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Abstract— There is a growing consensus in computer vision
that symmetric optical flow estimation constitutes a better
model than a generic asymmetric one for its independence of
the selection of source/target image. Yet, convolutional neural
networks (CNNs), that are considered the de facto standard
vision model, deal with the asymmetric case only in most
cutting-edge CNNs-based optical flow techniques. We bridge this
gap by introducing a novel model named SDOF-GAN: symmetric
dense optical flow with generative adversarial networks (GANs).
SDOF-GAN realizes a consistency between the forward mapping
(source-to-target) and the backward one (target-to-source) by
ensuring that they are inverse of each other with an inverse
network. In addition, SDOF-GAN leverages a GAN model for
which the generator estimates symmetric optical flow fields while
the discriminator differentiates the “real” ground-truth flow field
from a “fake” estimation by assessing the flow warping error.
Finally, SDOF-GAN is trained in a semi-supervised fashion to
enable both the precious labeled data and large amounts of
unlabeled data to be fully-exploited. We demonstrate significant
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performance benefits of SDOF-GAN on five publicly-available
datasets in contrast to several representative state-of-the-art
models for optical flow estimation.

Index Terms— Symmetric optical flow estimation, gener-
ative adversarial networks, forward-backward consistency,
semi-supervised learning.

I. INTRODUCTION

OPTICAL flow estimation is a challenging task and has
been an active field of research in computer vision.

It establishes a meaningful spatial mapping between a pair of
input images (the source image and the target image) [1]–[3]
to facilitate the subsequent tasks such as motion estimation,
object tracking, video compression, self-localization, etc. The
general approaches of dense optical flow estimation result in
an asymmetric estimation of flow fields due to their depen-
dence on the choice of the target image. Asymmetric optical
flow estimation only considers the flow field along a single
direction, namely from image I1 to image I2 or from image I2
to image I1. However, the results will differ if a unidirectional
flow field is applied from images I1 to I2 and from images
I2 to I1, which is obviously unreasonable. To address this
drawback, some symmetric optical flow estimation methods
have been proposed to jointly estimate the flow fields in
both forward and backward directions while constraining
that these bidirectional flow fields are inverse of each other
[4]–[6] (see Fig. 1). Symmetric optical flow estimation tech-
niques have been widely validated to be capable of improv-
ing flow estimation accuracy. However, the goal of existing
symmetric methods is to optimize an expensive non-convex
objective function, and solving this optimization is hence
unavoidably time-consuming.

With the surge of deep learning applied to resolve the
problems in different fields, a variety of convolutional neural
networks (CNNs) or generative adversarial networks (GANs)
have also been proposed for solving optical flow estima-
tion problems. CNNs for optical flow estimation can be
divided into three categories: supervised learning approaches,
unsupervised learning approaches, and semi-supervised learn-
ing approaches. Supervised learning approaches exploit a
large-scale ground-truth flow dataset to train a deep CNN
in an end-to-end manner [7]–[11]. They are usually opti-
mized by minimizing the differences between the predicted
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Fig. 1. A schematic diagram of symmetric dense optical flow estimation.
Given a pair of input images, the goal is to estimate the forward flow and
backward flow jointly while enforcing a consistency constraint, i.e., these
bidirectional transformations are inverse of each other.

flow and the ground-truth flow. For these methods, synthetic
datasets are commonly used to avoid the high labor cost in
creating ground-truth flow fields. In contrast, unsupervised
learning methods are free from the requirement of supervision
information (i.e., the ground-truth flow), and the training
process is driven by measuring brightness constancy and
spatial smoothness of the estimated flow fields [12]–[16].
However, the assumption of brightness constancy clearly lacks
the robustness to complex motion, especially on the boundaries
of objects in motion. Although the unsupervised learning
algorithms show a potential to outperform supervised learning
approaches in certain conditions (e.g., the images with simple
scenarios), they still cannot exceed the performance of the
classical optical flow estimation method in complex motion
scenarios. In contrast, semi-supervised learning techniques
[17]–[19] are proposed to take full advantages of both labeled
data and unlabeled data. Besides CNNs, GANs have also been
used to resolve the optical flow estimation [18], [20]–[22] or
the closely-related image registration tasks [23], [24] (as to
be detailed in Sec. II). They achieve superior performances to
conventional CNNs. However, it is worthy to point out that the
training of GANs is generally unstable and complex, as they
cannot control the reciprocity of the forward and backward
flows.

