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Robust Single-Image Super-Resolution via CNNs
and TV-TV Minimization

Marija Vella and João F. C. Mota

Abstract— Single-image super-resolution is the process of
increasing the resolution of an image, obtaining a high-resolution
(HR) image from a low-resolution (LR) one. By leveraging
large training datasets, convolutional neural networks (CNNs)
currently achieve the state-of-the-art performance in this task.
Yet, during testing/deployment, they fail to enforce consistency
between the HR and LR images: if we downsample the output HR
image, it never matches its LR input. Based on this observation,
we propose to post-process the CNN outputs with an optimization
problem that we call TV-TV minimization, which enforces consis-
tency. As our extensive experiments show, such post-processing
not only improves the quality of the images, in terms of PSNR
and SSIM, but also makes the super-resolution task robust to
operator mismatch, i.e., when the true downsampling operator
is different from the one used to create the training dataset.

Index Terms— Image super-resolution, image reconstruction,
convolutional neural networks. (CNNs), �1-�1 minimization, prior
information.

I. INTRODUCTION

IN SCIENCE and engineering, images acquired by sensing
devices often have resolution well below the desired one.

Common reasons include physical constraints, as in astronomy
or biological microscopy, and cost, as in consumer elec-
tronics or medical imaging. Creating high-resolution (HR)
images from low-resolution (LR) ones, a task known as super-
resolution (SR), can therefore be extremely useful in these
areas; it enables, for example, the identification of structures
or objects that are barely visible in LR images. Doing so,
however, requires inferring values for the unobserved pixels,
which cannot be done without making assumptions about the
class of images to super-resolve and their acquisition process.

Classical interpolation algorithms assume that the missing
pixels can be inferred by linearly combining neighboring
pixels via, e.g., the application of filters [3], [4], or by
preserving the statistics of the image gradient from the LR
to the HR image [5]. Reconstruction-based methods, on the
other hand, assume that images have sparse representations in
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some domain, e.g., sparse gradients [6]–[12]. More recently,
data-driven methods have become very popular; their main
assumption is that image features can be learned from training
data, via dictionaries [13], [14] or via convolutional neural
networks (CNNs) [15]–[17].

CNNs were first applied to image SR in the seminal
work [15] and have ever since remained the state-of-the-art,
both in terms of reconstruction performance and computational
complexity (during deployment/testing). By relying on vast
databases of images for training, such as ImageNet [18] or
T91 [13], they can effectively learn to map LR images/patches
to HR images/patches. Although training a CNN can take
several days, applying it to an image (what is typically called
the testing phase) takes a few seconds or even sub-seconds.
Despite these advantages, the knowledge that CNNs extract
from data is never made explicit, making them hard to adapt to
new scenarios: for example, simply changing the scaling factor
or the sampling model, e.g., from bicubic to point sampling,
almost always requires retraining the entire network. More
conspicuously, however, is that during testing SR CNNs fail to
guarantee the consistency between the reconstructed HR image
and the input LR image, effectively ignoring precious “mea-
surement” information, as we will illustrate shortly. Ignoring
such information makes CNNs prone to generalization errors
and, as a consequence, also less robust.

Curiously, adaptability and measurement consistency are
the main features of classical reconstruction-based methods,
which consist of algorithms designed to solve an optimization
problem. To formulate such an optimization problem, one
has to explicitly encode the measurement model and the
assumptions about the class of images to be super-resolved.
Although this explicit encoding confers reconstruction-based
methods great adaptability and flexibility, it naturally limits
the complexity of the assumptions, which is one of the reasons
why reconstruction-based methods are outperformed by data-
driven methods (CNNs). This motivates our problem:

Can we design SR algorithms that learn from large quan-
tities of data and, at the same time, are easily adaptable to
new scenarios and guarantee measurement consistency during
the testing phase? In other words, can we design algorithms
that have the advantages of both data-driven and model-based
methods?

A. Lack of Consistency by CNNs

Before summarizing our method, we describe how CNNs
fail to enforce consistency between the reconstructed HR
image and the input LR image. Although we illustrate this
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phenomenon here for the specific SRCNN network [15],
more systematic experiments can be found in Section IV.
The top-left corner of Fig. 1 shows a ground truth (GT)
image X� ∈ R

M×N , which the algorithms have access to
during training, but not during testing. We will represent
X� by its column-major vectorization x� = vec(X�) ∈ R

n ,
where n = M · N . The GT image x� is downsampled via a
linear operator represented by A ∈ R

m×n into a LR image
b := Ax� ∈ R

m . In this specific example, n = 240, 000 and
m = 15, 000, i.e., x� is downsampled by a factor of 4, and A
implements bicubic downsampling. The goal is to reconstruct
x� from b, i.e., to super-resolve b. The figure illustrates that
CNN methods, in particular [15], reconstruct an image w that
does not necessarily satisfy Aw = b, even though we know
that Ax� = b. Specifically, SRCNN [15] outputs an image
w = vec(W ) (top-right corner) very close to x� (22.73 dBs in
PSNR) but that fails to satisfy Aw = b with enough precision:
||b − Aw||2 � 0.53. We point out that A represents bicubic
downsampling, which was what the authors of [15] assumed
during the training of SRCNN.

