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Abstract— To provide semantic image style transfer results
which are consistent with human perception, transferring styles
of semantic regions of the style image to their corresponding
semantic regions of the content image is necessary. However,
when the object categories between the content and style images
are not the same, it is difficult to match semantic regions
between two images for semantic image style transfer. To solve the
semantic matching problem and guide the semantic image style
transfer based on matched regions, we propose a novel semantic
context-aware image style transfer method by performing seman-
tic context matching followed by a hierarchical local-to-global
network architecture. The semantic context matching aims to
obtain the corresponding regions between the content and style
images by using context correlations of different object categories.
Based on the matching results, we retrieve semantic context pairs
where each pair is composed of two semantically matched regions
from the content and style images. To achieve semantic context-
aware style transfer, a hierarchical local-to-global network archi-
tecture, which contains two sub-networks including the local
context network and the global context network, is proposed.
The former focuses on style transfer for each semantic context
pair from the style image to the content image, and generates
a local style transfer image storing the detailed style feature
representations for corresponding semantic regions. The latter
aims to derive the stylized image by considering the content, the
style, and the intermediate local style transfer images, so that
inconsistency between different corresponding semantic regions
can be addressed and solved. The experimental results show that
the stylized results using our method are more consistent with
human perception compared with the state-of-the-art methods.

Index Terms— Semantic image style transfer, image style
transfer, semantic context matching, hierarchical local-to-global
network, deep learning.

I. INTRODUCTION

IMAGE style transfer aims to change strokes, textures, and
colors of a content image to those of a style image. For

high-quality image style transfer, object boundaries and scene
structures of the content image should be preserved while the
appearances are required to be aligned with the style image.
To this end, matching content and style images is essential to
image style transfer. Conventional methods for image style
transfer apply image- or patch-level deep feature matching
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between the content and style images, and transfer the learned
styles from the latter image to the former one. However, when
content regions and style regions are not correctly matched,
e.g., matching a building in the content image to a tree in
the style image, semantically incoherent transfer typically
makes the resulting stylized image inconsistent with human
perception.

To address this issue, semantic image style transfer meth-
ods [1], [2] transfer each style region to a corresponding
content region based on image matching. The matched results
guide the semantic image style transfer for generating stylized
results which are more consistent with human perception
and understanding. These methods typically assume that the
content and style images share the same semantic objects. For
example, the styles of a face painting image are transferred to
a real face of a content image. When semantic categories of
the content and style images are not the same, the matching
results may lead to unpredictable or sub-optimal performance.
In other words, these methods only work when the content and
style images contain the same object categories. In addition,
how to effectively transfer detailed strokes of the style regions
to their corresponding content regions remains a problem.

To solve the problem of unmatched object categories
between the content and style images in semantic image style
transfer, we propose semantic context matching to identify
corresponding semantic regions between these two images.
Here, the context [3] represents the co-occurrence relationships
among objects and stuff in the environments. For example,
buildings and streets often appear jointly, while mountains
usually accompany the sky in images. In the cases where
the content and style images do not share the same semantic
object categories, we suggest transferring styles between
object categories of high co-occurrence relationships. The
contextual coherence of these categories makes style transfer
among them less inconsistent with human perception. To rep-
resent the contextual coherence, we propose the contextual
co-occurrence which is calculated from [4] to represent the
semantic context relationship between different object cate-
gories, e.g., mountains and the sky. Semantic context matching
is performed based on the contextual co-occurrence to obtain
semantic context pairs, i.e., semantic corresponding regions in
the content and style images even though no common object
categories exist.

Semantic context matching enables style transfer across
better aligned local regions, but local style transfer may lead to
region-wise inconsistency in the resultant stylized images.
To address this issue, we develop a novel hierarchical local-
to-global network architecture which can transfer local styles
for each corresponding semantic region while maintaining
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global consistency of the stylized image. The hierarchical
local-to-global network architecture contains a local context
network followed by a global context network. The local
context network is designed to locally transfer the styles of
the semantic context regions of the style image to the corre-
sponding regions of the content image. It is driven by a local
content loss and a local style loss to learn the detailed strokes
of the styles from each semantic region of the style image. The
learned strokes are then transferred to corresponding semantic
regions of the content image. After applying this network,
a local style transfer image is produced which records the
style feature representations for each semantic content region
of the content image.

While the local context network enhances style transfer
between semantic context pairs, the boundaries among neigh-
boring regions in the resultant stylized image may be incoher-
ent due to diverse local style transfer. To ensure image-wise
visual consistency, we develop the global context network to
derive the stylized image based on the content, local style
transfer, and style images. By jointly considering the three
images, the obtained stylized image can better represent the
detailed strokes of the style image and be more structurally
consistent with the content image.

The contribution of this work is three-fold. First, semantic
context matching based on contextual co-occurrence of objects
is proposed to effectively match local regions between the
content and style images no matter if the two images share
common semantic categories or not. Second, a novel hier-
archical local-to-global network architecture is developed to
enhance the stokes of local semantic context pairs and generate
a globally consistent stylized result. Third, our method can
transfer arbitrary style images to generate stylized images
which are more contextually consistent with human perception
compared with the state-of-the-art methods.

