1)

It should be further explained that there are two main
considerations for using MSE as the loss function: firstly, most
existing classification frameworks based on relation network
adopt MSE for model optimization, to achieve the purpose of
similarity comparison and relation learning [39], [44], [45],
[47]; Secondly, by comparing the influence of cross entropy
loss and MSE on classification results, it is found that MSE
can enable the proposed method to obtain the more excellent
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Fig. 5. The designed residual relation network. (a) A convolution block including a convolution layer, a batch normalization layer and a ReLU activation
layer. (b) Deep feature extraction module combined with residual structure. (c) Relation learning module.

Fig. 6. Schematic of classification with voting strategy.

classification performance, and both its classification accuracy
and robustness are improved.

D. Classification With Voting Strategy

In the meta-training stage, the model learns deep features
based on three randomly selected bands. To maintain consis-
tency, the voting strategy is used to classify the target HSIs by
referring to the joint classification method in [53]. As shown
in Fig. 6, for each sample, 3 bands were randomly selected for
10 times. In consequence, 10 different multiview features are
generated. Then, the trained model classifies the 10 multiview
features respectively, and the final class of the sample is
determined according to the voting result. On the one hand,
the voting strategy keeps the consistency of the dimension of
input samples in the process of meta-training, fine-tuning and
classification, and skillfully deals with the large difference in
the number of bands between different HSIs. On the other
hand, the voting classification process can be regarded as
an ensemble learning method, which can further improve the
accuracy and robustness of the classification results.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Data Sets

To fully verify the effectiveness of the proposed method,
8 widely used public HSIs are selected for the experiments.
The 8 HSIs are Houston 2013 (HS13), Botswana (BO),
Kennedy Space Center (KSC), Chikusei (CH), University of
Pavia (UP), Pavia Center (PC), Salinas (SA) and Indian Pines
(IP). Referring to [43], [44], these HSIs are artificially divided
into two groups. Specifically, the first four HSIs are used to
build unlabeled source data set, and the last four HSIs are used
to evaluate the classification performance of the model.

The details of HS13, BO, KSC, CH are listed in Table I.
The four HSIs are acquired by different sensors respectively,

with completely different classes, ground sample distances and
spectral ranges. Building the source data set with different
HSIs can effectively increase the diversity and richness of
the samples, so as to improve the effect of meta-training.
Specifically, all the samples in the four HSIs are treated
as unlabeled, and 40,000 samples are randomly selected to
build the unlabeled source data set. To make full use of the
spatial-spectral information in HSIs, 28 × 28 patches within
the neighborhood of center pixels are selected as samples. For
each sample, 20 spatial-spectral multiview features, each of
which contains 3 randomly selected bands, are generated using
the method in Section III-B, to construct the tasks for meta-
training. Therefore, the dimension of the built unlabeled source
data set is (40000, 20, 28, 28, 3).

Table I also lists the details of four target HSIs including UP,
PC, SA, IP. It should be noted that the four target HSIs and the
pre-collected HSIs have completely different classes, that is,
there is no intersection in their label space. After meta-training,
the model is used to classify the four target HSIs respectively.
Only 5 labeled samples per class are randomly selected from
each target HSI to fine-tune the model, and the remaining
samples are used to evaluate the classification performance.
The 28 × 28 patches around pixels are still selected as input.
Therefore, the dimension of input sample is 28 × 28 × 3 in
the phase of fine-tuning and classification according to the
voting strategy in Fig. 6. The four target HSIs have different
classes, sample distributions, spatial resolutions and spectral
ranges, which can evaluate the classification performance of
the model more comprehensively.

B. Experimental Settings

All algorithms are developed and implemented by Python
and libraries such as Pytorch, sklearn and numpy. All results
are generated on a computer equipped with an Intel(R)
Xeon(R) Gold 6152 CPU and an Nvidia A100 PCIE GPU.