Although the data consistency (DC) problem has been
given importance in other fields, only a few SISR tech-
niques have tackled it. Existing supervised methods mainly
rely on modifying the network structure [19], [20] or
learn pretrained-denoisers and plug them in a model-based
algorithm [21], [22].

B. Our Approach

Our algorithm can be viewed as a post-processing step that
takes as input the CNN image w and the LR image b, and
reconstructs a HR image x̂ ∈ R

n that is similar to w but,
in contrast to it, satisfies Ax̂ = b (bottom-right corner of
Fig. 1). As a result, the images created by our method almost
always have better quality than w, in terms of PSNR and
SSIM. In addition, our method confers robustness to the SR
task, even when the operator A used to generate the training
data differs from the one used during testing.

We integrate b and w via an algorithm that solves an
optimization problem that we call TV-TV minimization. The
problem enforces the reconstructed image to have a small
number of edges, a property captured by a small TV-norm,
and also to not differ much from w, as measured again by the
TV-norm. Naturally, it also imposes the constraint Ax̂ = b.

C. Contributions

We summarise our contributions as follows:
1) We introduce a framework that has the advantages of

learning-based and reconstruction-based methods. Like
reconstruction methods, it is adaptable, flexible, and
enforces measurement consistency. At the same time,
it retains the excellent performance of learning methods.

2) We integrate learning and reconstruction-based methods
via a TV-TV minimization problem. Although we have
no specific theoretical guarantees for it, existing theory
for a related, simpler problem (�1-�1 minimization) pro-
vides useful insights about how to tune a regularization

Fig. 1. Illustration of the lack of measurement consistency by CNNs during
testing: when the output image w is downsampled using A, it typically differs
significantly from b. Our method takes in both w and b, and fixes this problem.

parameter. This makes our algorithm easy to deploy,
since there are virtually no parameters to tune.

3) We propose an algorithm based on the alternating direc-
tion method of multipliers (ADMM) [23] to solve the
TV-TV minimization problem. In contrast with most SR
methods, which process image patches independently,
our algorithm processes full images at once. It also easily
adapts to different degradations and scaling factors.

4) We conduct extensive experiments that illustrate not
only the robustness of our algorithm under different
degradation operators, but also how it systematically
improves (in terms of PSNR and SSIM) the outputs of
state-of-the-art SR networks, such as EDSR [24] and
RCAN [25].

We highlight the following differences with respect to our
previous work in [1], [2]. We now explore and illustrate
with experiments the underlying reason why our framework
improves the output of state-of-the-art SR CNNs. We also
describe how the proposed optimization problem can be solved
efficiently using ADMM; in fact, the algorithms used in [1],
[2] were different and less efficient than the algorithm we
present here. Our experiments are also much more extensive:
they consider different sampling operators to illustrate robust-
ness to operator mismatch, and include many more algorithms,
e.g., FSRCNN [26], VDSR [17], LapSRN [27], SRMD [21],
IRCNN [28], and the PSNR oriented network presented in [16]
which we refer to in this paper as ESRGANPSNR.

D. Organization

Section II summarizes prior work on SR algorithms, and
Section III describes the proposed framework and optimization
scheme. Section IV then reports our experimental results, and
Section V concludes the paper.

II. RELATED WORK

SR schemes are often labeled as interpolation, reconstruc-
tion, or data-driven. Interpolation methods infer the missing
pixels by locally applying an interpolation function such as the
bicubic or bilinear filter [3], [4]. As they have been surpassed
by both reconstruction and learning SR algorithms, we will
limit our review to the latter.
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A. Reconstruction-Based SR

Reconstruction-based schemes view SR as an image recon-
struction problem and address it by formulating an opti-
mization problem. In general, the optimization problem has
two terms: a DC term that encodes assumptions about the
acquisition process, usually that Ax � b (where x is the
optimization variable), and a regularization term on x that
encodes assumptions about the class of images. Different
methods differ mostly on the image assumptions.

1) Image Assumptions: Reconstruction SR methods encode
assumptions about the images by penalizing in the opti-
mization problem measures of complexity. These reflect the
empirical observation that natural images have parsimonious
representations in several domains. Examples include sparsity
in the wavelet domain [29], sparsity of image patches in the
DCT domain [30] and, as we will explore shortly in more
detail, sparsity of image gradients [6]–[12]. Since sparsity
is well captured by the �1-norm, the resulting optimization
problem is typically convex and can be solved efficiently.
A more challenging assumption is multi-scale recurrence [24],
[31], which captures the notion that patches of natural images
occur repeatedly across the image.