The rest of this paper is organized as follows. Section II
presents the related work. The proposed method is introduced
in Section III. Experimental results are shown in Section IV.
Finally, Section V gives the conclusions and future work.

II. RELATED WORK

Conventional image style transfer methods [5]–[7] transfer
styles between a pair of content and style images based
on hand-crafted texture and color features. Thus, high-level
image structures or semantic evidences are not explored in
these methods. To address this issue, neural style transfer
methods are proposed, which can be further categorized into
two groups, including model optimization based and image
optimization based methods.

A. Model Optimization Based Methods

Model optimization based methods typically train feed-
forward convolutional neural networks (CNNs) offline for one
or more style images. They produce a stylized image by
performing a single forward pass of the trained networks and
can efficiently generate the stylized image. Ulyanov et al. [8]
train a compact feed-forward CNN for a given style image to
transfer the artistic style to another image. Johnson et al. [9]

develop a feed-forward transformation network based on per-
ceptual loss functions provided by a pre-trained loss network
for a given style image. However, to transfer the styles of a
particular style image, these methods need to train a specific
CNN to capture the styles. Thus, it is hard to adapt these
methods to work on multiple style images simultaneously.

To solve the aforementioned issue, Chen and Schmidt [10]
present a style swap layer to replace the content features with
the most similar style features of the pre-trained network in a
patch-by-patch manner. However, the swap becomes the com-
putational bottleneck of their method. To address this problem,
an adaptive instance normalization layer [11] is proposed to
match the mean and variance of the VGG features of the con-
tent and style images. The stylized image is generated by using
a decoder network. Li et al. [12] replace adaptive normaliza-
tion with signal whitening and coloring transforms (WCTs)
between the features of the content and style images. In each
layer, the extracted content features are transformed to style
features that have exhibited the same statistical characteristics
as the content features after using WCTs. The transformed
features are then fed forward into decoder layers to obtain the
stylized image. To further improve [12] where only the style
loss is considered, Lu et al. [13] seek optimal style transfer
to preserve image structures by considering the content loss.
Li et al. [14] propose a learnable linear transformation matrix
based on arbitrary pairs of content and style images by
two light-weighted CNNs. A linear propagation module is
included to correct distortions and artifacts in the stylized
results. Zhang et al. [15] propose using the style encoder and
content encoder to extract style and content representations.
Then, a mixer fuses both representations for the decoder to
generate stylized result. Qiao et al. [16] propose a style-corpus
constrained learning method by considering style-specific and
style-agnostic properties at the same time and further improve
photorealism of stylized results.

To preserve the structure of the content image, Gu et al. [17]
propose feature reshuffle to spatially rearrange locations of
deep features. Reshuffling deep features helps match local
style patterns and enhance consistency between the content
and the style images. Sheng et al. [18] present Avatar-Net
which is a patch-based style decorator module to maintain
the content structure by decorating content features with the
characteristics of style patterns. However, it is not able to
balance local and global style patterns. Park and Lee [19]
design SANet which is similar to Avatar-Net but improves
the performance by employing a learnable soft-attention-based
network for the style decoration. Chen et al. [20] propose a
multi-collection style transfer method based on the adversarial
gated networks. Although multiple styles can be pre-trained in
the discriminative network, semantic region correspondences
between the content and pre-trained style images are not
considered.

To enable local awareness of the content image,
Yao et al. [21] develop an attention-aware multi-stroke
(AAMS) model for arbitrary style transfer. Their method
uses a spatial attention mechanism for matching correspond-
ing regions between the content and style images. Thus,
it can better transfer the style to the content image since the
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attention map grasps salient characteristics of the content
image. Lu et al. [22] propose a fast semantic style transfer
method by conducting semantic feature fusion of the deep
features of the content and style images, reconstructing feature
maps within each semantic region, and decoding the feature
maps to produce the stylized image. Cheng et al. [23] suggest
using the depth map based global structure and the image
edge based local structure to describe the spatial distribution of
components in the content image. Two networks are employed
to drive the image style transfer based on the depths [24]
of the global structure and the edges of the local structure.
However, when images contain multiple objects with simi-
lar depths or unclear structures, the performance degrades.
Despite efficiency, these methods are hard to perceptually map
an artwork style to content images if the semantic categories
between the content and style images are not covered in the
pre-trained models.

Compared with model optimization based methods, our
method leverages semantic context matching to associate
regions of the style and content images even when the
two images do not share the same semantic object cate-
gories. Moreover, it extracts and transfers region-specific styles
for each semantic context pair, while enforcing image-wise
coherence.

B. Image Optimization Based Methods

Unlike model optimization based methods, image optimiza-
tion based methods iteratively optimize the transferred image,
instead of the model, based on the given content and style
images until it has desired CNN representations of the both
images. As a result, methods of this category often offer better
image style transfer results. For example, Gatys et al. [25]
propose to use the hierarchy of CNN [26] to separate and
recombine the image content and style of a natural image.
They show that CNN can learn deep image representations
from an arbitrary artwork and blend the extracted style into
the content of an input image. However, the pre-image search
for matching feature representations of the content and style
images ignores semantic content matching. Li and Wand [27]
use generative Markov random fields (MRFs) models to take
semantic regions into account in the feature patch level but
their method only works for the content image that has similar
shaped elements with the style image.