Therefore, in this paper, we propose a novel algorithm
for estimating symmetric dense optical flow with genera-
tive adversarial networks, which is termed “SDOF-GAN”.
SDOF-GAN model benefits from the symmetric constraint that
realizes a consistency between the forward mapping (source-
to-target) and the backward one (target-to-source) by ensuring
that they are inverse of each other with an inverse network.
This significantly reduces the function searching space, so the
optimal solution can be found in a stable and efficient way.
In addition, we exploit the adversarial mechanism [25] to learn
the pattern of error map between the target image and the one
warped from the source image using the “real” flow field or
a “fake” estimation. This replaces the brightness constancy

widely used in general CNN-based optical flow estimation
methods, allowing for an end-to-end estimation of the flow
field, and eliminating the requirement of the time-costing
energy function minimization process. Moreover, we formulate
our SDOF-GAN for symmetric optical flow estimation in
a semi-supervised learning manner. The generator of our
SDOF-GAN is trained by making use of supervised infor-
mation as well as unsupervised cues to incorporate the best
of both worlds. This is better than the traditional supervised
methods [7]–[9] as the synthetic datasets used by supervised
methods do not match the characteristics of real data, and is
also better than the unsupervised methods [12]–[16] as the
training process is completely driven by measuring brightness
constancy and spatial smoothness of the estimated flow fields.
Compared with the general GAN for dealing with various
unsupervised tasks, our SDOF-GAN is designed under the
semi-supervised setting which introduces scarce yet valuable
supervision information. This also helps to make the training
of SDOF-GAN stable and efficient. The discriminator is
trained in a supervised learning manner that distinguishes the
pattern of the error map between the target image and the one
warped from the source image using the ground-truth flow or
the estimated flow. The experimental results on five publicly
available datasets show that the SDOF-GAN outperforms
several representative state-of-the-art methods.

The major contributions of our work are as follows:
• We introduce an early deep learning framework for

accomplishing symmetric optical flow estimation. It is
realized by an inverse network with a forward-backward
consistency constraint and can improve the estima-
tion accuracy by eliminating the estimation bias of
single-directional optical flow estimation techniques.

• We bring in a GAN structure targeting a more accurate
estimation of symmetric optical flow. It replaces the
brightness constancy assumption used commonly in tra-
ditional optical flow methods with a discrimination capa-
bility to capture the spatial structure of flow-warp-error
map.

• We equip our symmetric optical flow estimation with
a semi-supervised learning strategy which harnesses the
precious labeled data as well as large amounts of unla-
beled data.

II. RELATED WORK

In this part, we review the works that are related to our
research from the following three aspects.

A. Dense Optical Flow Estimation

Traditionally, the variational approach [2] is widely
adopted for dense optical flow estimation by minimiz-
ing an objective function which captures the optical flow
constraint and maintains smoothness constraint. For exam-
ple, Weinzaepfel et al. [26] proposed a descriptor match-
ing algorithm that blends a matching algorithm with a
variational approach for estimating optical flow. Besides,
a multi-resolution framework [27] is designed for the accu-
rate optical flow estimation. One serious drawback of these
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methods lies in the high computational cost. To over-
come time-consuming estimation of features, an effective
method [28] leveraging coded motion information has been
proposed to obtain fast and high-quality motion field estima-
tion. Moreover, CNN-based framework such as FlowNet [7]
is proposed, which learns to estimate optical flow by training
on ground-truth data and a large synthetic data in a supervised
manner. Subsequently, an end-to-end learning method of opti-
cal flow, i.e., FlowNet2.0 [8], has been proposed of which the
quality and speed of the optical flow estimation are improved
when compared with FlowNet. These supervised methods
require a lot of data with ground-truth that are manually
synthesized. Unfortunately, most synthetic data do not reflect
the complexity of real data, such as brightness differences,
occlusion, noise, etc. Besides, the flow learned by these
supervised methods might be biased because of the selected
ground-truth flow. To overcome this problem, the unsupervised
learning framework was proposed to exploit the unlabeled
data. For example, Jason et al. [13] presented an end-to-end
CNN framework for optical flow prediction by measuring
photometric constancy over time, and models the expected
variation of flow across the two images. However, most of
the unsupervised learning approaches require the assumptions
of brightness uniformity and spatial smoothness as well as
a coarse-to-fine image alignment loss, which leads to high
computational complexity. Since both supervised learning and
unsupervised learning methods have their own shortcomings in
the training stage, some semi-supervised methods that combine
their advantages have emerged. In [17], the sparse ground-truth
data are used for supervised depth estimation on single image,
while the deep network is developed to predict dense depth
maps through an unsupervised image alignment loss. Besides,
Lai et al. [18] leveraged both the labeled and unlabeled data
for motion analysis on optical flow, which does not rely on the
assumptions of brightness constancy and spatial smoothness.