2) Total Variation: In natural images, the number of pixels
that correspond to an edge, i.e., a transition between different
objects, is a small percentage of the total number of pixels.
This can be measured by the total variation (TV) of the
image [6]. Although TV was initially defined in the context
of partial differential equations, there has been work that
discretizes the differential equations [9], [10] or that directly
defines TV in the discrete setting [11], [32]. Although there
are several definitions of discrete TV, the most popular are the
isotropic TV, which consists of the sum (over all pixels) of the
�2-norms of the vectors containing the horizontal and vertical
differences at each pixel, and the anisotropic TV, which is
similar to isotropic TV but with the �2-norms replaced by the
�1-norm. Both definitions yield convex, yet nondifferentiable,
functions. Many algorithms have been proposed to solve prob-
lems involving discrete TV, including primal-dual methods [8],
[33], and proximal and gradient-based schemes [11], [12].

The concept of TV has been used in many imaging tasks,
from denoising [6], [11] to SR [9], [10]. For example, [9]
discretizes a differential equation relating variations in the
values of pixels to the curvature of level sets, while enforcing
fidelity to the LR image.

3) Back-Projection: Back-projection (BP) is an iterative
algorithm originally proposed for multi-image SR [34]. It min-
imizes the reconstruction error and then projects the outputs
back to the GT image to adjust its intensity. Although this
improves the outputs, it is prone to ringing and chessboard
artifacts.

B. Learning-Based Algorithms

Learning-based algorithms typically consist of two stages:
training, in which a map from LR to HR patches is learned
from a database of training images, and testing, in which
the learned map is applied to super-resolve an unseen
image.

1) Dictionary Learning: In dictionary learning, also known
as sparse coding, patches of HR images are assumed to
have a sparse representation on an over-complete dictionary,
which is learned from training images. For example, [13] uses
training images to learn dictionaries for LR and HR patches
while constraining corresponding patches to have the same
coefficients. Other schemes use similar concepts, but require
no training data at all. For example, [14] uses self-similarity to
learn the LR-HR map without any external database of images.

2) CNN-Based Methods: The advent of deep learning and
the availability of large image datasets inspired the application
of CNNs to SR. Currently, they surpass any reconstruction-
or interpolation-based method both in reconstruction perfor-
mance and in execution time (during testing). The first CNN
for SR was proposed by [15]; although its design was inspired
by dictionary learning methods, the proposed architecture set
a new standard for SR performance.

SR networks can be classified as direct or progressive.
In direct networks, the LR image is first upscaled, typically
via bicubic interpolation, to the required spatial resolution,
and then is fed to a CNN, as in [21], [24], [25]. In this case,
the CNN thus learns how to deblur the upscaled image. As pre-
viously mentioned, CNN architectures need to be retrained
every time we change the scaling factor. To overcome this, [35]
repeatedly applied a recursive convolutional layer to obtain the
super-resolved image. However, since the LR input is blurry,
the CNN outputs a HR image lacking fine details. Inspired by
this observation, [36] proposed the SRGAN, which produces
photo-realistic HR images, even though they do not yield the
best PSNR. As direct networks operate on high-dimensional
images, their training is computationally expensive [37].

Progressive networks, in contrast, have reduced training
complexity, as they directly process LR images. Specifically,
the upsampling step, performed using sub-pixel or transposed
convolution [37], is applied at the end of the network.
For instance, LapSRN [27] used the concept of Laplacian
pyramids, in which each network level is trained to predict
residuals between the upscaled images at different levels in
the pyramid.

In spite of achieving state-of-the-art performance, CNNs for
SR suffer from two major shortcomings: as already illustrated,
they fail to guarantee the consistency between the LR and HR
image during testing, and the trained network applies only to
a unique scaling factor and degradation function. Most of the
CNNs, e.g. [15], [21], [26], are trained by solving

minimize
θ

1

T

T�
t=1

�� fθ (Ax (t)) − x (t)
��2

2,

where x (t) represents (the vectorization of) the tth image in
the training set, A the bicubic sampling operator, and fθ (·)
a CNN parameterized by θ (i.e., weights and biases of the
neural connections). Most CNNs are trained with images that
have been downsampled with a bicubic filter. Thus, their
performance degrades when the true downsampling operator
is different. Indeed, during testing, the true degradation is
unknown.
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The work in [21] addresses this problem by designing a
network that deals with different degradations by accepting as
input both the blur kernel and the noise level.

C. Plug-and-Play Methods

A different line or work blends learning- and model-
based methods. The main observation is that, when solving
linear inverse problems, proximal-based algorithms separate
the operations of measurement consistency and problem regu-
larization (using prior knowledge). The latter usually consists
of a simple operation, like soft-thresholding, which encodes
the assumptions about the target image and which can be
viewed as a denoising step. Given its independence from the
measurements, such operation can be replaced by a more
complex function, such as a CNN. The resulting algorithms are
versatile, as the measurement operator can be easily modified.
Most work in this area, however, has focused on compressed
sensing, in which the measurement operator is typically a
dense random matrix; see [38]–[40].