To solve the aforementioned issues, Gatys et al. [28] deal
with image style transfer by manually controlling spatial, color
and scale information to improve the quality of the stylized
image. However, their method is hard to achieve meaningful
parametric control over the stylization. For instance, straight
edges may have spatial distortions. To prevent edge distortion,
Luan et al. [29] constrain image style transfer only in the
color space by using matting Laplacian. Their method may
suffer from the loss of the style characteristics of the style
image due to the constraints. Kolkin et al. [30] propose style
transfer by relaxed optimal transport and self-similarity which
allow manual control of corresponding regions between the
content and style images. By using manual guidance, semantic
matching errors by conventional unconstrained style transfer
can be reduced.

For better semantic matching between the content and style
images, Champandard [31] presents a semantic style trans-
fer algorithm based on patches with semantic segmentation
maps and focuses on common object categories appearing
in both content and style images. Mechrez et al. [32] design
a contextual loss to avoid the alignment of the content and
the style images during training. However, the content and
style images need to have the same semantic regions for
the style transfer. Park et al. [1] utilize word embedding to
compute similarity of the semantic regions between the content
and style images. Their method applies style transfer to only
the matched regions, which may lead edge distortion and
discontinuity between neighboring regions. Furthermore, the
assumption of sharing common semantic categories in content
and style images reduces the applicability of these methods.
Kim et al. [2] propose deformable style transfer based on the
assumption that the content and style images have approximate
alignment. However, when poor matching occurs, the styles
are hard to be correctly transferred to the content image. Thus,
providing good corresponding matches between the content
and style images can significantly affect the quality of the
stylized results. For detailed reviews, please refer to [33].

Compared with recent image optimization based methods,
our method can effectively match semantic context regions
between the content and style images when their semantic
object categories do not overlap. Moreover, the local-to-global
style transfer helps deliver the specific styles of each cor-
responding semantic region and achieves globally consistent
results, which can reduce artifacts and provide visual consis-
tent results with respect to human perception.

III. PROPOSED METHOD

This section describes the proposed method for semantic
context-aware image style transfer. Fig. 1 gives an overview
of our method, which is composed of three components,
including semantic context matching (blue-shaded area), the
local context network (green-shaded area), and the global con-
text network (yellow-shaded area). Semantic context matching
identifies corresponding regions across the content and style
images no matter if the same semantic object categories are
shared between the two images or not. The local context
network is developed to locally transfer the style between the
corresponding regions. The global context network is designed
to ensure global image coherence of the stylized image after
region-specific transfer. The three components are elaborated
as follows.

A. Semantic Context Matching

Given a content image Ic and a style image Is , image
style transfer aims to derive an output stylized image, whose
content is similar to Ic while its style is similar to Is . Some
advanced methods, e.g. [21], [28], leverage manually defined
semantic information to transfer styles across regions of the
same object categories, considerably improving the quality of
the stylized image. Nevertheless, automatically obtaining the
semantic object categories of the content image is desired.
In our approach, the PSPNet [34], a semantic segmentation
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Fig. 1. The overview of our method. Semantic segmentation results of the content image serve as the context information. By applying semantic context
matching between the content and style images, we build semantic context pairs which are used to transfer detailed styles of the semantic regions of the
style image to the corresponding regions of the content image. For each semantic context pair, our local context network transfers the local strokes of style
regions to the corresponding content regions by considering a local content loss and a local style loss and generates the local style transfer image. With the
content, style and local style transfer images, our global context network optimizes the stylized image based on a global content loss, a global style loss, and
a global-local feature loss.

method, is used to automatically estimate the region-wise
semantic object categories of the content and style images.
With the extra category information, image style transfer can
be region-wise carried out, namely transfer across regions
of the same categories as shown in [1]. However, a critical
problem arises when the semantic object categories of the
content and style images are not exactly matched. Moreover,
the style transfer with respect to corresponding semantic object
categories may lead to the visual incoherent problem between
the stylized results of different object categories.

To address the first problem, we propose to use semantic
context relaxation, with which transfer between contextually
similar categories is enabled when identical categories are not
cross-image available. In this work, we consider the semantic
context [3], [32] and model spatial relationships between
semantic object categories in natural images. To establish the
semantic context of object categories, we use the annotated
images in the training set of the ADE20K dataset [4] to cal-
culate the contextual co-occurrence po(oi , o j ) between object
categories oi and o j as follows:

po(oi , o j ) = 1

Q j

K∑

k=1

|{p|p ∈ Ik : p ∈ oi andN (p) ∈ o j }|,
(1)

where Ik is the kth annotated image, K is the number of the
annotated images, N (p) indicates the set of the four-connected
neighbors of pixel p, Q j is the total number of pixels of o j to
reduce the effects of the numbers of pixels between different
object categories, and the function | · | returns the size of a set.
If oi and o j are frequently present in neighboring regions, their
contextual co-occurrence po(oi , o j ) is high. High contextual
co-occurrence between such oi and o j typically makes style

transfer across them more consistent with human perception
since it preserves the consistency of the transferred styles in
the neighboring regions.

