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Abstract— While traditional image compression algorithms
take a full three-component color representation of an image
as input, capturing of such images is done in many applications
with Bayer CFA pattern sensors that provide only a single color
information per sensor element and position. In order to avoid
additional complexity at the encoder side, such CFA pattern
images can be compressed directly without prior conversion
to a full color image. In this paper, we describe a recent
activity of the JPEG committee (ISO SC 29 WG 1) to develop
such a compression algorithm in the framework of JPEG XS.
It turns out that it is important to understand the “development
process” from CFA patterns to full color images in order to
optimize the image quality of such a compression algorithm,
which we will also describe shortly. We introduce (1) a novel
decorrelation step upfront processing (the so-called Star-Tetrix
transform), along with (2) a pre-emphasis function to improve the
compression efficiency of the subsequent compression algorithm
(here, JPEG XS). Our experiments clearly indicate a gain over a
RGB compression workflow in terms of complexity and quality
(between 1.5dB and more than 4dB depending on the target
bitrate). A comparison is also made with other state-of-the-art
CFA compression techniques.

Index Terms— Image coding, JPEG XS, CFA pattern
compression.

I. INTRODUCTION

D IGITAL images are today typically acquired by color
filter array (CFA) pattern sensors, that is, by a rectangular

sensor array where each sensor element is covered by one out
of multiple color filters. A typical arrangement is that of a
Bayer pattern [1] of a repeating 2 × 2 grid matrix containing
one red, one blue and two green sensitive sensor elements,
repeating over the entire grid. To reconstruct a full-scale full
color image from such a source, often called demosaicking,
it is therefore necessary to interpolate missing sample values at
all sample positions, a problem for which multiple algorithms
have been developed over time [10]. However, as we will see,
interpolation and upsampling are only one out of many steps
that are necessary to reconstruct an observable image, and we
will describe these steps briefly in section III as it is important
to consider them in an image compression algorithm targeting
CFA pattern sourced images.
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Fig. 1. Complexity reduction by compressing CFA patterns. Top: the
approach discussed in this paper. Bottom: The traditional approach.

Transport and compression of images are part of many
industrial applications. Machine vision systems for example
are equipped with multiple CFA pattern sensor cameras that
communicate over various industrial bus systems, like GigE
Vision, CameraLink, USB3.0 Vision [2] or CoaXPress [3],
with a powerful image processing computer system to test
manufactured units for quality. Modern cars are equipped
with multiple CFA pattern sensors that communicate over
automotive ethernet with an Electronic Control Unit (ECU) to
implement various driver assistant functions or to visualize sur-
round camera views on the driver’s screen. As the bandwidth
of industrial bus systems is limited, but the image resolution
of sensors keeps increasing, it becomes attractive to compress
the source signals near the sensor prior transporting them over
a bus. In addition, as the upscaling and interpolation process
to a full scale color image is resource-hungry, we instead want
to consider applications where the CFA source is compressed
directly close to the sensor, and the “development” of this
source to a full scale color image happens at the display
unit where more processing power or a graphical processing
unit (GPU) is available.

Fig. 1 compares two setups when an image accquired by
a CFA pattern sensor is to be transported over a limited
bandwidth channel. The first setup at the top of the fig-
ure compresses the CFA pattern directly as discussed in this
work, the second setup follows the traditional approach which
first converts the CFA pattern to an RGB image and then
compresses this image afterwards. It seems evident that the
sensor-side complexity of the top setup is smaller as it moves
the demosaicking step to the decoder, but we will also provide
experimental evidence on this in section VII.

To optimize for this particular use case, it is important to
understand how we define and measure image quality in this
framework; it turns out that it is insufficient to measure PSNR
in the CFA pattern domain and a more careful process must be
utilized instead. We will describe this process in more detail
in section IV. Note that the proposed JPEG XS extension
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operates on CFA pattern images entirely, i.e. the input of
the compressor and the output of the decompressor are CFA
pattern images.

Once image quality is understood, we describe in section V
the processing steps of a JPEG XS [15]–[17] extension cur-
rently under standardization that applies to such source images,
give a brief review of its algorithm and its history, and then
describe those processing steps in more detail that are relevant
for CFA pattern compression. We will provide evidence that
it is important to take all steps of the development algorithm
from a CFA pattern to a full scale color image into account
to achieve optimal compression results; in particular, only
considering the sensor element arrangement as done in other
works and the upscaling algorithm is not sufficient.

In section VII we describe experiments and provide exper-
imental results that show how far each of the steps of the
compression pipeline contributes to the overall quality. As to
be seen, an overall improvement of about 2dB can be gained
over a naive approach.

II. RELATED WORK

It was already observed by Zhang and Wu in [4] that
compressing the CFA pattern without first converting it to
a three-component RGB image could improve compression
performance and reduce the complexity. In their work, they
describe two compression methods, one that first performs
bi-linear interpolation on the two green channels, and then
code the red/green and blue/green differences, and a second
where the Bayer pattern is coded directly with a wavelet, not-
ing that the first horizontal and vertical highpasses then repro-
duce a color-difference filter. A simple lossless Golomb-Rice
coder is also introduced. Note that bi-linear interpolation of
green channels and computing the color difference is identical
to the first lifting step of the Star-Tetrix transformation, see
eqn. (5) and Fig.5.

In the framework of JPEG XR, Malvar and Sullivan [11],
[12] proposes to consider each 2 × 2 super-pixel element
of a Bayer type CFA pattern as one sample of a four-color
image, and proposes a color decorrelation transformation that
is derived from the YCgCo transformation to be applied
to such superpixels. That is, each 2 × 2 matrix element is
considered one sample of a four-component image having half
the width and half the height of the sensor, and each of the
four elements of this matrix make up one component of it, see
Fig. 2.

S. Mohammed and K. Wahid describe in [5], [6] a
one-dimensional and two-dimensional lossless colour decor-
relation process for CFA pattern images operating on 2 × 2
superpixels as in [11]. The one-dimensional transformation
is identical to a horizontal Haar filter on the green/blue or
green/red lines, an optional vertical filtering step uses a second
Haar transform on the average output of the horizontal filter.
The combined horizontal and vertical filter can be further
simplified in a two-dimensional transformation.

In [7], [8], Suzuki improved the results of [12] by extend-
ing the color decorrelation transformation beyond superpixel
boundaries such that it includes also a spatial decorrelation.