The One-Net [41], for example, replaces the proximal
operator associated to image regularization in an ADMM
algorithm with a CNN trained on a large database. The
experiments in [41] considered SR, but the resulting network
does not perform as well as current leading CNN-based
methods.

The pioneering work in [42] takes this idea further and
proposes a scheme that requires no training at all. There,
an untrained CNN is used as a prior. Specifically, a linear
inverse problem is reparameterized as a function of the weights
of a CNN whose input is a noisy/corrupted image and whose
output is the denoised/reconstructed image. Such reparameter-
ization provides a type of regularization.

The work in [43] combined this idea with regularization
by denoising and used ADMM to solve the resulting linear
inverse problem.

These algorithms require no training and can be adapted to
different measurement operators. However, they can be slow,
as each iteration requires some backpropagation iterations on
the CNN. And, when applied to SR, they are still outperformed
by training-based CNN architectures.

Another work embeds DC layers in the network.
For example, Haris et.al. [19] extends the BP algorithm by
using consecutive up and down sampling blocks to create the
HR feature map.

III. PROPOSED FRAMEWORK

A. Main Model and Assumptions

We aim to reconstruct the vectorized version of an HR
image x� ∈ R

n from a LR image b ∈ R
m , with m < n.

We assume that these quantities are linearly related:
b = Ax�, (1)

where A ∈ R
m×n represents the downsampling operator.

The model in (1) is often used in reconstruction-based and
dictionary learning algorithms [10], [13], [29], even though
many methods also consider additive noise: b = Ax� + �,
where � is a Gaussian random vector [12], [41], [44]–[46].

More interesting, however, is that CNN-based methods
implicitly assume the model in (1), although that is rarely
acknowledged. In particular, all the SR networks we know of
(e.g., [15], [16], [26], [27]) are trained with HR images that are
downsampled according to (1), where A implements bicubic
downsampling. We next discuss other possible choices for A.

1) Common Choices for A: Different instances of
A ∈ R

m×n in (1) have been assumed in the SR literature:
• Simple Subsampling: A contains equispaced rows of the

identity matrix In ∈ R
n×n , i.e., each row of A is a

canonical vector (0, . . . , 0, 1, 0, . . . , 0). This operator is
simple to implement, but often introduces aliasing.

• Bicubic: A = S · B , where S is a simple subsampling
operator, and B is a bicubic filter. It is the operator of
choice for processing training data for CNNs.

• Box-Averaging: if the scaling factor is s, then each
row of A contains s2 nonzero elements, equal to 1/s2,
in positions corresponding to a neighborhood of a pixel.
In other words, box-averaging replaces each block of s×s
pixels by their average. Although simpler than the bicubic
operator, it does not introduce the aliasing that simple
subsampling does; see, e.g., [41].

In our experiments, we will mostly instantiate A as a bicubic
operator. The reason is that most SR CNNs assume this oper-
ator during training. Simple subsampling and box-averaging
will be used to illustrate how our post-processing scheme
adds robustness to operator mismatch, i.e., when A is different
during training and testing.

2) Assumptions: We estimate x� ∈ R
n from b ∈ R

m by
taking into account two possibly conflicting assumptions:

1) x� has a small TV; a property that indicates the recon-
structed image is close to the GT. For example, the aver-
age TV norm of the BSD100 dataset is 0.08.

2) x� is also close to the prior information w, the image
returned by a learning-based method (CNN), where the
notion of distance is also measured by TV.

For a given vectorization x ∈ R
n of an image X ∈ R

M×N ,
the anisotropic 2D TV (semi-)norm is defined as [7], [11]

�x�TV :=
M�

i=1

N�
j=1

���v�
i j x

��� +
���h�

i j x
��� =

����
�

V
H

�
x

����
1

= �Dx�1.

(2)

In (2), vi j ∈ R
n and hi j ∈ R

n extract the vertical and
horizontal differences at pixel (i, j) of X . By concatenating
vi j (resp. hi j ) as rows of V ∈ R

n×n (resp. H ∈ R
n×n ),

we obtain the representation in (2), where � · �1 is the
�1-norm (sum of absolute values). And the matrix D ∈ R

2n×n

in (2) is the vertical concatenation of V and H . We assume
periodic boundaries, so that both V and H are circulant.
As circulant matrices are diagonalizable by the DFT, matrix-
vector products by both V and H can be computed via the
FFT in O(n log n) time.

B. Our Framework

The framework we propose is shown schematically in Fig. 2.
It starts by super-resolving b into w ∈ R

n with a base method,
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Fig. 2. Our framework: the low-resolution image b and the image w super-
resolved by a CNN are fed into the TV-TV minimization problem which,
in turn, obtains a high-resolution image �x with better quality.

which we assume is implemented by a CNN due to their
current outstanding performance. As explained in Section I,
CNNs fail to enforce measurement consistency during testing,
i.e., Aw �= b for any matrix A that is assumed to implement
the downsampling operation.