In summary, existing deep-learning methods are typically
used to estimate the optical flow in a single direction and
ignore the inverse-consistent property of flow between two
images. Inspired by traditional inverse-consistent approaches
[4]–[6], we propose to estimate the flow fields from two recip-
rocal directions simultaneously and enforce the consistency
constraint to ensure that these bidirectional flow fields are
inverse mappings of one another.

B. Symmetric Transformation Estimation

Symmetric transformation estimation can help to deal with
the problems caused by the bias in generic directional trans-
formation estimation. Up to now, a variety of symmetric
transformation estimation algorithms have been devised to
calculate the displacement or flow between two images in
the field of computer vision. In terms of image registration,
the work of [29] jointly estimates the forward and reverse
transformations between two images by linear-elasticity, and
it gives satisfactory registration results. Zhang [30] proposed
an inverse-consistent deep network (ICNet) for unsupervised
image registration, which enforces that the two images are
symmetrically deformed toward one another. For optical flow

estimation, a symmetric optical flow method [4] has been
proposed to estimate the flow field symmetrically via using
a combination of the flows in both directions. Moreover, Hur
and Roth [6] utilized forward-backward consistency term for
symmetric optical flow estimation, which jointly estimates
optical flow in both forward and backward directions. Sim-
ilarly, Alvarez et al. [5] provided a symmetric variational
approach to recover a dense flow field map from two images.
These methods effectively solve the symmetric transformation
estimation and avoid the paranoia of unidirectional deforma-
tion. However, most of these methods rely on the assumption
on brightness constancy or spatial smoothness, which are
usually not satisfied in complex scenarios.

C. Generative Adversarial Networks

GAN was initially developed by Goodfellow et al. [25],
which contains a discriminator and a generator with adversar-
ial losses. The goal of the generator network is to map random
vectors to real images, and the goal of the discriminator is
to distinguish the generated images from the real images.
In computer vision, GANs have been widely used in various
fields such as image synthesis [31]–[33], image translation
[34]–[36], and super-resolution [37], [38]. In recent years,
the frameworks of GAN have been successfully applied to
optical flow [18], [20]–[22] because GAN-based architecture
can replace the brightness constancy widely used in general
CNN-based optical flow estimation methods, allowing for an
end-to-end estimation of the flow field, and eliminating the
requirement of the time-costing energy function minimization
process. For example, Thakur and Mukherjee [21] proposed
a conditional adversarial network for estimating scene flow
from stereo images obtained at different time instances.
A conditional GAN based semi-supervised single-directional
optical flow estimation was proposed [18] using both labeled
and unlabeled data. Although these GAN-based models have
achieved considerable results, they do not take into account
the symmetric properties of the optical flow. Consequently,
motivated by [18], here we propose an end-to-end symmetric
optical flow estimation method based on GAN framework and
enforce the motions of corresponding pixels in the forward
flow map and backward flow map to be inverse of one another.

D. Semi-Supervised Learning

Semi-supervised learning is a learning strategy which refers
to use readily available unlabeled data to improve supervised
learning tasks when the labeled data are scarce or expensive.
Chen et al. [39] proposed a semi-supervised framework con-
sisted of unsupervised pretraining, supervised fine-tuning on
ImageNet, outperforming standard supervised or unsupervised
methods. Lai et al. [18] leveraged both the labeled and
unlabeled data for motion analysis on optical flow, which
does not rely on the assumptions of brightness constancy and
spatial smoothness. Sedghi et al. [40] used a semi-supervised
learning strategy for multi-modal image registration, which
reduced the requirement for well-registered training data.
Hering et al. [41] proposed a weakly-supervised approach,
which combines the prior information of segmentation labels
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with an energy-based distance metric for deformable cardiac
image registration. Semi-supervised learning has tremendous
practical value because it can alleviate the limitations of costly
data annotation and comprehensively utilize both labeled and
unlabeled data to achieve better performance than supervised
learning with only a handful of labeled data.

III. PROBLEM DEFINITION

The problem of optical flow estimation is traditionally
defined as: given two images {I1, I2}, then the goal is to find
the flow mapping φ that maps one image I1 into the second
image I2. The mapping of flow field φ is optimized by
minimizing the following loss function:

min
φ

Ldata(I1, I2, φ) + Lsmooth(φ), (1)

where Ldata measures the photometric differences between
the warped image according to the predicted flow and its
corresponding reference image, and Lsmooth is used to control
the spatial smoothness of the flow field.