Fig. 2. A CFA pattern image, each circle indicates a sample grid point of a
four component image, the four components indicated as squares. Typically,
as seen in the figure, there are one red, one blue and two green channels.

Instead of confining the transformation to 2 × 2 superpixels,
the proposed transformation there accesses neighbouring sam-
ples regardless to which superpixel they belong to. Similar to
the works of Malvar, the transformation proposed here is also
based on the YCgCo transformation, or is rather an extension
of it.

M. Hernández-Cabronero et al describe in [9] a lossy and
lossless CFA pattern compression based on JPEG 2000 which
also allows simple reconstruction to an RGB image by merging
parts of the demosaicking steps into the JPEG 2000 wavelet
stage, creating a filter that is approximately identical to
bi-linear interpolation. Color space conversion and conversion
to a non-linear (gamma-corrected) colorspace are expressed
by means of an ICC profile which is represented in the
JPEG 2000 file format, though compression is performed in
the linear domain. The color decorrelation transformation from
eqn. (2) of section III.B of their work is up to rounding
identical to the transformation (7) and is also included in our
experimental validation.

This work is an extension of [31], [32] of the same authors.
First of all, we consider a variant of the reversible color trans-
formation (RCT) introduced in the framework of JPEG 2000
[23], [24], [26]. This variant of the RCT transformation
was already discussed in [31], but we will briefly introduce
it again in section VII. The work [32] replaced it by the
better performing Star-Tetrix transformation, to be discussed
in section VI, with experiments comparing it with YCgCo in
section VII.

In this work, we note that processing of CFA pattern sources
to full resolution color images includes additional steps whose
knowledge can improve the performance of an image com-
pression algorithm significantly. These steps include gain
corrections, color space conversion steps, as well as the
transformation to a gamma-corrected (non-linear) space more
suitable for observation, display and processing. It is important
to observe that an additional nonlinear transformation, i.e.
a pre-emphasis and post-emphasis function can improve the
performance significantly, see section VII, and that previous
works did not include such a step as only lossless algorithms
were considered there. While it was already noted in [31]
that the knowledge of the camera white balance can improve
the compression performance, only the rate allocation process
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was modified there. In this work, the linear decorrelation
transformation itself includes white balance correction factors.

In particular for lossless compression of CFA pattern data,
data-dependent transformations based on context modeling
have also been proposed [13], [14]. There, cross-component
correlations are removed by data-dependent linear predictors
that are selected according to the local neighbourhood of a
pixel in the CFA pattern. Lossless compression performance
reported there is approximately 2 : 1 on 8 bit CFA pattern
images, while our test image set (see section VII) consists,
however, of 14 bit CFA pattern input. When disabling the
non-linear pre-emphasis functions, the remaining CFA coding
tools of JPEG XS can also operate in lossless mode and
we observe an average compression ratio of 1.6 : 1 on it.
The compression ratio increases to 2.4 : 1 when disregarding
least significant bits by downscaling the input data first to
8 bits, i.e. in a situation that is roughly comparable to [14].
While the method proposed in this paper can also operate in
lossless mode, our focus is on lossy compression, or scalable
lossy-to-lossless compression. Obviously, lossy compression
can reach much higher compression factors, and our lowest test
point is 1bpp, corresponding to a 14:1 compression. Note that
data-dependent methods such as those discussed in the above
works are unsuitable for lossy compression as the prediction
context may change after quantization and thus a decoder
cannot invert the encoder-side context decisions anymore.

In the next section, we will discuss the whole processing
pipeline of CFA pattern images to human observable RGB
images in more detail.

III. CFA PATTERN PROCESSING

The pipeline of converting a CFA pattern image to a
full resolution color image consists of multiple processing
steps beyond interpolation of sample values. An initial step
often realized is denoising in the CFA domain, for example
by a wavelet filter and deadzone quantization that removes
low-amplitude signals [18], [19].

This step is followed by black level removal, which consists
of the subtraction of an offset value from the sample value and
clamping all sample values below 0 to 0. It suppresses sensor
noise in black areas, and also suppresses sensor values due to
flare light reaching the sensor by reflections on the interior of
the camera case. The black level, also denoted as optical black
or OB value is sensor and camera dependent, but does typically
not depend on the color channel. In some cases, the optical
black is already removed by the camera electronics.

Black level removal is followed by gain correction which
adjusts the sampled signal across channels for the unequal
sensitivities of the sensor elements. In particular, the actual
sensor is not equally sensitive to all incoming wavelengths, and
as the color filter on top of the element removes fractions of
the spectrum, the sensitivity of the overall sensor-filter element
is the point-wise product of the sensor sensitivity times the
wavelength dependent filter characteristics. This unequal sensi-
tivity is compensated by multiplying the black-level corrected
signal by a color-channel dependent gain factor. If the input
vector of this correction is written as four-dimensional column

vector, this step can be understood as the multiplication with
a diagonal matrix. Similar to the first step, the gain factors
are camera dependent and typically embedded in the “raw”
format written by the camera, e.g. TIFF-EP [20], DNG or a
vendor-specific format.

A conversion to an intermediate colorspace comes next.
This conversion consists again of a multiplication of the
sample-column vector with a diagonal matrix, though the
matrix elements are now scene, and in particular illumination-
dependent. They transform the signal to an illumination inde-
pendent intermediate color space and thus implement a simple
form of white-balance correction. By which means the camera
selects appropriate gain factors, and hence the white balance
correction is vendor specific and not documented, though the
matrix elements are part of the vendor specific file format in
which raw signals are recorded. For the sake of simplicity, and
in an abuse of language, we will denote the product of the gain
matrix and the white-balance matrix simply as white balance
correction, even though it consists of two contribution.

At this stage, the image still consists of one sample
per sensor element; however, a full resolution color image
requires 3 color components per sample position, making an
upsampling step necessary. The simplest possible algorithm
is bi-linear interpolation of the existing signals to all sample
positions; it is, however, of little practical value as it creates
interpolation artefacts especially around horizontal and vertical
image edges due to the alternating color filters along them,
also known under the term zipper defects. More sophisticated
algorithms such as the AHD [10] algorithm attempt to identify
the orientation of edges and then perform filtering along the
direction of the edge.