We propose to use an additional block that takes in both
the HR output w of the CNN and the LR image b, and
creates another HR image �x . The block implements what
we call TV-TV minimization, which enforces measurement
consistency while guaranteeing that assumptions 1) and 2) are
met.

1) TV-TV Minimization: Given the LR image b and a HR
image w, TV-TV minimization consists of

minimize
x

�x�TV + β�x − w�TV

subject to Ax = b, (3)

where x ∈ R
n is the optimization variable, and β ≥ 0

tradeoffs between assumptions 1) and 2). Indeed, the first
term in the objective of (3) encodes assumption 1), the second
term assumption 2), and the constraints enforce measurement
consistency. Robustness of our method is achieved by the
framework itself. CNNs, being purely data-driven, suffer from
generalization errors. A generalization error typically implies
lack of consistency with the input LR image. Our method
overcomes this by guaranteeing measurement consistency,
and thus robustness with respect to generalization errors,
via the constraints of TV-TV minimization. Of course, our
assumptions 1)-2) can be easily modified to better capture the
class of images to be super-resolved. We found that using TV
semi-norms in the objective yielded better results. In addition,
as these functions are convex, problem (3) is convex as well.

Although a problem like (3) has appeared before in [47] in
the context of dynamic computed tomography (CT), the prior
information w there was an image reconstructed by solving
the same problem in the previous instant; see also [48]–[50].
Our approach is conceptually different in that we use (3) to
improve the output of a CNN-based method.

Next, we show how TV-TV minimization relates to �1-�1
minimization, and how the theory for the latter in [48] suggests
that selecting β = 1 in (3) may lead to better performance.

2) Relation to �1-�1 Minimization: Introducing an auxiliary
variable u ∈ R

2n and defining w := Dw, we rewrite (3) as

minimize
u,x

�u�1 + β�u − w�1

subject to Ax = b, Dx = u. (4)

Thus, x := (u, x) ∈ R
3n is the full optimization variable.

Define A := �
0m×2n A; −I2n D

	
, and b := �

b 02n
	�

, where
0a×b (resp. 0a) represents the zero matrix (resp. vector) of
dimensions a × b (resp. a × 1), and I2n is the identity matrix
in R

2n . This enables us to rewrite (4) as

minimize
x

�G2n x�1 + β�G2nx − w�1

subject to Ax = b, (5)

where G2n ∈ R
2n×3n contains the first 2n rows of the

identity matrix I3n . In other words, for a vector v ∈ R
3n ,

G2nv represents the first 2n components of v. The work
in [48] analyzes (5) when G2n is the full identity matrix
and the entries of A are drawn from a Gaussian distribution.
Specifically, it provides the number of measurements required
for perfect reconstruction under these assumptions. It is shown
both theoretically and experimentally that the best reconstruc-
tion performance is obtained when β = 1. Although the theory
in [48] cannot be easily extended1 to (5), our experiments
indicate that β = 1 still leads to the best results in our setting.

C. Algorithm for TV-TV Minimization

We now explain how to efficiently solve TV-TV minimiza-
tion (3) with ADMM [23]. In contrast with the majority of SR
algorithms, which operate on individual patches, our algorithm
operates on full images. We do that by capitalizing on the
fact that matrix-vector multiplications can be performed fast
whenever the matrix is D [cf. (2)] or any of the instantiations
of A mentioned in Section III-A.

ADMM: The problem that ADMM solves is

minimize
y,z

f (y) + g(z)

subject to Fy + Gz = 0, (6)

where f and g are closed, proper, and convex functions, and
F and G are given matrices. Associating a dual variable λ to
the constraints of (6), ADMM iterates on k

yk+1 = argmin
y

f (y) + ρ

2

��Fy + Gzk + λk
��2

2 (7a)

zk+1 = argmin
z

g(z) + ρ

2

��Fyk+1 + Gz + λk
��2

2 (7b)

λk+1 = λk + Fyk+1 + Gzk+1, (7c)

where ρ > 0 is the augmented Lagrangian parameter.
1) Applying ADMM: Although there are many possible

reformulations of (3) to which ADMM is applicable, they can
yield different performances. Our reformulation simply adds
another variable v ∈ R

n to (4) [which is equivalent to (3)]:

minimize
u,x,v

�u�1 + β�u − w�1

subject to Ax = b, Dv = u, v = x . (8)

We establish the following correspondence between (6)
and (8): we set y = (u, x), z = v, and assign

f (u, x) = �u�1 + β�u − w�1 + iAx=b(x) F =
�−I2n 0

0 In

�

g(v) = 0 G =
�

D
−In

�
,

1The reason is that the matrix A is very structured and thus, even when A
is assumed Gaussian, its nullspace is not uniformly distributed.
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where iAx=b(x) is the indicator function of Ax = b, i.e., it
evaluates to 0 if Ax = b, and to +∞ otherwise. This means
that we dualize only the last two constraints of (8), and thus
λ has two components: λ = (η, μ) ∈ R

2n × R
n . The above

correspondence yields closed-form solutions for the problems
in (7a) and (7b) (see below). Furthermore, even though the
objective of (8) is not strictly convex, the fact that F and
G have full column-rank implies that the sequence (yk, zk)
generated by ADMM (7) has a unique limit point, which
solves (8) [51]. We now elaborate on how to solve (7a)-(7b).