In the residual relation network, the size of convolution
kernel in each residual convolution block is set to 3 × 3,
and the number of convolution kernel gradually increases by
128,256,512,1024. The kernel size in max pooling layer is set
to 2×2. In the relation learning module, the 1×1 convolution
kernel is applied to reduce the dimension of the concatena-
tions. The number of neurons in two fully connected layers
is set to 128 and 1 respectively, and Dropout is adopted to
further increase the generalization ability of the model.
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TABLE I

DETAILS OF THE PRE-COLLECTED HSIS AND TARGET HSIS. HOUSTON 2013 (HS13), BOTSWANA(BO), KENNEDY SPACE CENTER (KSC),
CHIKUSEI(CH), UNIVERSITY OF PAVIA (UP), PAVIA CENTER (PC), SALINAS (SA), INDIAN PINES (IP), GROUND SAMPLE

DISTANCE (GSD)(M), SPATIAL SIZE (PIXEL), SPECTRAL RANGE (NM), AIRBORNE VISIBLE INFRARED IMAGING

SPECTROMETER (AVIRIS), REFLECTIVE OPTICS SYSTEM IMAGING SPECTROMETER (ROSIS)

In the process of unsupervised meta learning, 20-way
5-shot 15-query tasks are randomly constructed. The learning
rate is set as 0.0001 and the number of iterations is set as
40,000, to ensure that the model is adequately trained. In the
phase of fine-tuning, the number of iterations is set to 1000 and
Ctarget -way 2-shot 3-query tasks are constructed (Ctarget is
9 for UP and PC, Ctarget is 16 for SA and IP). In addition,
the Adam algorithm is selected for model optimization.

To quantitatively evaluate the classification results of the
model, the overall accuracy (OA), average accuracy (AA) and
kappa coefficient are selected as evaluation criteria. In addi-
tion, to alleviate the instability of results caused by random
sample selection, the average value of 10 experiments is
regarded as the final result.

C. Cross-Domain HSI Small Sample set Classification

In the experiments of cross-domain small sample set classi-
fication, the four pre-collected HSIs used to build the unlabeled
source data set are completely different from the target HSIs.
The proposed method, UM2L, first performs meta-training on
the source data set, and then transfers the learned knowledge
to the classification tasks in target HSIs. To demonstrate the
effectiveness of the proposed method, 6 different classification
methods are selected for comparison, including the classical
machine learning classifier RBF-SVM, a supervised deep
learning model 3D-CNN [54], an semi-supervised method
EMP+GCN [55], and three supervised meta learning methods
DFSL+SVM [43], RN-FSC [44] and DCFSL [46].

Compared with other classifiers, RBF-SVM is better at
processing high-dimensional data. In the experiments, grid
search strategy is adopted to determine the parameters from a
wide range (2−3, 2−2, . . . , 28). 3D-CNN can directly process
hyperspectral data using 3D convolution, and effectively make
use of the spatial-spectral information. EMP+GCN is a
semi-supervised method based on EMP features and GCN
model, which can effectively utilize the potential features in
unlabeled samples. For the above three models, only 5 labeled
samples per class from the target HSIs are randomly selected
for supervised training. DFSL+SVM, RN-FSC and DCFSL
are all supervised meta learning methods. DFSL+SVM first
learns a feature extraction network using the labeled source

data set, then extracts features from the target HSI, and finally
performs classification with RBF-SVM. RN-FSC constructs an
end-to-end framework for small sample set classification, and
performs classification by comparing the similarity between
the extracted deep features. DCFSL combines small sam-
ple set classification with a domain adaptation method, and
attempts to extract the domain-invariant features hy introduc-
ing conditional adversarial domain adaptation strategy. Refer-
ring to relevant literatures, for DFSL+SVM and RN-FSC, four
pre-collected HSIs including HS13, BO, KSC and CH, are
used to construct the labeled source data set. For DCFSL,
only the CH data set is used for meta-training.

Table II reports the classification results of different methods
on the four target HSIs, from which we can obtain the
following observations.

(1) On the whole, the classification performance of
RBF-SVM is inferior to that of deep learning models.
The deep learning models can extract more informative
and discriminative features layer by layer, to obtain
higher classification accuracy.

(2) The classification accuracy of EMP+GCN is signifi-
cantly improved. Compared with 3D-CNN, the OA of
EMP+GCN is improved by 11.00%, 14.11%, 2.93% and
7.32% respectively on four target HSIs.