The output of the previous stage is a full-resolution color
image, but it is still in an intermediate color space, and most
notably, sample values are proportional to the light intensity
at the sensor. Many applications of digital images require,
however, gamma corrected signals, or in general, processing
by a non-linear pre-emphasis function that corresponds to
the non-linear sensitivity curve of the human visual system.
Such representations allocate less code space volume to bright
pixels than to dark pixels, corresponding to the (approxi-
mately) logarithmic eye sensitivity. Typical representations are
generated using transfer characteristic curves from sRGB [21]
or BT.2020 [22]. Accordingly, the last step consists first of
a conversion from the linear intermediate camera color space
to a coordinate system relative to the primaries of the target
color space, followed by a color-space specific non-linearity.
In this work, we will focus on the sRGB non-linearity only.

It turns out that it is important to consider not only the
interpolation, but also the non-linearity and the white-balance
correction for high-quality CFA pattern compression algo-
rithms. What exactly we mean by quality will be discussed
in the next section.

IV. QUALITY OF CFA PATTERN IMAGES

For optimizing the efficiency of a CFA pattern compression
algorithm, it is important to define the term image quality in
correspondance with the application target of the algorithm;
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Fig. 3. The measurement workflow: The full-scale RGB image after
demosaicking is compared with demosaicking with compression in the loop.

while this seems obvious, a particular choice may turn out
ideal for one application, but suboptimal for another.

For the purpose of this work, we define image quality
as the output of an image quality index after conversion
(“development”) of a CFA pattern into a full-scale sRGB
color image, i.e. we define image quality by comparing the
output of the demosaicking step including and excluding
lossy compression in the CFA pattern domain; in particular,
the input to the proposed compression algorithm is an unal-
tered camera-raw image consisting of one sample per sensor
element. We therefore follow the workflow of Fig. 3:

A source CFA pattern is converted to a full scale color
image without any modification, providing a reference image.
The same CFA source is then compressed to a particular
bitrate, then expanded to an (altered) CFA pattern image,
and this output CFA image is also converted to a full scale
color image. This second image will contain distortions due
to the compression algorithm, and these two full scale color
images are then compared by a quality index. For the sake
of simplicity, we restrict ourselves here to PSNR, though
appreciate that there are of course choices that correlate better
to human perception.

Note that this definition of quality may order the com-
pression efficiencies of two candidate compression algorithms
differently than comparing the PSNR value of the CFA pattern
itself. In fact, an algorithm that minimizes the PSNR in
the CFA domain may not work well in the full scale color
image domain like RGB, and vice versa. This definition
also implies that the quality evaluation necessarily includes
non-linear elements, namely the upsampling conversion and
the conversion to a non-linear, gamma corrected output color
space.

This quality definition also allows us to evaluate in how
far compression in the CFA domain is competitive to other
approaches, such as first generating a full scale color image
from the CFA source and compress this image instead. That
is, it allows us to compare compression in the CFA domain
with compression in the color image domain. Section VII will
provide results on this question.

For our experiments, we implement the above algorithm by
means of the open source program dcraw which supports
manifold CFA formats: To generate a full scale color image
from a CFA output, we run dcraw directly on the source.
A small modification allows us to alter the bit precision of the
target color space between 8 and 16 bits; in our test, we use
10 bit output consistently, but any other precision would be
possible as well.

To generate an input suitable for a compression algorithm,
we run dcraw in “document mode” which gives a 16-bit,
single component grey scale image in which each sensor
element is represented by a single sample. While the sample
values are represented in a 16-bit container, the actual camera
precision is typically below 16 bit, in our experiments only
14 bit. Thus, we need to modify the signalled bit precision
of the container format accordingly. This step does not alter
the sample values, it just corrects the meta-information of the
container format to match the precision of the camera.

The resulting grey-scale image is then compressed with
a candidate algorithm to a target bitrate, which we adjust
between 1 and 6 bits per sample. Note that a “sample”
corresponds here to one sample of the CFA pattern, not one
sample consisting of three channels of a full color image. The
compressed bitstream is then expanded again. A modification
of dcraw allows us now to replace the raw data coming from
the camera file with the compression result while preserving all
the vendor specific metadata from the original, and thus allows
us to convert the compression result to a full scale color image
using the same metadata as the original file. Thus, dcraw is
here used in a “black box” approach hiding all camera and
vendor specific operations.

The two images — the full scale color image derived from
the original input, and the full scale color image generated by
substituting the sample values with those of the compression
result — are then compared by means of PSNR. These
numbers we will report in section VII.

V. JPEG XS

In this section, we will briefly report on the coding engine
of the JPEG XS standard in general before going into the
adaptions we made for CFA pattern compression. For a more
comprehensive introduction, the reader is referred to [15]–[17].

JPEG XS is a wavelet based image compression codec,
though unlike JPEG 2000 [24], has been designed with high-
speed, low-latency low-complexity considerations in mind.
The compressor first applies a component decorrelation trans-
formation that is identical to the RCT of JPEG 2000 for regular
RGB images, though this step is for our purpose replaced
by a non-linear point transform and the so-called Star-Tetrix
component decorrelation transformation. We will describe this
transformation in more details in section VI.

Following this step, the color-decorrelated samples are
wavelet transformed by the LeGall 5/3 wavelet, using 5 hori-
zontal and 0 to 2 vertical levels. This somewhat asymmetrical
setup ensures that the end-to-end latency of the codec remains
low, 32 lines for regular RGB images and 40 lines for CFA
images.

Wavelet coefficients are then pre-quantized to a 16-bit
sign-magnitude representation which is the input to the
rate-allocation step, which decides on the (final) quantizer
bucket size and the entropy coding mode used to encode the
data. Quantization is either a deadzone quantizer that cuts off
the T least significant bits of the pre-quantized input, or a
data-dependent uniform quantizer derived from the deadzone
quantizer using the same number of buckets. The value of T
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Fig. 4. Encoding steps of the algorithm discussed in this paper. All steps
are reverted at the decoder whose output is again a CFA pattern which is a
lossy version of the original input.

is derived from a locally selected quantization strength and the
wavelet filter gain of the band being quantized. If sufficient
data volume remains available, selected bands may receive
one additional bitplane in an order that is dependent on
the fractional part of the wavelet gain not expressible by
the integer T value. This dynamic assignment of refinement
bitplanes compensates for the otherwise coarse quantization
steps implied by bitplane truncation.