2) Solving (7a): Using the above correspondence, prob-
lem (7a) decouples into two independent problems that can
be solved in parallel:

uk+1 = argmin
u

�u�1 + β�u − w�1 + ρ

2
�u − sk�2

2 (9)

xk+1 = argmin
x

1

2
�x − pk�2

2

s.t. Ax = b, (10)

where we defined sk := Dvk + ηk and pk := vk − μk .
Problem (9) decomposes further componentwise, and the

solution for each component can be obtained by evaluating
the respective optimality condition (via subgradient calculus).
Namely, for i = 1, . . . , 2n, if wi ≥ 0, component uk+1

i is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

si − 1

ρ
(β + 1), si > wi + 1

ρ
(β + 1)

wi , wi − 1

ρ
(β − 1)≤si ≤wi + 1

ρ
(β + 1)

si + 1

ρ
(β − 1), − 1

ρ
(β − 1) < si < wi − 1

ρ
(β − 1)

0, − 1

ρ
(β − 1) ≤ si ≤ − 1

ρ
(β − 1)

si + 1

ρ
(β + 1), si < − 1

ρ
(β + 1).

(11)

The case for wi < 0 is obtained in similar way. More details
are provided in2.

Problem (10) is the projection of pk onto the solutions of
Ax = b. Assuming that A has full row-rank, i.e., AA� is
invertible, (10) also has a closed-form solution:

xk+1 = pk − A�(AA�)−1(Ap − b), (12)

whose computation has a complexity that depends on the
properties of the downsampling operator A. When A is simple
subsampling or the box-averaging operator, AA� is the iden-
tity matrix Im or a multiple of it. In that case, computing (12)
requires only two matrix-vector operations which, due to the
structure of A, can be implemented by indexing. In other
words, there is no need to construct A explicitly.

On the other hand, when A is the bicubic operator,
the inverse of AA� can no longer be computed easily, and
we solve the linear system in (10) with the conjugate gradient
method. In this case, matrix-vector products can be computed
in O(n log n) time using the FFT.

3) Solving (7b): With our choice of g, F , and G, prob-
lem (7b) becomes

vk+1 = argmin
v

1

2

��Dv − uk+1 + ηk
��2

2 + 1

2

��v − xk+1 + μk
��2

2

= (In + D� D)−1
�
xk+1 − μk + D�(uk+1 − ηk)

�
. (13)

Given the definition of D in (2), we have

In + D� D = In + V �V + H �H

= C H
n

�
In + Diag(Cnv)2 + Diag(Cnh)2

�
Cn,

where the last step uses the fact that V and H are circulant
matrices and, therefore, are generated by some vectors v and
h, respectively. Also, Cn denotes the DFT matrix in R

n , and
Diag(x) is a diagonal matrix with the entries of x in its
diagonal. This representation of In + D� D not only enables us
to compute its inverse in closed-form (just take the inverse of
the matrix in parenthesis), but also to do it without constructing
any matrix explicitly.

4) Dual Updates: Finally, since λ decomposes as (η, μ),
the dual variable update in (7c) becomes

ηk+1 = ηk + Dvk+1 − uk+1 (14a)

μk+1 = μk + xk+1 − vk+1. (14b)

Applying ADMM (7) to the equivalent reformulation (8) of
TV-TV minimization (3) therefore yields step (11) for each
component of u, (12) for x , (13) for v, and (14) for the dual
variables. These steps are repeated iteratively until a stopping
criterion is met; we use the one suggested in [23].

IV. EXPERIMENTS

We now describe our experiments. After explaining the
experimental setup, we expand on the phenomenon described
in Fig. 1. Then, we consider the case of operator mismatches
(i.e., A is different during training and testing), and show how
our framework adds significant robustness in this scenario.
Finally, we report experiments on standard SR datasets. Code
to replicate our experiments is available online2.

A. Experimental Setup

1) Algorithm Parameters: Most experiments were run using
the same algorithm settings, unless indicated otherwise. The
hyperparameter β in (3) was generally set to 1 and in some
instances set to 2. For most experiments, A was the bicubic
operator via MATLAB’s IMRESIZE. For ADMM, we adopted
the stopping criterion in [23, §3.3.1] with �pri = �dual = 0.001,
or stopped after 500 iterations. Also, we initialized ρ = 0.5
and adjusted it automatically using the heuristic in [23, §3.4.1].

2) Datasets: We considered the standard SR test sets Set5
[52], Set14 [53], BSD100 [54] and Urban100 [55], which
contain images of animals, buildings, people, and landscapes.