Given the content image Ic, we apply the PSPNet to obtain
a set of semantic regions, i.e., C = {C1, . . . , Cr , . . . , CNc },
where Cr is the r th semantic region of Ic and Nc is the number
of semantic regions of Ic. Please note that we assign each
pixel to the most plausible object category. Similarly, another
semantic region set S = {S1, . . . , Sq , . . . , SNs } is obtained by
manually assigned to the style image Is , where Sq denotes the
qth semantic region of Is and Ns is the number of semantic
regions of Is . To establish region correspondences between the
content and style images, we match each semantic region Cr

of the content image Ic to the semantic region Sπ(r) of the
style image Is via

Sπ(r) = argmax
Sq∈S

po(O(Cr ),O(Sq )), (2)

where the function O(·) returns the semantic object category
of the input region. It is worth mentioning that according to the
definition of the contextual co-occurrence in Eq. (1), for each
object category oi , the maximal value of po(oi , o j ) typically
presents when object categories oi and o j are the same.
It follows that the content region Cr and its matched style
region Sπ(r) via Eq. (2) belong to the same object category if
the object category of O(Cr ) is covered by the style image.
Otherwise, the style region Sπ(r) with the maximal contextual
co-occurrence is retrieved.

According to the matching process in Eq. (2), the content
region Cr and the corresponding style region Sπ(r) are either
of the same object category or contextually similar. Thus,
transferring styles across the matched regions is preferable.
We consider two matched regions as a semantic context pair
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Pr = (Cr , Sπ(r)) to represent the target for local style transfer.
We repeat the matching process of Eq. (2) for each content
region, and get the semantic context matching set P = {Pr =
(Cr , Sπ(r))}Nc

r=1, which then serves as the input to the local
context network for region-specific style transfer.

B. Local Context Network

Given a semantic context matching set P , we aim to
synthesize a local stylized image based on each semantic
context pair in P . To individually transfer the style of Sπ(r)
to the corresponding content region of Cr , we propose a
local context network which locally transfers the styles of
the semantic regions of the style image to the corresponding
regions of the content image, while reducing the interference
of remaining non-corresponding regions of the style image.

The learning of the network is driven by the proposed local
context network loss �l as:

�l = λlc�lc + λls�ls , (3)

where �lc and �ls are the local content loss and local style loss,
respectively, λlc and λls are the weights of the two losses. The
front one aims to preserve the content structure of Cr and the
latter one aims to extract the style representation of Sπ(r) for
corresponding Cr . Based on �l , the local context network is
trained from each semantic context pair in P . For the sake of
clarity, �lc and �ls are introduced in the following.

Assume that the local context network contains L layers.
Each layer l contains Nl feature maps, where the size of Nl

is denoted as Ml . A matrix Fl ∈ �Nl ×Ml
is used to store

the feature maps of layer l, where Fl
ik is the response of

the i th feature map at the kth position of layer l. Let Iγ be
a white noise image to match the feature responses of the
content image Ic and the style image Is . To learn the content
information of each semantic region Cr , the local content loss
of Cr is defined as the distances of the feature representations
between Cr and Iγ as follows:

�lc(Cr , Iγ , l) = 1

2Nl Ml

∑

i,k

{(Fl
ik − Pl

ik)
2|k ∈ Cl

r }, (4)

where Fl
ik and Pl

ik are the responses of the i th feature maps
of Ic and Iγ at the kth position of layer l, respectively, and Cl

r
represents the positions of the feature map with respect to Cr

of layer l. In this way, the local context network can learn each
semantic region of Ic individually without the interference of
other semantic regions. The local content loss �lc is defined
as the summation of all losses of Cr as:

�lc =
Nc∑

r=1

�lc(Cr , Iγ , l), (5)

where l is layer conv4_2. Compared with [25], they consider
the content loss of the whole content image, which may
miss the local details of the content image during learning.
In contrast, our method considers the local content loss for
each semantic region of Ic, which is more sensitive to the
local content of Ic with respect to layer l for better preserving
the content structure.

To obtain the feature representations of Iγ , we build the
Gram matrix Gl for each layer l. The Gram matrix contains
the correlations between different feature maps of layer l. Let
Gl

i j be the inner product between the i th and the j th feature
maps of layer l as:

Gl
i j =

∑

k

{Fl
ik Fl

jk}. (6)

The Gram matrix of each layer l provides style feature space
to represent multi-scale texture information of Iγ . Similarly,
the Gram matrix Al

i j of each layer l of Is can also be defined.
Based on these style feature spaces, we can then construct an
image that matches the style representation of Is to achieve
the style transfer between Iγ and Is . This process can be done
by minimizing the distances between the entries of the Gram
matrices of Iγ and Is .

To individually transfer the detailed strokes of Sπ(r), we pro-
pose the local style loss �ls as:

�ls = �lws + �lps + �lns , (7)

where �lws , �lps , and �lns are the local whole style loss, the
local positive style loss, and the local negative style loss,
respectively and described in the following.

The local whole style loss �lws aims to learn the styles from
the whole style image and is computed based on the Gram
matrices of Iγ and Is as follows:

�lws = 1

(2Nl Ml )2

∑

l

∑

i, j

(Gl
i j − Al

i j )
2. (8)

Although it provides the fundamental style transfer for Iγ
based on Is , the detailed strokes of each matched semantic
region of the style image may not be correctly transferred.