For entropy coding, quantized wavelet coefficients are col-
lected into groups of four coefficients each, so called coding
groups. The number of populated bitplanes in each coding
group is called the bitplane count. Entropy coding proceeds
in four coding passes: First, significance coding encodes in a
single bit whether groups of eight consecutive coding groups
have a bitplane count of zero, and thus do not require any
further coding. In the second coding pass, the remaining
bitplane counts are encoded, either by a differential unary code
relative to the line above, a unary code without prediction, or in
a fall-back mode that encodes the count in a fixed length code
of four bits each. The latter mode guarantees that the entropy
coded size of the bitplane count does not exceed an easy to
compute upper bound. The purpose of this raw coding mode
is to ensure that the size of decoder-side buffers is bounded
from above by an easily computable bound.

Following the bitplane count encoding, the magnitude of
the wavelet coefficients is written directly to the output, four
bits per coding group per bitplane, without further encoding.
In the last step, the signs of non-zero coefficients are written
out.

Albeit this coding mechanism is simple — only the bitplane
counts are entropy coded — our experiments [15] have shown
that it is competitive in the bitrate regime JPEG XS has been
designed for, namely high-quality visually lossless coding.
More details on the experiments validating JPEG XS can be
found in [16].

VI. MODIFICATIONS FOR CFA COMPRESSION

While wavelet transformation, quantization and entropy
coding remain unaltered, the steps upfront the spatial decorre-
lation transformation implemented by the wavelet filter require
significant changes to address the peculiarities of CFA pattern
data. It is important to note that the processing steps introduced
in this section do not convert CFA data with one sample value
per sensor element to the RGB domain with 3 sample values
per sample grid point, but rather implement tools that improve
compression performance operating on the CFA data as-is.
The overall steps taken at the encoder are depicted in Fig. 4,
with several options for various steps evaluated in section VII.
Note that in our approach, the decoder implements the inverse
processing steps and thus reconstructs a codestream to a CFA
pattern.

First of all, it should be noted that CFA sensor values
are proportional to the incoming light intensity, whereas
full resolution color images developed from such data use
gamma-corrected or other forms of non-linear color spaces.
That is, the final output of a CFA decompression and
demosaicking algorithm undergoes a non-linear transforma-
tion before becoming an observable image, see section III.
Note again that this conversion to an observable image hap-
pens outside of the compression/decompression cycle. The
non-linearity in this conversion process implies that the quan-
tizer within such a CFA compression algorithm can be under-
stood to have effectively non-equally sized buckets, which is
known to be not ideal in the high-bitrate approximation [27].
To compensate for this effect, our CFA compression pipeline
contains an approximation of a typical non-linearty used for
development of CFA data, i.e. its conversion to a full-scale
RGB image.

This non-linearity consists of a linear ramp of a slope that is
a power of 2 between the optical black value (see section III)
and the toe-threshold of the sRGB color space, followed by
a square root (encoder side) or square function (decoder side)
above the toe threshold, and an inverted square root or square
below the optical black. In particular, one has as encoding
non-linearity

f (x) :=

⎧⎨⎨
⎨⎩

b1 − √
a1 − x for x < �1

(x − b2) · 2−e for �1 ≤ x < �2

b3 + √
x − a3 for x ≥ �2

(1)

where �1 is the optical black level and �2 the toe-threshold
of the gamma correction. The constants a1, b1, b2, a3, b3 can
be derived from �1 and �2 and the constraints that f (0) =
0 and f being continuously differentiable. The codestream
neither contains any of the ai or bi constants nor the thresholds
�1 or �2, but the decoder-side decision points T1 = f (�1)
and T2 = f (θ2), as well as the exponent value e. Note that
no output scaling is performed within f to keep the number
of multiplications low. This typically results in the effect of
reducing the dynamic range of the output slightly, but has the
benefit of creating additional headroom for overshoots in the
wavelet transformation.

Note that we do not use the 2.2 exponent of the sRGB (or
related) color spaces due to the implementation complexity of
this operation as it would either require transcendental math
functions or a large lookup table, though JPEG XS is targeted
at high-speed CPU and low-cost FPGA implementations.
Instead, it is approximated by a power of 2 which is trivial
to implement at the decoder. The inverted square root below
optical black ensures that the increment in dynamic range
compared to an all-linear pre-emphasis remains small. Note
that we attempt to also preserve values below the optical black
even though the development of the CFA pattern to a full scale
color image may remove them. Some algorithms operating
in the CFA domain may require such sample values, e.g.
advanced denoising operations such as [18]. While it sounds
curious that it is necessary to preserve values below the optical
black, section VII provides evidence on a workflow containing
such a denoising algorithm.
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Fig. 5. The four lifting steps of the Star-Tetrix transformation, from left to
right, top to bottom: Compute Cb ,Cr , compute luminances, compute the �
luminance difference, compute the average luminance.

Particular care needs to be taken to avoid any overflow
during the computation of the post-emphasis f −1 at the
decoder side, as it contains two squaring operations whose
input may exceed the bitrange of a typical 18×18 bit hardware
multiplier due to the Gibbs phenomenon:

f −1(x) =

⎧⎨⎨
⎨⎩

a1 − (b1 − x)2 for x < T1

2ex − b2 for T1 ≤ x < T2

a3 + (x − b3)
2 for x ≥ T2

(2)

To avoid such an overflow, the standard mandates to clamp
the input of the multiplier to 18-bit precision, i.e. clamp x −b3.
A short computation shows that b3 is always non-negative and
thus clamping at this stage is less intrusive than clamping x
directly. For that, one first verifies that

b3 = 2e
�
�2 −

��
�2 + �1 − �

	2



with � := 2−e−1 (3)

to ensure that f is continuously differentiable. It remains to be
seen that the square bracket is non-negative, or equivalently,
that

�2 ≥
��

�1 + �2 − �
	2

(4)

Now consider the following term:

�1 −
��

�1 + �2 − �
	2 = �2

��
�1

�2 + 1 − 1


≥ 0

Thus �1 is larger or equal to the term in the brackets. Since
�2 ≥ �1, eqn. (4) holds, and thus b3 ≥ 0.

The multi-component decorrelation transformation fol-
lowing the non-linearity combines both a spatial and a
color component similar to the transformations proposed by
Suzuki [7], [8], though are derived from the JPEG 2000 RTC
transformation. This multi-decomponent decorrelation trans-
formation should not be confused with a demosaicking algo-
rithm; it is only a tool to improve compression efficiency,
but does not — unlike a demosaicking algorithm — create
3 components per image sampling grid point. Section VII will
compare the Suzuki transformation with the one proposed here
in more detail.