(3) Compared with RBF-SVM, 3D-CNN and EMP+GCN,
the classification accuracy of the three supervised meta
learning methods is further improved. In the small sam-
ple set scenario, the deep learning models trained by a
few labeled samples often has the problem of overfitting.
In contrast, the supervised meta learning method can
utilize the knowledge learned from the source data set
to guide the classification on the target HSIs, so as to
obtain better classification performance.

(4) Comparing the three supervised meta learning methods
(DFSL+SVM, RN-FSC and DCFSL) and UM2L, it can
be found that on the PC data sets, the classification
accuracy of UM2L is slightly lower than that of the
supervised meta learning methods. On the UP, SA and IP
data sets, the classification accuracy of UM2L is higher
than that of the supervised meta learning methods.
Specifically, on the PC data set, the OA of UM2L is
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TABLE II

THE CLASSIFICATION RESULTS OF DIFFERENT METHODS IN THE CROSS-DOMAIN SCENARIO. SD DENOTES
THE STANDARD DEVIATION OF 10 EXPERIMENTAL RESULTS

Fig. 7. The classification maps resulting from different methods on UP in the cross-domain scenario.

Fig. 8. The classification maps resulting from different methods on PC in the cross-domain scenario.

Fig. 9. The classification maps resulting from different methods on SA in the cross-domain scenario.

about 0.6%-3.2% lower than that of the supervised meta
learning methods. On the UP, SA and IP data sets, the
OA of UM2L is higher than that of the three supervised
meta learning methods. Especially on the IP data set,
the OA of UM2L increases by about 7.5%-9.6%.

It should be emphasized that UM2L obtains the above
results under the condition that only 5 labeled samples per
class in the target HSIs are used for fine-tunning. Compared
with the three supervised meta learning methods, UM2L does
not need to construct a labeled source data set, greatly reducing
the number of requisite labeled samples. The excellent perfor-
mance of UM2L can be attributed to two points: unsupervised

meta learning and deep residual relation network. On the one
hand, the spatial-spectral multiview features of each sample
are generated to construct tasks, enabling the model to perform
sufficient meta-training. On the other hand, the deep residual
relation network can make full use of the deep spatial-spectral
features in the input samples, to obtain better learning effect
and classification accuracy.

To directly observe the classification results of different
methods and perform qualitative evaluation, Figs. 7-10 show
the classification maps of different methods. It can be seen
that methods with higher classification accuracy can produce
more accurate classification maps. On the UP and PC data
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Fig. 10. The classification maps resulting from different methods on IP in the cross-domain scenario.

sets, the classification maps of the proposed method have
certain misclassifications. However, from the perspective of
class consistency, the classification maps of the proposed
method are smoother compared with other methods. It is
believed that this phenomenon benefits from the samples
with large neighborhood and the data augmentation methods
along spatial dimensions during the process of constructing
multiview features. The former can make full use of the
spatial information around the center pixels, while the latter
can effectively improve the robustness of the learned spatial
features. On SA and IP data sets, the proposed method has
the most excellent classification results, and its classification
maps are also the closest to the ground truths.

D. In-Domain HSI Small Sample set Classification

Supervised meta learning methods must utilize the labeled
samples from other HSIs for meta-training. In contrast, unsu-
pervised meta learning methods are able to perform meta-
training, fine-tuning and classification on the same target
HSI. Therefore, unsupervised meta learning methods are more
flexible. This section explores the classification performance
of UM2L in the in-domain scenario. Four different methods
including an unsupervised classification method 3D-CAE [29],
a self-supervised learning method SimCLR and two unsuper-
vised meta learning methods CACTUs [50] and UMTRA [51]
are used for comparison.