3) Computational Platform: All experiments were run on
Matlab using a workstation with 12 core 2.10GHz Intel Xeon
Silver 4110 CPU and two NVIDIA GeForce RTX GPUs.

4) Methods Evaluated: We compared our framework
against the state-of-the-art methods in Table I and also consid-
ered simple TV minimization, i.e., (3) with β = 0, using the
TVAL3 solver [8]. The table shows the acronyms and refer-
ences of the methods, their main technique, the scaling factors
(S.F.) considered in the original papers, and the datasets used
for training. Note that all methods except ESRGANPSNR were

2https://github.com/marijavella/sr-via-CNNs-and-tvtv
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TABLE I

METHODS USED IN OUR EXPERIMENTS. FOR EACH, WE SHOW THE MAIN
TECHNIQUE, THE SCALING FACTORS IT CAN HANDLE AND, IF ANY,

THE TRAINING DATASET

TABLE II

CONSISTENCY ACHIEVED BY CNN-TYPE METHODS (�Aw − b�2) AND BY

OUR ALGORITHM (�Ax̂ − b�2)

evaluated for 2× and 4× scaling factors since ESRGANPSNR
only handles 4×. The training datasets in Table I have
91 (T91), 100 (General100), 200 (BSDS200), 324 (Out-
doorSceneTraining), 500 (BSDS500), 800 (DIV2K), 2650
(Flickr2K), 4744 (WED), and 396,000 (ImageNet) images.

Both during training and testing, SRCNN, DRCN and
FSRCNN extract the luminance channel of the YCbCr color
space, while the rest of the CNN-based methods in Table I
work on all the RGB channels.

During training, the HR images are converted to LR images
by applying MATLAB’s IMRESIZE, as originally done in [15].
The output images for SRCNN [15] were retrieved from an
online repository.3 For the remaining methods, we generated
the outputs from the available pretrained models.

5) Performance Metrics: We compared different algorithms
by evaluating the PSNR (dB) and SSIM [61] on the luminance
channel of the output images. We also provide sample images
for qualitative evaluation.

3https://github.com/jbhuang0604/SelfExSR

TABLE III

OPERATOR MISMATCH EXPERIMENTS. PSNR VALUES UNDER DIFFER-
ENT SAMPLING OPERATORS FOR A: BICUBIC, BOX FILTERING, AND

SIMPLE SUBSAMPLING. WITHIN EACH BOX, THE BEST (HIGHER)
VALUES ARE HIGHLIGHTED IN BOLD

Fig. 3. Result on a sample image from CelebA-HQ.

TABLE IV

PSNR AND NIQE FOR THE SAMPLE IMAGE IN FIG. 3

B. Measurement Inconsistency of CNNs

We show that the phenomenon illustrated in Fig. 1 for
SRCNN [15] occurs not only for this network, but is per-
vasive. That is, CNNs for SR fail to enforce measurement
consistency (1) during testing. We chose three images for
this purpose: Baboon from Set14, 38092 from BSD100, and
img005 from Urban100. Every image is downsampled with
MATLAB’s IMRESIZE, which is the procedure executed for
training each CNN, and the resulting LR image is fed into the
network. We chose a scaling factor of 4.

Results: Table II shows the results for a subset of methods
in Table I. In the 3rd column, it displays the �2-norm of the
difference between the downsampled HR outputs, i.e., Aw,
and the input LR image b; in the 4th column, it shows the
same quantity after feeding the corresponding w (and b, cf.
Fig. 2) to our method. It can be seen that our post-processing
improves consistency by 6 orders of magnitude. Note that even
though SRMD models various degradations without retraining,
it still fails to ensure consistency. IRCNN is a plug-and-play
method and, as a result, can also handle different degradation
models. Although it achieves better consistency than pure
CNN-based methods, it is still 5 orders of magnitude below
our scheme. The last row of Table II shows the consistency
of DeepRED [43].
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TABLE V

AVERAGE PSNR (SSIM) RESULTS IN dB AND EXECUTION TIME IN SECONDS OF OUR METHOD USING THE REFERENCE METHODS

C. Robustness to Operator Mismatch

As previously stated, most SR CNNs are trained by down-
sampling a HR into a LR image using the bicubic operator. If,
during testing, A is different from the bicubic operator then,
as we will see, there can be a serious drop in performance.
This may indeed limit the applicability of CNNs in real-life

scenarios where the required time and computation resources
might not be available. Our approach, however, mitigates this
effect and adds robustness to the SR task. We considered
the same images and methods as in Table II, with DeepRed
replaced by TVAL3, and considered the operators for A
described in Section III-A: bicubic, box averaging, and simple
subsampling.
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Fig. 4. Results on Baboon (Set14) for 4×. Each shaded area (except the top-left) shows the output of a learning-based algorithm and of our method.