To specifically transfer the style of Sπ(r) to corresponding
Cr , we propose a novel local positive style loss �lps based on
the semantic context pairs. For each Cr , we generate its Gram
matrix Gl

i j (Cr ) of layer l as follows:
Gl

i j (Cr ) =
∑

k

{Fl
ik Fl

jk|k ∈ Cl
r }. (9)

Please note that Gl
i j (Cr ) is computed based on the feature

maps of Cr so that the Gram matrix can represent Cr during
the style transfer. To represent the style of Sπ(r), we also
generate the Gram matrix of Sπ(r) as:

Al
i j (Sπ(r)) =

∑

k

{Al
ik Al

jk|k ∈ Sl
π(r)}, (10)

where Sl
π(r) represents the positions of the feature maps with

respect to Sπ(r) in layer l. The loss function �lps(Cr , Sπ(r))
aims to enhance the local style transfer of the semantic context
pairs Pr based on the object context correlations by using the
Gram matrices of Cr and Sπ(r) as:

�lps(Cr , Sπ(r)) =
∑

i, j

(Gl
i j (Cr ) − Al

i j (Sπ(r)))
2. (11)

By minimizing �lps (Pr ), the detailed strokes of Sπ(r) can be
directly transferred to Cr in Iγ . By accumulating the losses
computed based on the semantic context matching set P and
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the network layers, the local positive style loss �lps is defined
as:

�lps = 1

(2Nl Ml )2

∑

l∈Ls

∑

P
�lps(Cr , Sπ(r)), (12)

where Ls is the set of layers conv3_1, conv4_1 and conv5_1 of
the local context network for high level feature representations
of the style image. By considering �lps , the styles of Sπ(r) can
be strongly emphasized and transferred to the semantic region
Cr in Iγ .

When �lws aims to minimize the style differences between
Iγ and Is based on the Gram matrices, it implies that the
styles of non-corresponding semantic regions of Cr will also
be transferred to Cr in Iγ . To reduce the interference of the
non-corresponding semantic regions of Cr in P , we propose
a local negative style loss �lns . Let Sπ(r) = {S \ Sπ(r)} be the
set of semantic regions that are not matched to Cr . The Gram
matrix of Sπ(r) is defined as follows:

Al
i j (Sπ(r)) =

∑

k

{Al
ik Al

jk|k ∈ Sπ(r)}. (13)

The local negative style loss �lns (Cr , Sπ(r)) for each Cr in
layer l is defined as:

�lns (Cr , Sπ(r)) = −
∑

i, j

(Gl
i j (Cr ) − Al

i j (Sπ(r)))
2, (14)

where the minus of the loss represents the dissimilarity
between the Gram matrices of Cr and Sπ(r) to reduce the
effects of the style transfer from Sπ(r) to Cr in Iγ . The loss
�lns is defined as:

�lns = 1

(2Nl Ml )2

∑

l∈Ls

∑

P
�lns(Cr , Sπ(r)). (15)

Similar to �lps , we also consider high level feature representa-
tions of the style image for computing the loss. By considering
�lns , the interference of the styles of the non-corresponding
regions will be reduced. The derivative of the loss functions
can be computed as shown in [25]. Please note that the deriv-
ative is used to iteratively update Iγ until the features of the
semantic regions of Iγ can be simultaneously matched to the
content features of Ic and style features of Is . The parameters
of the networks used to extract features of Ic, Is , and Iγ
are fixed. Different from previous methods, our local style
transfer ensures that detailed strokes of corresponding regions
of Is can be reserved for better style representation based on
each semantic context pair. After learning, it generates a local
style transfer image Il as the reference for the global context
network.

C. Global Context Network

Based on the local context network, the local style transfer
image Il contains the detailed strokes based on the seman-
tic context matching set P . However, given two neighbor
semantic regions of the content image, their neighbor cor-
responding regions of the style image may not be spatially
connected. If the styles of neighbor corresponding regions are
significantly different, the strokes of the transferred styles for

neighbor regions will become incoherent. As a result, the local
style transfer image usually contains visual incoherent edges
between the neighbor regions of different object categories.

To solve the visual incoherent problem, we propose a global
context network to learn visually consistent transfer results and
maintain detailed strokes of styles based on the content image,
the style image and the local style transfer image. The global
context network is driven by the proposed global loss �g as
follows:

�g = λgc�gc + λgs�gs + λgl�gl, (16)

where λgc, λgs and λgl are the weights of the global content
loss �gc, the global style loss �gs , and the global-local feature
loss �gl , respectively. In the global context network, the global
content loss and the global style loss give the global transfer
constraints to compromise visual incoherent edges between
the neighbor regions of different object categories in the local
style transfer image which stores the detailed strokes of each
semantic context pair. By simultaneously minimizing all of
the three losses, the generated stylized image can be globally
similar to the content image and contain detailed strokes
learning from the style image. For the sake of clarity, we will
introduce each loss in the following.

Let I� be a white noise image to match the feature responses
of the content image Ic, the style image Is , and the local style
transfer image Il . The global content loss �gc aims to preserve
the global content structure of the stylized image based on the
whole content image. We use layer conv2_2, which can better
represent the boundary structure of the objects in the content
image, to compute �gc as:

�gc = 1

2Nl Ml

∑

i,k

(Fl
ik − Pl

ik)
2, (17)

where Fl
ik and Pl

ik are the responses of the i th feature maps
of Ic and I� at the kth position in layer conv2_2 of the global
context network.