3D-CAE combines 3D convolutional layer with stack
autoencoder and utilizes reconstruction loss for training. Sim-
CLR contains a siamese feature extractor and a MLP predictor,
and can perform self-supervised learning based on contrastive
loss. Referring to [33], PCA and data augmentation are used
to generate input samples for contrastive learning. CACTUs
and UMTRA are two typical unsupervised meta learning
methods designed for natural image. CACTUs assigns pseudo
labels to the unlabeled samples by clustering, to construct
tasks for meta-training. UMTRA performs data augmentation
on each unlabeled sample, and treats each sample and its
augmentation samples as a class. In the experiments, PCA
is firstly used to reduce the dimensionality of HSIs and the
first three principal components are retained. Then, CAC-
TUs and UMTRA methods are used for unsupervised meta
learning and classification. The above four methods and the
proposed method all first treat the target HSIs as unlabeled
data for unsupervised or self-supervised learning, then carry
out classification and evaluation on the same HSIs. It should be
noted that, for the three unsupervised meta learning methods
(CACTUs, UMTRA and UM2L), the target HSIs are both the
source data sets and the target data sets, which is different from

TABLE III

THE CLASSIFICATION RESULTS OF DIFFERENT METHODS IN THE

IN-DOMAIN SCENARIO. SD DENOTES THE STANDARD

DEVIATION OF 10 EXPERIMENTAL RESULTS

the cross-domain classification scenario. In addition, 5 labeled
samples per class are randomly selected for fine-tunning.

The classification results of different methods in the
in-domain scenario are listed in Table III. Again, the mean and
standard deviation of 10 experiments are listed to enhance the
persuasiveness of results. Three observations can be made.

(1) On the whole, the classification performance of the three
unsupervised meta learning methods is better than that
of 3D-CAE. In most cases, the OA of 3D-CAE is lower
than that of the three meta learning methods, except that
on the UP data set, the OA of 3D-CAE is significantly
higher than that of PCA-CACTUs.

(2) On the UP, SA and IP data sets, the classification accu-
racy of PCA-SimCLR is significantly improved com-
pared with those of 3D-CAE, PCA-CACTUs and PCA-
UMTRA, indicating the potential of contrast learning in
HSI small sample set classification.

(3) CACTUs and UMTRA construct the tasks by clustering
and data augmentation respectively, which cannot fully
adapt to the characteristics of high-dimensional, nonlin-
earity, and spatial-spectral information fusion in hyper-
spectral data. Therefore, the classification accuracy of
PCA-CACTUs and PCA-UMTRA are not satisfactory.



3458 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 11. The classification maps resulting from different methods on UP in
the in-domain scenario.

Fig. 12. The classification maps resulting from different methods on PC in
the in-domain scenario.

Fig. 13. The classification maps resulting from different methods on SA in
the in-domain scenario.

(4) The proposed method achieves the highest OA, AA and
kappa coefficient on four target HSIs. Specifically, the
OA of the proposed method is 3.53%, 3.14%, 2.52%
and 2.54% higher than that of the second place in the
four target HSIs, respectively.

The unsupervised learning method 3D-CAE only utilizes
reconstruction loss for model training, and cannot make full
use of the deep spatial-spectral features in HSIs. PCA-SimCLR
and the proposed method both utilize the same unlabeled
data set for pre-training. The proposed method achieves better
classification performance on four target HSIs, indicating the
effectiveness of meta-training. The general-purpose represen-
tations learned in the meta-training phase can effectively guide
the classification on the target HSIs. Therefore, compared
with 3D-CAE and PCA-SimCLR, the classification perfor-
mance of the proposed method is further improved. Compared
with PCA-CACTUs and PCA-UMTRA, the proposed method
constructs tasks by generating spatial-spectral multiview fea-
tures, and utilizes the designed deep residual relation network
for meta-training and small sample set classification based
on the voting strategy, obtaining better classification results.
This directly shows the effectiveness of the task construction
method, model design, and voting strategy in the proposed
method.

Fig. 11-14 show the classification maps of the different
methods in the in-domain scenario. It can be seen that, there
are a large number of misclassifications in the classification
maps generated by 3D-CAE, PCA-SimCLR, PCA-CACTUs

Fig. 14. The classification maps resulting from different methods on IP in
the in-domain scenario.