Results: Each shaded box in Table III shows, for each
subsampling operator, the PSNR values obtained by a given
method, and by subsequently processing its output with our
scheme. While all methods perform the best under bicubic
subsampling, there is a performance drop for box filtering,

and an even larger drop for simple subsampling. Note that our
method systematically improves the output of all the networks,
even for bicubic subsampling. And while the improvement is
of less than 1dB for bicubic subsampling, it averages around
2dBs for simple subsampling. Indeed, the performance of the
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Fig. 5. Results on img076 (Urban100) for 4×. Each shaded area (except the top-left) shows the output of a learning-based algorithm and of our method.

CNNs for this case drops so much that there is a large margin
for improvement. Interestingly, TVAL3, which solves (3) with
β = 0, is the worst method for bicubic subsampling, but
approaches the performance of CNNs for box averaging and,
besides ours, becomes the best for simple subsampling. Hence,
this illustrates that reconstruction-based methods can be more
robust and adaptable than CNN architectures.

D. Standard Datasets With Bicubic Downsampling

We also conducted more systematic experiments using the
standard datasets Set5, Set14, BSD100, and Urban100, under
different scaling factors and using bicubic downsampling only.

1) Quantitative Results: Table V displays the average PSNR
and SSIM, as well as the average execution time of our

method (in seconds), for 2×, and 4× scaling factors. Each
shaded area shows the performance of a given (learning-based)
reference method, the performance of our scheme applied to
the output of that reference method, and the average execution
time (of our method). For easy comparison, the values for
TVAL3 occur repeatedly in different vertical sub-blocks of the
table. Note that since ESRGANPSNR was designed specifically
for 4× upsampling, we do not present its values for other
scaling factors. Most results for our method were generated
with β = 1 and in some instances with β = 2 in (3).

An obvious pattern in the table is that our method con-
sistently improves the outputs of all the methods in terms
of PSNR and SSIM, except in a small subset of cases. The
improvements range between 0.0038 and 0.3566 dB. One of
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the exceptions occurs for 4× upsampling with ESRGANPSNR.
In that case, ESRGANPSNR has always better SSIM than our
method, even though the opposite happens for the PSNR.
As expected, TVAL3 had the worst performance overall and
was surpassed by all learning-based methods.

A drawback of our method, however, is its possibly long
execution time. We recall that of all downsampling operators
mentioned in Section III-A, the most computationally complex
is bicubic downsampling, as considered in these experiments.
The timing values in Table V are average values: they report
the total execution time of our algorithm over all the images
of the corresponding dataset divided by the number of images.
While in some cases our algorithm took an average of 4 sec
(FSRCNN, BSD100, 2×), in others it took more than 108 sec
(SRMD, Urban100, 2×). In fact, for the Urban100 dataset,
because of the large size of its images (1024 × 644), we had
to reduce the number of simultaneous threads to prevent the
GPUs from overflowing. For reference, for (SRCNN, BSD100,
4×), our method takes an average of 9 sec when we use simple
subsampling. This is roughly half the execution time it takes
for bicubic downsampling.

2) Qualitative Results: Figures 4 and 5 depict the output
images of all the algorithms (except IRCNN) for the test
images baboon from Set14, and img067 from Urban100. All
super-resolved images exhibit blur and loss of information
compared with the GT images in Figs. 4a-5a. And as our
scheme builds upon the outputs of other methods, it also
inherits some of their artifacts. It is difficult to visually assess
differences between the outputs of the algorithms and of our
method, in part because the improvements, as measured by
the PSNR, are relatively small. Yet, as our experiments show,
our scheme not only systematically improves the outputs of
CNN-based methods, but also adds significant robustness to
operator mismatch.

3) Face Hallucination: We also perform a small experiment
for face SR. Conventional face SR networks such as [63] work
on the same principles of the methods previously considered:
they obtain an HR image from a LR image. Recent methods
use generative adversarial networks (GANs) which are able
to produce photo-realistic images and also allow the use of
large downscaling factors. The work in [62] proposes the
PULSE algorithm, which produces sharp faces mapping to the
correct LR input. In contrast to FSRNet, this network aims to
lower the Naturalness Image Quality Evaluator (NIQE) score
rather than improve the PSNR. Figure 3 shows the different
outputs obtained on a sample image from CelebA-HQ [64] for
a scaling factor of 8, while Table IV shows their respective
PSNR and NIQE score. These results show that FSRNET and
TV-TV minimization obtain better PSNR scores, but PULSE
is able to obtain impressive NIQE scores, i.e., more realistic
outputs.

V. CONCLUSION

We proposed a framework for single-image SR that blends
model- and learning-based (e.g., CNN) techniques. As a result,
our framework enables solving the consistency problem that
CNNs suffer from, namely that downsampled output (HR)
images fail to match the input (LR) images. Our experiments

show that enforcing such consistency not only systematically
improves the quality of the output images of CNNs, but
also adds robustness to the SR task. At the core of our
framework is a problem that we call TV-TV minimization and
which we solve with an ADMM-based algorithm. Possible
lines of future research include designing loss functions that
enforce consistency during training and unrolling the proposed
algorithm with a neural network.
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