The global style loss function aims to extract the styles of
the whole style image and transfer the styles to I� . To ensure
that all of the styles in different layers can be transferred to
the I� , we use the Gram matrix of all of the layers for the
global style transfer as follows:

�gs = 1

(2Nl Ml )2

∑

l

∑

i, j

(Gl
i j − Al

i j )
2, (18)

where Gl
i j and Al

i j are the Gram matrices built from the i th and
the j th feature maps in layer l of I� and Is , respectively.

Based on �gc and �gs , the global content structure and
styles can be learned for I� . However, these two losses do
not consider the transfer of detailed strokes with respect to
semantic context pairs. Because the detailed styles of each
semantic context pair are learned in the local style transfer
image, the final style transfer results should also be similar to
the local style transfer image, which correctly represents the
style transfer results of the semantic context pairs. In other
word, the feature representations of the final stylized image
should also be similar to the those of the local style transfer
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image. To achieve the goal, we propose a novel global-local
feature loss �gl based on Il as:

�gl = 1

2Nl Ml

∑

i,k

(Ol
ik − Pl

ik )
2. (19)

where l is layer conv4_2 and Ol
ik is the i th feature responses

of position k of Il . Among the layers, layer conv4_2 preserves
more semantic and structure details of the local style transfer
image. Thus, we select layer conv4_2 as the feature represen-
tations of the local style transfer image during computing �gl .
By using �gc, �gs , and �gl , the visual incoherent problem can
be solved and the detailed strokes of the style regions can be
successfully transferred.

Please note that the derivative is used to iteratively update
l� until the features of the semantic regions of l� can be
simultaneously matched to the content features of Ic, style
features of Is , and the content features of Il . The para-
meters of the networks used to extract features of Ic, Is ,
Il and I� are fixed. By using the global context network,
the styles of corresponding semantic regions between the
content and style images can be successfully transferred. As a
result, the problems of matching semantic regions between
the content and style images and the visual incoherence
between neighbor regions can be solved by the proposed
method.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

In the experiments, the content images were from
MS-COCO dataset [35], [2] and the collected photos. The
style images were provided by [25] and [2] for evaluation.
To perform semantic segmentation on the content images,
we trained PSPNet [34] on the ADE20K dataset [4], which
contains 150 object categories.

The deep models in the local context network and the global
context network were the pre-trained VGG-19 models [36].
In the local context network, we used the features of layer
conv4_2 to compute the local content loss �lc, while we
used the features of layers conv3_1, conv4_1 and conv5_1 to
compute the local style loss �ls . In the global context network,
we used the features of layer conv2_2 to compute the global
content loss �gc, the features of layers conv1_1, conv2_1,
conv3_1, conv4_1 and conv5_1 to compute the global style
loss �gs , and the features of layer conv4_2 to compute the
global-local feature loss �gl . The weights λlc and λls of the
local network were set to 0.002 and 1 which learned more
detailed styles of semantic regions of Is . The weights λgc,
λgs and λgl were set to 0.2, 1, and 0.2 which generated visual
coherent style transfer results. We used Adam [37] to optimize
the stylized images in the local context network and global
context network.

Our method was implemented on an Inter I7 CPU computer
with a GTX1060 GPU. Given a pair of the content and style
images, the average learning time was around 9 minutes to
obtain the final stylized image. Please note that the average
learning time is similar to [25] under the same environment.

B. Ablation Study
In the ablation study, we show the effects of the local

context network, and the loss functions of the global context
network to evaluate the proposed schemes. Fig. 2(a) shows
the content and style images. The semantic masks of the
content and style images are shown in Fig. 2(b). In the
local context network, each semantic context pair is used to
individually transfer the style of the semantic region of Is to
the corresponding content region of Ic. Although the styles are
transferred, visual incoherent boundaries will appear between
neighbor regions due to the over-emphasized strokes as shown
in Fig. 2(c). Thus, the local style images serve as stroke feature
representations of the semantic context pairs for the global
context network in our framework. However, if we directly
add �gs and �gc to the local context network, the transferred
strokes of each style region and the learned content structure
of each corresponding content region of the local style transfer
image will be affected by the remaining semantic regions in
Is and Ic. Thus, the detailed strokes of each semantic context
pair may not be well learned due to the interference of adding
�gs and �gc. The stylized results of the local context network
with �gs and �gc are shown in Fig. 2(d), where unexpected
noise appears and leads to worse visual quality. To solve this
problem, our method considers the hierarchical local-to-global
network structure to help generate high quality style transfer
results.

Three loss functions are employed in the global context
network including the global content loss, the global style
loss, and the global-local feature loss. Fig. 2(e) shows the
stylized results without the global content loss. As shown in
the row 1 of Fig. 2(e), the pupil of the left eye becomes
very unclear due to the lack of the global content loss which
aims to maintain the structure of the content image. Similar
situations can also be observed in the building and the tree
images (e.g. rows 2 and 3). The stylized results without
the global style loss are shown in Fig. 2(f). Although the
content structure is correctly preserved, the styles cannot
be transferred to the content images. Moreover, the styl-
ized results still maintain partial color tones of the content
image.