TABLE IV

OVERALL ACCURACY(%) OF THE PROPOSED METHOD ON THE
TARGET HSIS WITH DIFFERENT NUMBERS OF SUPPORT

SAMPLES AND QUERY SAMPLES

TABLE V

OVERALL ACCURACY(OA, %) OF THE PROPOSED METHOD ON THE

TARGET HSIS WITH DIFFERENT FEATURE EXTRACTION MODULE

and PCA-UMTRA, which cannot accurately display the spatial
distribution information of ground objects. The classification
maps of UM2L are more accurate and closest to the ground
truths, which once again verifies the effectiveness of the
proposed method from a visual perspective.

E. Hyperparameters Analysis

Meta learning methods take tasks as basic units for training,
and the form of tasks directly affects the learning effectiveness
of the model. Referring to [43], [44], [47], the number of
classes in a task is set to 20, and the two hyperparameters shot
and query are explored. Table IV lists OA of the proposed
method with different numbers of support and query samples
in a task. It can be seen that, when shot is 5 and query
is 15, the proposed method can achieve higher classification
accuracy. However, when the value of shot is too large or too
small, the accuracy will decline to different degrees.

To make full use of the deep features in HSIs, a deep
residual relation network is designed as the model for meta
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Fig. 15. The influence of the number of multiview features on classification
results.

TABLE VI

OVERALL ACCURACY(%) OF THE PROPOSED METHOD WITH DIFFERENT
TASK CONSTRUCTION MODES. SDA STANDS FOR SPATIAL DATA

AUGMENTATION AND BRS STANDS FOR

BANDS RANDOM SELECTION

learning. The influence of network structure on classification
accuracy is explored by increasing or decreasing the residual
convolution blocks in the feature extraction module. In the
designed model, a residual convolution block consists of
a convolution block, a residual block and a pooling layer.
Table V shows the relationship between network structure and
the classification accuracy. In Table V, the network structure
numbered 1, 2, 3, 4 possesses 2, 3, 4 and 5 residual convolu-
tion block, respectively, and the network structure numbered
2 corresponds to Fig. 5(b). As we can see, the second network
structure enables the model to obtain more excellent classifi-
cation performance, while too deep or too shallow network
will lead to a decline in classification accuracy.

In the proposed method, it is a key step to construct tasks
for unsupervised meta learning using the spatial-spectral mul-
tiview features. To verify its effectiveness, the influence of the
number of multiview features and different task construction
modes are further analyzed. Theoretically within a certain
range, as the number of multiview features increases, the
model can learn richer features and possesses more excellent
classification ability. In Fig. 15, all curves show a trend
of rising at first and then tending to be stable, indicating
that excessive multiview features can no longer improve the
classification performance. Table VI lists the classification
accuracy under different task construction modes, which is
actually an ablation study on task construction methods.
PCA+SDA means that PCA replaces bands random selection
and combines with spatial data augmentation to construct
tasks; BRS means that only bands random selection is used

to construct tasks without data augmentation; different modes
in BRS+SDA explore the influence of different data aug-
mentation techniques on classification results. Obviously, both
PCA+SDA and BRS lead to significant decrease in accuracy,
indicating the importance of combining the multiview features
along spectral and spatial dimension. In spatial dimension,
data augmentation using crop, cutout, rotation or flip methods
alone also lead to varying degrees of decline in classification
accuracy, and the highest accuracy can be achieved by the
comprehensive application of multiple techniques.

F. Feature Visualization Analysis

To show the effect of unsupervised meta learning more
intuitively, feature visualization analysis is carried out.
Specifically, the t-SNE (t-distributed Stochastic Neighbor
Embedding) algorithm [56] is utilized to reduce the dimen-
sionality of the input samples and the features extracted by the
designed residual relation model, and the separability among
the obtained data is observed. Fig. 16 shows the visualization
results. Fig. 16(a) and Fig. 16(b) show the original input
samples and features generated by the feature extraction mod-
ule in the phase of unsupervised meta learning, respectively.
The separability among the input samples is very poor as
the tasks are randomly constructed with unlabeled samples,
while the separability of extracted features is significantly
improved. This indicates that the model can extract the features
with small inner-class distance and large inter-class distance
after unsupervised meta learning. In addition, the SA data
set is taken as an example to visualize the input samples
and the extracted features in the classification phase. It can
be seen that, the model after meta-training can effectively
improve the separability among the samples, and make the
samples belonging to same class more aggregated and the
samples belonging to different classes separated from each
other. It can be seen from the visualization results that, the
process of unsupervised meta learning can endow the model
with the ability of extracting more discriminant features,
thus improving the accuracy in the subsequent classification
tasks.