The star tetrix transformation is fully invertible, and consists
of four lifting steps, cf. Fig. 5: In the first lifting step, the aver-
age of the four surrounding green samples is subtracted from
each red and each blue sample value, resulting in approximate
Cr and Cb coordinates. This step is a lookalike of the first two

lifting steps of the JPEG 2000 RCT transformation, except
that the green channel at red and blue sample positions is
bilinearly interpolated. It was already noted in [4] that the
difference between interpolated colors is more amenable for
coding. Denote by the super-indices l,r ,t ,b the sample position
to the left, right, top or bottom of the current sample, then this
first lifting step reads:

Cb := B −
�

Gl + Gr + Gt + Gb

4

�

Cr := R −
�

Gl + Gr + Gt + Gb

4

�
(5)

Sample positions that lie outside of the sampling grid are
reflected back inwards to give this expression a meaning at
the boundary of the grid.

The second step adds a weighted average of the Cr and
Cb samples surrounding each green sample. The weights are
always powers of two, but their selection depends on the
white-balance parameters of the camera. That is, it is the
purpose of these weights to compensate for the conversion
to an intermediate color space in the development of CFA
pictures. The output of this step are two approximate luma
channels. Using the same notation as above, this second lifting
step reads:

Y1 := G +
�

2wr (Cl
r + Cr

r ) + 2wb(Ct
b + Cb

b )

8

�

Y2 := G +
�

2wr (Ct
r + Cb

r ) + 2wb (Cl
b + Cr

b)

8

�
(6)

where wb and wr are non-negative integer white-balance
constants. For wb = wr = 0, one finds by inserting eqn. (5)
into eqn. (6) that Y1,2 ≈ (rav+2 gav + bav)/4, where rav ,
gav and bav are average/filtered red, green and blue sample
values. Thus, the two lifting steps above correspond to a
conversion to Y CbCr coordinates, with Y1 and Y2 being two
luma values per super-pixel. The chroma exponents shift the
white point closer to the weight point of the camera, improv-
ing the decorrelation efficiency, as seen in the experiments
in section VII.

The next two steps now compute from the two luma values
an average luma value Ȳ and a luma difference value �.
That is, a first spatial decorrelation transformation is already
performed within the color decorrelation. First, compute luma
differences by:

� := Y1 −
�

Y l,t
2 + Y r,t

2 + Y l,b
2 + Y r,b

2

4

�

Then, update the remaining luma channel by �:

Ȳ := Y2 +
�

�l + �r + �t + �b

8

�

As above, one finds that Ȳ ≈ (Y1 + Y2)/2.
The output of the Star-Tetrix transformation is a

four-channel signal, consisting of luma, Cb , Cr and �. The
first three channels are input to a wavelet transformation, the �
channel — already consisting of a spatial difference signal —
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is quantized and encoded as-is. It will be seen in section VII
that skipping the spatial decorrelation of � is beneficial in
terms of coding efficiency.

The transformation defined by these four steps is easily seen
to be invertible, and to have a delay of four lines, i.e. one line
per lifting step.

It is important to notice that these preprocessing steps
go beyond those proposed by other authors, e.g. [8]: They
mirror spatial filtering in the demosaicking step, color trans-
formation to an intermediate space before filtering, as well
as non-linear gamma transformation applied as final step.
Thus, in a sense, our preprocessing steps are low-complexity
approximations of similar steps performed in the devel-
opment of CFA samples to full resolution color images.
We will see in the next section that including such steps
has a significant impact for the performance of the overall
compression.

VII. EXPERIMENTS

In this section, we evaluate the performance of the men-
tioned CFA compression workflow, along with some additional
transformations found in the literature [7]. The evaluation
workflow here follows the one proposed in section IV, i.e.
we measure the PSNR in RGB space of a CFA pattern
source relative to a constructed, recompressed CFA pattern.
Additionally, in order to evaluate in how far CFA compression
is beneficial, we also compare to a workflow with compression
of the “developed” CFA pattern in RGB space, see Fig. 8 for
the workflow.

A. Complexity

First, to demonstrate that compression in the CFA pattern
domain is beneficial in terms of complexity, we measure the
average running time of a JPEG XS compressor on CFA
patterns on our dataset and compare it with the average
running time of the same encoder on demosaicked images in
the RGB domain and the running time of two demosaicking
algorithms: Simple bi-linear interpolation, and AHD [10]
interpolation. We also include the encoding time of the CFA
pattern by JPEG 2000 to estimate the complexity of the
solution proposed in [9], configured to a fast configuration:
5 decomposition levels, 1 layer, 5/3 lossy wavelet, bypass
encoding, and an adaptive heuristic rate allocation that trun-
cates bitplane coding early. The input to JPEG 2000 undergoes
a pre-processing step that consists of a conversion of the
CFA pattern to a four-component image, and a decorrelation
transformation with the Reversible Color Transformation plus
Delta (RCTD). This transformation computes an average green
value and a green difference value and then computes the
RCT of JPEG 2000 [24] on red, gav and blue. The entire
transformation thus reads

gav =
�

g1 + g2

2

�
Y =

�
r + b + 2gav

4

�
Cb = b − gav Cr = r − gav

� = g1 − g2 (7)

It can be easily seen that this transformation is invertible
without loss. This transformation is up to rounding conven-
tions identical to that used in [9] section III.B, eqn. (2) and the
RCT transformation implied by the following JPEG 2000 com-
pression. In our measurements, the pre-processing step is
not timed and does not add to the complexity of the
JPEG 2000 encoder. The dataset consists of 15 CFA pattern
images of 8288 × 5520 sensor elements with 14-bit precision
and a black-level of 400, and was kindly provided by NIKON,
see Fig. 6 for a subset of the images.

In our considered use-case of requiring to transmit an
image captured by a CFA pattern type sensor over a limited
bandwidth channel, see Fig. 1, a JPEG XS compressor near
the sensor would replace a demoasicing algorithm followed by
a traditional lossy image encoder there. The complexity at the
processing unit implementing the decoder and demosaicking
algorithm is less relevant; in our foreseen application scenario,
the computer system at the decoder would also run image
analysis tasks such as object detection or classification and
would therefore be more powerful.