By only considering the global content loss and the global
style loss, the detailed strokes of the style image are not
correctly learned as shown in Fig. 2(f) due to the lack of
semantic matching information between the content and style
images. For example, the style of the sea in the style image
is transferred to the sky of the building image in row 2 of
Fig. 2(g). Similar non-semantic transferred results can also be
observed in the tree image in row 3 of Fig. 2(g). The strokes of
the object in the style image are transferred to the backgrounds
of the tree image. In contrast, by simultaneously considering
all of the three losses, not only the detailed strokes can be
properly transferred, but also the original content structure
can be well preserved as shown in Fig. 2(h). The styles of
the houses in the style image are properly transferred to the
building in the content image in row 2 of Fig. 2(h). As shown
in row 3 of Fig. 2(h), the styles of the foreground objects of
the style images are transferred to the foreground trees of the
content image, while the styles of the backgrounds of the style
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Fig. 2. The stylized results of the ablation study. (a) Content and style images, (b) Semantic masks of content and style images, (c) The local style transfer
image, (d) The stylized results of the local context network with the global content loss and global style loss, (e) The stylized results without the global
content loss, (f) The stylized results without the global style loss, (g) The stylized results without the global-local feature loss, and (h) The stylized results of
the proposed method.

images are transferred to the backgrounds of the content
image. As a result, the effectiveness of the proposed schemes
is proven.

C. Qualitative Results

We compared the proposed method with four state-of-the-
art image optimization based methods [2], [25], [28], [29].
In [25], the image style transfer is achieved by the image opti-
mization based on the whole content and whole style images.
To enhance local strokes of the style image, Gatys et al. [28]
improves [25] by considering spatial region matching between
the content and style images. Luan et al. [29] constrain image
style transfer based on matting Laplacian for real photo style
transfer. In [2], Kim et al. a propose a geometry-aware styl-
ization method via deformation based on keypoint matching
results of the content and style images. To show the advantages
of image optimization based methods, we also compared the
proposed method with two state-of-the-art model optimization
based methods [12], [21]. Please note that the stylized results
of the competing methods were obtained by using the codes
provided by their authors.

Fig. 3 shows the image style transfer results of the compet-
ing methods and the proposed method. As shown in Fig. 3(a),
the content and style images contain similar object categories.
For example, the rows 1 and 2 show the style transfer results
between two portraits. The rows 3, 4 and 5 show the style
transfer results between sky, buildings and water. The rows 6,
7, 8 and 9 show the style transfer results between the same
objects, i.e. cars, horses, and owls. The corresponding semantic
regions are shown in Fig. 3(b). The same colors of the
semantic regions represent the matched semantic context pairs
between the content and style images. For fair comparison, the
semantic regions are also applied for the competing methods
if these methods can also apply the information.

Fig. 3(c), (d), (e), (f), (g), (h) and (i) show the styl-
ized results of [25], [28], [29], [12], [21], [2] and our

method, respectively. Because the image optimization based
method [25] only considers the mapping of the whole content
image with respect to the whole style image, the styles of
the portraits are incorrectly transferred to the backgrounds of
the content images (e.g. rows 1, 2, 6 and 7) as shown in
Fig. 3(c). Moreover, the styles of the water are transferred
to the sky of the content image (e.g. rows 3 and 5) as shown
in Fig. 3(c). Without semantic matching regions, [25] cannot
achieve transfer results which are consistent with human
perception. To improve [25], [28] considers transferring styles
for each segmented rectangular region of the content image.
Since it still extracts the style representations of the whole
style image, different objects in the content images are still
stylized by the same style representation. Thus, the transferred
results of the background (e.g. rows 1, 2, 6 and 7), and the
water (e.g. rows 3 and 5) contain unnatural noise as shown
in Fig. 3(d).

In [29], although the photorealism regularization term helps
constrain the structure of the content image, it fails to transfer
the styles to the stylized images even under the guidance
of the semantic segmentation results. In addition, the styles
of the artworks are not correctly transferred to the content
images as shown in Fig. 3(e). Although the WCTs in [12]
are fast to compute, the trained models are hard to properly
represent the semantic correlations between the content and
style images. As a result, unnatural noise can be observed
in the backgrounds (e.g. rows 1, 2, 5, 6 and 7) as shown
in Fig. 3(f). To solve the semantic correspondence problem,
attention maps of objects are introduced in [21]. However,
when the content regions incorrectly match to the style regions
due to the attention maps, the strokes of the style regions
are incorrectly synthesized to the content images as shown in
Fig. 3(g).

To address the matching issue, geometry-aware deformation
between the content and style images is considered in [2] as
shown in Fig. 3(h). Although the content and style images
contain similar objects, the stylized results (e.g. rows 2, 3, 4,
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Fig. 3. Qualitative comparisons between our method and competing methods when the content and style images contain similar object categories. (a) Content
and style images, (b) Semantic masks of content and style images, (c) Results of [25], (d) Results of [28], (e) Results of [29], (f) Results of [12] (g) Results
of [21], (h) Results of [2] and (i) Results of our method.