G. Comprehensive Comparison

Existing literatures and experimental results have shown
that, the meta learning-based methods can effectively improve
the classification accuracy of HSIs in small sample set sce-
nario. Table VII shows a comprehensive comparison of four
meta learning-based classification methods in terms of the
number of required labeled samples, execution time and clas-
sification performance. The required labeled samples includes
the labeled samples used for meta-training and fine-tuning. The
execution time of each method can be artificially divided into
three parts: meta-training, fine-tuning, and classification. The
classification performance of each method on different data
sets is measured by OA. In terms of the number of required
labeled samples, DFSL+SVM and RN-FSC both need to build
source data sets containing a large number of labeled samples
in the meta-training phase, so the number of labeled samples
they need is the largest. DCFSL only utilizes the CH data set
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Fig. 16. Visual presentation of the input samples and extracted features. (a) Input samples in meta-training phase. (b) Features generated by feature extraction
module in meta-training phase. (c) Input samples in classification phase. (d) Features generated by feature extraction module in classification phase.

TABLE VII

A COMPREHENSIVE COMPARISON OF META LEARNING-BASED CLASSIFICATION METHODS

for meta-training, effectively reducing the number of required
labeled samples, but nearly 3700 labeled samples are still
needed in the whole process. In both the cross-domain and in-
domain scenarios, the proposed method only utilizes the source
data set without any label information for unsupervised meta
learning. Therefore, the number of required labeled samples in
the meta-training phase is 0, greatly alleviating the dependence
of the model on labeled samples. In terms of execution time,
the scale of source data set in DCFSL is the smallest, so the
required meta-training time is the shortest. DFSL+SVM and
DCFSL use RBF-SVM and KNN classifiers for fine-tuning
and classification respectively, so their fine-tuning and classi-
fication time is significantly shorter than other methods. UM2L
utilizes the voting strategy to classify target HSIs, and actually
runs the fine-tuning and classification process for 10 times.
Therefore, the proposed method requires longer fine-tuning
and classification time. In terms of classification performance,
the OA of the proposed method is lower than that of RN-FSC
and DCFSL on the PC data set. However, the proposed method
can achieve higher classification accuracy than other meta
learning methods on the other three data sets, which directly
indicates the effectiveness of the proposed method in HSI
small sample set classification.

In summary, the proposed method greatly reduces the num-
ber of requisite labeled samples in the whole classification

process, and can achieve competitive or better classification
results within acceptable execution time.

V. CONCLUSION

To further improve the accuracy of HSI small sample
set classification and reduce the dependence of meta learn-
ing models on the labeled samples, a novel unsupervised
meta learning method with multiview constraints, UM2L,
is proposed in this paper. The proposed method first builds
unlabeled source data set using HSIs without any label, and
then generates the spatial-spectral multiview features for each
sample based on the idea of multiview learning. Specifically,
spectral multiview features are obtained by band random
selection and spatial multiview features are obtained by data
augmentation, to generate multiple spatial-spectral multiview
features together. The tasks for unsupervised meta learning
is constructed with the generated multiview features. Finally,
a deep residual relation network is designed to perform
meta-training and small sample set classification based on
the voting strategy. The experimental results show that, com-
pared with existing supervised meta learning methods and
other advanced classification models, the proposed method
can achieve competitive or better classification performance
in small sample set scenarios, and significantly reduce the
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number of requisite labeled samples in the whole classification
process.

It should be pointed out that the source data sets and the tar-
get HSIs have different data distributions in the cross-domain
classification scenario. In the future, the domain adaptation
methods will be introduced to narrow the distribution dif-
ference between the two data sets in meta-training and the
performance of the combination of domain adaptation methods
and the proposed method will be explored in details, to further
improve the accuracy and robustness of classification results.
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