Figure 7 shows the result on an intel i7-4790 CPU at
3.60GHz, measuring execution time in seconds, over the target
bitrate. The time spent in operating system calls such as to
perform disk I/O is excluded, all data is brought into memory
first and kept in memory. Time is acquired over ten cycles,
with two “warm-up” cycles upfront to allow the operating
system adjust the CPU clock speed and fill the CPU caches.
Both the compressor and the demosaicking algorithm run here
only on a single thread, though both are easy to parallelize
to improve the performance. The demosaicking algorithm
includes the full processing steps from a CFA pattern image
to an image in the RGB colorspace, including black-level
removal, white-balance adjustment, interpolation and conver-
sion to the target colorspace. Note that in this experiment
the black-level as well as the white balance parameters were
derived from the metadata in the source image recorded by
camera; only minimal steps, i.e. parsing the source format,
are necessary to obtain them.

While all algorithms are also optimized from an algo-
rithmic point of view, neither the JPEG XS implementation
nor the JPEG 2000 implementation nor the demosaicking
algorithm use SIMD instructions to employ data-parallelism
of the intel processor. The JPEG XS implementation is
that from Fraunhofer, the demosaicking algorithm comes
from dcraw, a well-known open source implementation,
the JPEG 2000 implementation is that from AccuSoft.

JPEG XS compression in the CFA domain is consistently
faster than the bi-linear demosaicking alone, and more than
7 times as fast as the more advanced AHD algorithm. Also,
compressing in the RGB domain with the same compressor is
consistently slower than compressing the CFA pattern directly,
and approximately of the same complexity as demosaicking
by bi-linear interpolation. This is likely because the RGB
compression engine has to operate on 3 times the source data
compared to an encoder operating on a single-sample per sen-
sor CFA pattern image. In applications, the complexity of the
demosaicking algorithm and the follow-up image compression
have to be added, cf. Fig. 1, and thus even with simple bi-linear
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Fig. 6. Example images from the test set, the image have been generated by Nikon Corporation, and all intellectual property rights of the original images
remain with Nikon Corporation. Test images were taken at the Botanical Gardens, Graduate School of Science, The University of Tokyo. Courtesy of Nikon.
The images here have been already converted to the RGB domain, the experiments are performed on the corresponding CFA pattern data consisting of 15 images
with 14-bit precision of 8288 × 5520 sensor elements each.

Fig. 7. Average running time in seconds of the JPEG XS encoder in the
CFA domain and in the RGB domain compared to JPEG 2000 and that
of two demosaicking algorithms implemented by dcraw, namely bi-linear
interpolation and AHD interpolation. JPEG XS is run here in the best possible
configuration, i.e. with Star-Tetrix transformation, white balance, extended
non-linearity and 2 vertical decomposition levels. The graph “JPEG XS RGB”
does not include the time for demosaicking the image before.

interpolation, complexity at the sensor side can be reduced by a
factor of more than two by compressing the CFA data directly.
Readers should also be aware that the faster, but simpler
bilinear interpolation leads to sub-optimal quality and is prone
to generate some defects — also known as “zipper artifacts”
— that are rarely acceptable in professional applications. For
details, we refer to [10]. The speed advantage is consistent
over the entire bitrate range and is almost independent from
the target bitrate. JPEG 2000 has for bitrates lower than 2bpp a
moderate complexity that is roughly comparable to that of the
bi-linear demosaicking algorithm, its throughput is however a
lot more bitrate dependent than that of JPEG XS.

While in real-world applications, the actual codec or the
demosaicking algorithm would be implemented in an FPGA
or even an ASIC, the above measurements can be at least taken
as an indication of the complexity of the various alternatives.

TABLE I

COMPLEXITY OF VARIOUS COLOR DECORRELATION
TRANSFORMATIONS IN OPERATIONS PER 2 × 2 SUPER

PIXEL. IN PARENTHESIS: OPTIONAL/
CONDITIONAL OPERATIONS

Table I lists the number of elementary operations for the
color decorrelation transformations discussed in section VII-D
per 2 × 2 super-pixel. For the Star-Tetrix, 2 additional shifts
are required in case white-balance gains are included in the
transformation. The complexity of an additional non-linearity
has to be added, it also includes the level-offset added to
each sample value, and the bit-precision adjustment required
to convert it to the JPEG XS internal precision. The extended
non-linearity requires at most 8 (2 per sample) additional com-
parisons whose complexity is identical to that of an addition,
and either a square root or a shift operation. When profiling our
implementation in the best performing configuration (2 vertical
levels, extended NLT, white balance enabled), the complexity
of the preprocessing accounts for approximately 25% of the
running time of the encoder at 3bpp.

B. Contribution of Coding Tools

Figure 9 shows the results of this experiment for various
settings of the encoder, as PSNR differences relative to com-
pression in RGB space. The source images are here taken
from the same CFA source image dataset. The following
procedure is used to obtain the chroma weights wr and
wb of the Star-Tetrix transformation: By means of the open
source dcraw program, the camera output is analyzed and the
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Fig. 8. Evaluation of the quality improvement for CFA compression: The
image quality obtained by compressing the image in the gamma-corrected
RGB domain is subtracted from the image quality obtained by compressing
in the CFA domain.

Fig. 9. PSNR of various configurations relative to compression in the RGB
domain. Positive values indicate that compression of the CFA pattern is of
advantage.

product of sensor gain factors and white balance is extracted
from the camera file format, see section III for a discussion
of these numbers. The resulting factors vary from image to
image as the white balance depends on the scene, though the
algorithm how the camera and its user made its selection is
generally unknown. As the Star-Tetrix transformation accepts
only powers of 2 for the white balance multipliers, the dcraw
output is quantized to the nearest admissible number. The
quantized values of the white balance exponents wr and wb

lie for the test images in the set {0, 1, 2}.
What is reported in Fig. 9 is the average PSNR difference

over the entire dataset of multiple CFA compression algo-
rithms compared to compression in RGB domain. Positive
values indicate an advantage of compression in the CFA
domain, negative values a disadvantage. The plot “RCTD
1v,linear” shows the compression performance of the RCTD
from eqn. 7 without pre- and post-emphasis and without
white-balance correction, no non-linearity, using 1 vertical
decomposition level and 5 horizontal wavelet decompositions.