6 and 7) may still contain deformation which implies that
the content structure is not well preserved. Moreover, the
detailed strokes of the sky are not properly transferred to
the content image (e.g. row 5) due to no matched keypoints
between the sky of the content and style images. Compared
with the competing methods, our method achieves better

image style transfer quality due to the correct matching of
semantic context regions as shown in Fig. 3(i). Moreover,
the detailed strokes are preserved for each semantic region
while the boundaries between different semantic regions are
smoothed. Thus, our stylized results are consistent with human
perception.
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Fig. 4. Qualitative comparisons between our method and competing methods when the appearing objects are different between the content and style images.
(a) Content and style images, (b) Semantic masks of content and style images, (c) Results of [25], (d) Results of [28], (e) Results of [29], (f) Results of [12]
(g) Results of [21], (h) Results of [2] and (i) Results of our method.

Fig. 4 shows the qualitative comparisons when the appear-
ing object categories are different between the content and
style images. For example, the content image contains a

portrait while the style image contains statues in row 1 of
Fig. 4. Although both images contain different object cat-
egories, our semantic context matching can still retrieve
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Fig. 5. Qualitative comparisons between our method and competing methods when the numbers of categories between the content and style images are
different. (a) Content and style images, (b) Semantic masks of content and style images, (c) Results of [25], (d) Results of [28], (e) Results of [29], (f) Results
of [12] (g) Results of [21], (h) Results of [2] and (i) Results of our method.

the corresponding semantic regions based on the contextual
co-occurrence of objects. The styles cannot be successfully
transferred by the image optimization based methods as
shown in Fig. 4(c), (d), (e) and (h), because these methods
cannot correctly compile the semantic corresponding regions.
As shown in Fig. 4(f) and (g), the stylized results of the
backgrounds (e.g. rows 1, 4, 6, 7, 8 and 9), and the sky
(e.g. rows 2, 3 and 5) are corrupted by the pre-trained models.
Thus, model optimization based methods are hard to achieve
visually coherent results with the style images. In contrast,
as shown in Fig. 4(i), by considering semantic context match-
ing, the styles of the foreground objects of the style images
can be successfully transferred to the foreground objects of the
content images. Such results show the proposed hierarchical
local-to-global network architecture can properly transfer the
local styles of the corresponding semantic regions between
the content and style images. Thus, our stylized results can
still be visually consistent with human perception even when
the content and styles images do not contain the same object
categories.

Finally, Fig. 5 shows qualitative comparisons when the num-
bers of object categories between the content and style images
are different. As shown in Fig. 5(b), the first two style images
contain humans while the content images do not. The tree of
the third style image and the cat of the fourth style image
also do not exist in the content images. Without the semantic
context matching, the styles of the humans, tree and cat of the
style images will be transferred to the content images. Thus,
incoherent and unnatural strokes of the stylized results can be
observed in the sky, sea or background regions as shown in
Fig. 5(c), (d), (e), (f), (g) and (h) of the competing methods.
By simultaneously considering the semantic context matching
and the hierarchical local-to-global network architecture, the

proposed method can correctly transfer styles between the con-
tent and style images, and achieves significantly better stylized
results as shown in Fig. 5(i). Moreover, it can also successfully
maintain the content structure to avoid the deformation of the
stylized results.

D. User Study

We performed the user study to evaluate the visual perfor-
mance of the proposed method and the competing methods.
We randomly showed the stylized results of Fig. 3, Fig. 4,
and Fig. 5 with the semantic regions of the content and style
images to each subject. Three visually quality related questions
were asked for each subject. The first one is which stylized
image achieves the best quality of the style transfer. The
second one is which stylized image is the best style transfer
results based on the corresponding semantic regions. The third
one is which stylized image is the most visually coherent
with the style image. The voting results of 42 subjects are
shown in Fig. 6. In the user study, image optimization based
methods [2], [25], [28], [29] have better visual transfer quality
compared with model optimization based methods [12], [21],
because they can perform more specific stylized results based
on the content and style images.

Compared with the competing methods, our method is
significantly favored in all of three questions. Based on the
local context network, the detailed strokes of the style image
can be transferred to the corresponding content regions. Then,
the final stylized results optimized by the global context
network achieve region-wise consistency. As a result, our
method can provide visually coherence of the style image and
well represent the structure of the content image. In addition,
our semantic context matching can obtain the corresponding
regions between the content and style images based on the



1922 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 6. The user study of stylized images with respect to (a) The best quality of the style transfer, (b) Style transfer results based on the corresponding
semantic regions, and (c) Visually coherent with the style image.

context. Thus, even when no common object categories exist
between the content and style images, the semantic context
pairs can still help generate semantic style transfer results
which are consistent with human perception.

V. CONCLUSION

In this paper, we propose a novel semantic context matching
method to automatically obtain the semantic context pairs
between the content and style images. Moreover, a hierarchical
local-to-global network architecture, which contains the local
context network and global context network, is proposed to
optimize the transfer results based on the semantic context
pairs. By considering semantic context pairs and learning
by using hierarchical local-to-global network architecture,
detailed strokes of the styles can be successfully transferred
to the content image with a visually consistent manner of
the human perception. Experimental results show that the
proposed method is better than the state-of-the-art methods.
In the future, we will further accelerate the computation speed
of the proposed method.
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