As seen from the plot, however, it performs worse than com-
pression in RGB space for bitrates lower than 3bpp, and only at
bitrates higher than approximately 3bpp shows an advantage.
Including a quadratic non-linearity already improves the per-
formance significantly, as seen from the “RCTD 1v,x2” plot.
This method is, however, still outperformed by compression
in the RGB domain at bitrates below approximately 2bpp. The

Fig. 10. PSNR improvements of various additional tools compared to
the baseline configuration of the Star-Tetrix transformation using only the
quadratic non-linearity.

Star-Tetrix transformation, however, (solid line, indicated by
“Star Tetrix,1v,x2”) outperforms compression in the RGB
domain for all bitrates. In the later plot, all four components
undergo the wavelet transformation, the white-balance expo-
nents are both 0 and the non-linearity is a simple square-root.

Replacing the simple quadratic nonlinearity by the
extended non-linearity defined by eqn.(1) as indicated by the
“StarTetrix 1v,NLT” plot, then adding white-balance correc-
tion (“StarTetrix 1v,NLT,WB”), skipping the wavelet decom-
position (“StarTetrix 1v,NLT,WB,Skip”) of the � component
and finally adding a second wavelet decomposition level
(“StarTetrix 2v,NLT,WB,Skip”) outperforms the simple linear
transformation by more than 4dB at the low end of tested
bitrates. To make the PSNR improvements of these additional
tools more visible, Fig. 10 shows only these improvements
compared to the baseline Star-Tetrix transformation with a
quadratic non-linearity, no white-balance and full wavelet
decomposition with one vertical level. As seen there, the best
possible configuration (“StarTetrix 2v,NLT,WB,Skip”) pro-
vides an advantage of over 1dB below 2.5bpp compared to
the baseline configuration of the same transform.

C. Preserving Values Below Optical Black

It also needs to be shown that it is important to preserve the
values below the optical black, i.e. why x < �1 in eqn. (1)
cannot be simply set to �1. For this, we use night-shot images
that contain a lot of noise along with pixel values below the
optical black value. The compression algorithm is evaluated in
a workflow that includes denoising, here by wavelet filtering of
the CFA pixel values followed by deadzone quantization. The
implementation is that of the open source dcraw algorithm,
with the denoiser strength set to -w 1500; this value selects
the relative size of the deadzone. The ground truth is here
a dummy algorithm that clamps all values below the optical
black value �1 to �1, where �1 = 400 for the given
sources. Any compression algorithm that disregards values
below the optical black cannot possibly perform better than
this dummy. This (non-compression) algorithm is compared
in Fig. 11 with a JPEG XS compression/decompression cycle
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Fig. 11. Performance of two JPEG XS pre/post emphasis functions relative to
a clamping-only workflow. Continuous: Clampling, square root pre-emphasis
followed by compression. Dashed: Extended non-linearity.

Fig. 12. PSNR of various decorrelation transformations, including com-
pression in RGB space. All but the linear configuration include an extended
non-linearity, but no white-balance correction, to allow a fair comparison.

which clamps to the optical black, and uses a square root
pre-emphasis and squaring post-emphasis, and a JPEG XS
compression/decompression cycle using the extended nonlin-
earity from eqn. (1). The output of all algorithms are converted
into an RGB image by means of dcraw including the above
denoising operation, and the PSNR between reconstructed
images and an undisturbed, but otherwise identically denoised
and demosaicked CFA pattern image is measured. Fig 11 plots
PSNR difference values relative to the clamping-only work-
flow, i.e. the horizontal axis corresponds to the performance
of pure clamping, but without any compression.

As seen in the figure, the pre-emphasis consisting of clamp-
ing and a square root is — as expected — bounded by the
no-compression workflow that only disregards values below
the optical black. This does not hold true for the extended
non-linearity, which offers a PSNR improvement over 10dB
for bitrates above 5.5bpp. Needless to say, this is a substantial
gain which is due to the many dark pixels in both images.

D. Comparison With Other Decorrelation Filters

To compare our methods with the state of the art, i.e. [4],
[6], [7], Fig. 12 shows absolute average PSNR values of the
decorrelation transformations taken from the above works,

Fig. 13. Delta-PSNR of various configurations compared to compression in
RGB space. The configurations are identical to that in Fig. 12.

including compression in the RGB domain. Entropy coding
is all by JPEG XS. Since the differences between the config-
urations may be hard to spot, Fig. 13 shows the gain of the
same configurations relative to the RGB baseline.

For fairness reasons, all transformations but compression
in the RGB domain include the extended non-linearity
pre-emphasis but no white-balance correction; the
pre-emphasis is not discussed in the cited works, there
transformations operate in linear light. White-balance
correction as for the Star-Tetrix might be possible for [4],
[6], [7], but would need to be implemented differently and
thus would make the results hard to compare. For simplicity,
we choose therefore to use unit white balance gains
consistently in the experiment. Furthermore, we consistently
use a use one vertical wavelet transformation only as this is
the most-relevant configuration in practical applications.

The transformations discussed in [7] may include one or
multiple iterations of decorrelation transformations, though
then pile up additional latency. To configure it for a latency
identical to Star-Tetrix, only a single iteration of the YCgCoD
transformation is possible, and the transformation has to be
rotated by 90 degrees as well, i.e. filtering in horizontal
direction has to be exchanged by filtering in vertical direction
and vice versa. This is of particular importance for the last
filter step of the YCgCoD transformation which operates in
vertical direction in [7], though becomes a filter in horizontal
direction in our implementation.

In [5], authors discuss two possible decorrelation transfor-
mations, a simpler horizontal-only transformation, and a more
extensive transformation that includes also a vertical transfor-
mation step, identical to the transformation in [6]. We choose
to test only the latter, more extensive transformation as authors
also report there that this is the better performing variant.

The transformation from [4] is identical to the first lifting
step of eqn. (5); clearly, including additional steps improves
the overall performance of the transformation. In [4], it is also
observed that a related decorrelation transformation between
CFA pattern channels can be obtained by an alternative (non-
Mallat) wavelet decomposition. As this decomposition is not
compatible with JPEG XS and also requires more than one
vertical decomposition, we do not test it here.
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Fig. 14. PSNR of various JPEG 2000 and JPEG XS configurations relative
to compression with JPEG XS in the RGB domain. Positive values indicate
that compression of the CFA pattern is of advantage.

E. Other Entropy Coding Back-Ends

Next, we compare our proposal to that in [9]: the color
decorrelation transformation discussed there is identical to the
RCTD transformation, i.e. eqn. (7). In addition, the authors
there also study the KLT transformation (RKLT in the paper)
which is reported to perform better than the RCTD. However,
as it is a data-dependent transformation, the entire image has
to be available to derive it, and this is unsuitable for an
online-compression algorithm such as JPEG XS.

Fig. 14 provides results of this and related JPEG 2000 con-
figurations relative to compression of the RGB pattern. The
plot denoted by “J2K RCTD linear” corresponds to the
configuration selected in [9]. Here we use 5 decomposi-
tion levels, the lossy 5/3 filter, 3 guard bits — one addi-
tional guard bit to address potential overflows due to the
RCTD transformation — 1 layer and scalar derived quanti-
zation of 19 bits. Pre-processing with the RCTD and/or the
Star-Tetrix transformation and the non-linearity is performed
outside of JPEG 2000 with 20 bits similar to JPEG XS and
then scaled to a nominal bit-depth of 14 bits, allowing one
additional sign bit and one guard bit to allow for overflows in
the preprocessing step. Preprocessing outside of the encoder
is currently necessary as JPEG 2000 does not specify the
Star-Tetrix transformation, and we use preprocessing consis-
tently with all configurations.

Note that for this first configuration considered,
no pre-emphasis is used prior compression; in [9] a
decoder-side non-linearity reproduced by an ICC profile
converts from linear light to a gamma-corrected color space.
In our setup, this non-linearity is part of the CFA to RGB
conversion process implemented by dcraw. As seen in the
plot, the “J2K RCTD linear” configuration leads to non-ideal
performance compared to compression of the CFA pattern
in RGB space, but readers should be aware that the main
focus of [9] is to provide a configuration of JPEG 2000 that
allows both CFA pattern compression, and reconstruction of
the same codestream to an RGB image where the conversion
to the RGB image is performed by a (differently configured)
JPEG 2000 reconstruction process.

If this design constraint is relaxed, and a quadratic pre-
and post-emphasis function are included, and the 5/3 filter is
replaced by the 9/7 filter, performance is improved consider-
ably and we arrive at the plot indicated by “J2K RCTD x2”.
This configuration is relevant because it can be realized by
means of JPEG 2000 part 2 [25]: The square non-linearity
can be represented by an NLT marker, and so can the RCTD
transformation by an appropriate multi-component decorrela-
tion (MCT) marker, see again [9]. Despite having 5 verti-
cal decomposition levels instead of the maximal 2 allowed
by JPEG XS, and a much more elaborated entropy coding
back-end, namely EBCOT [23], the performance at bitrates
below 4bpp is comparable or only slightly better than that of
JPEG XS using the Star-Tetrix transformation. If, in addition,
we combine Star-Tetrix with JPEG 2000, we arrive at a PSNR
gain of about 2.5dB over a similar JPEG XS configuration
with only 2 vertical levels, see the plot J2K-Star-Tetrix x2.
This configuration is not covered by the JPEG 2000 standard
at this time. Note, however, that this comes with additional
complexity, see Fig. 7.

VIII. DISCUSSION

As seen in Fig. 9, compressing in the CFA domain may
provide a performance advantage in terms of quality in the
RGB domain for the right choice of coding tools. Intuitively,
an image compression algorithm operating in the CFA pattern
domain only requires to compress one third of the data of an
algorithm operating on RGB data for the same image size, and
one might expect that it should always perform better.

The reader should, however, keep in mind that the additional
sample values of the image in the RGB domain are made up by
the demosaicking algorithm and are therefore redundant, so the
above hand-waving argument cannot hold true in generality.
As seen in the figure, it may be correct for high bitrates where
signal noise becomes dominant. Also note that not all of the
redundancy generated by the demosaicking algorithm can be
effectively removed by a linear decorrelation filter such as
the wavelet in the JPEG XS compressor, especially keeping
in mind that the AHD algorithm used in the evaluation here
contains non-linearities due to its data-dependent choice of
the filter direction. At low bitrates, however, there is less
redundancy in the CFA pattern than in the RGB data, such that
compressing the CFA pattern is harder than the RGB image.

If we understand “CFA compression” in a way that mea-
sures quality of the demosaicked image in the RGB domain,
then including coding tools that mimic similar tools in the
demosaicking pipeline bring a significant advantage in com-
pression performance. That is, demosaicking accesses neigh-
bouring pixels to interpolate channels at all pattern positions,
and thus the transformation includes inter-component and
spatial filtering. Conversion to RGB typically implies a con-
version to a gamma-corrected color space, and thus including
an approximation of this non-linearity in the compression
workflow provides a significant advantage. Modifying the
transformation to mirror white-balance corrections typically
applied as part of the demosaicking algorithm further improves
the transformation.
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The additional tools proposed in this work are not exact
lookalikes of those applied in the demosaicking algorithm as
JPEG XS is constrained in terms of complexity and latency.
That is, we replaced the 2.2 exponent of the sRGB curve by
squaring, i.e. a multiplication, to avoid large lookup tables or
complex functions. Square-root algorithms of the complexity
of a division are well-known, e.g. the Toepler algorithm
or variants of the CORDIC algorithm [28] and allow as
well simple encoder implementations. We also restrict the
Star-Tetrix transformation to access only nearest-neighbours
during filtering to limit its overall latency. A looser latency
constraint allows better decorrelation, e.g. by either including
a second vertical wavelet decomposition, or — for the YCgCo
transformation — additional iterations.

It should, however, be noted that not all tools discussed here
are useful in all applications: The non-linearity creates by its
construction a loss and thus must be omitted if lossless coding
is required. As the white-balance correction is implemented
through a modified lifting step, it can be carried over to
the lossless case, though. The Star-Tetrix transformation is
by construction lossless and thus can be applied as-is in the
lossless case as well.

Some workflows may not require the non-linearity, or may
require a modified version of it. In industrial applications,
the camera output is often in a non-linear (e.g. logarithmic)
space to cover a large range of illumination conditions, and
thus an additional non-linearity in the compression pipeline is
of little value, or should be adapted to this particular use case.
Also, the non-linearity introduced here only approximates the
gamma correction typical in SDR workflows, and is likely
less suitable if additional grading operations typical for HDR
processing become part of the overall process. The JPEG
committee is currently looking into such extensions of the
standard in a planned 3rd edition of the specification.
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