For general symmetric optical flow estimation methods, they
aim to find the inverse results by forcing the data term Ldata

and the regularization term Lsmooth to be symmetric if we
exchange source images. The design of the network relies
on the losses of brightness constancy and spatial smoothness.
Mathematically, symmetric optical flow estimation can be
formulated as follows:

Ldata(I1, I2, φ
f ) = Ldata(I2, I1, φ̃

f ),

Ldata(I2, I1, φ
b) = Ldata(I1, I2, φ̃

b), (2)

Lsmooth(φ
f ) = Lsmooth(φ̃

b),

Lsmooth(φ
b) = Lsmooth(φ̃

f ), (3)

where φ f is the dense forward flow field from I1 to I2, φb is
the dense backward flow field from I2 to I1, φ̃ f denotes the
inverse flow of flow φ f , and φ̃b denotes the inverse flow of
flow φb.

A. Data Term Ldata

The goal of the data term is to measure the photometric dif-
ferences between the warped image according to the predicted
forward/backward flow and its corresponding reference image.
By utilizing the generalized Charbonnier penalty function [13]
as the photometric difference metric, the loss of data term can
be defined as follows:

Ldata = ρ(I1 − T (I2, φ
f )) + ρ(I2 − T (I1, φ

b)), (4)

where ρ(·) denotes a robust difference measurement function
to penalize photometric differences. The function ρ(·) is
imposed on I1 − T (I2, φ

f ) and I2 − T (I1, φ
b) that represent

forward and backward flow warping errors, respectively. The
function T (·) is a spatial transformation operation to warp I1
with φb or warp I2 with φ f by using the bilinear interpola-
tion [42]. The general deep learning-based methods that aim
to minimize I1 − T (I2, φ

f ) and I2 − T (I1, φ
b) will lead the

Ldata to gradually approach to zero.

B. Regularization Term Lsmooth

To ensure the spatial smoothness of flow field between two
images, the regularization term Lsmooth controls the continuity
in space, which is expressed as:

Lsmooth = λ1‖∇2φ f ‖2
2 + λ2‖∇2φb‖2

2, (5)

where ∇2 represents the Laplacian operator, and λ1, λ2 are
the nonnegative weighting parameters.

IV. THE PROPOSED METHOD

This section introduces our proposed method. First, we give
a structure overview of the proposed SDOF-GAN and describe
each of its components in detail. Then, we will introduce the
network with forward-backward consistency loss, supervised
loss, and an adversarial loss, which constitute the objective
function of our network.

A. Algorithm Overview

Our goal is to train a symmetric optical flow estima-
tion network in a semi-supervised manner. We achieve this
by embedding the forward-backward consistency constraint
into GAN, which does not require making the assumption
of brightness constancy. Given two images I1 and I2, our
proposed SDOF-GAN simultaneously estimates two trans-
formations, namely φ f : from I1 to I2, and φb: from I2
to I1. As shown in Fig. 2, our proposed SDOF-GAN is
mainly trained in two phases, namely generators updating and
discriminators updating.

1) Generators Updating: For the stage of updating gener-
ator networks, we design two generators G f and Gb and an
inverse network, to jointly estimate optical flow fields in both
directions.

The parameters of generators G f and Gb are shared, and
G f and Gb are trained to generate more realistic flows that are
difficult for the discriminators to distinguish between true and
false. We exploit a semi-supervised learning strategy that uses
both labeled data with the ground-truth flow and unlabeled
data without any ground-truth information. For labeled data,
we learn flow fields using labeled image pairs by optimizing
a supervision loss Lsup (as described in Sec. IV-B). The
ground-truth information provides a definite cue for measuring
the correctness of flow prediction during training. Notably,
the ground-truth forward flow φg f , and the ground-truth back-
ward flow φgb are inverse to each other. The unsupervised flow
estimation complements to the ground-truth by a large number
of unlabeled training images, which ensures low training costs
and algorithm robustness. For unlabeled data, the networks
are optimized by minimizing the adversarial loss LG

G AN (as
described in Sec. IV-B) based on discriminator networks. The
discriminators can automatically judge whether the flow is
positive by learning the pattern of flow warping error.

The inverse network is designed to generate inverse flow
(e.g., φ̃ f ) of each flow (e.g., φ f ). Our goal is to ensure that
the bidirectional flows are inverse to each other, that is to
say, φ̃ f is equal to φb. The forward-backward consistency
is implemented via an inverse network and a symmetry loss
Lsym (as described in Sec. IV-B), which can ensure that
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Fig. 2. Schematic illustration of our method, which includes two stages of adversarial training. (a) The updating of generators G f and Gb with a pair
of labeled images or unlabeled images. The supervised loss Lsup indicated by the dotted line only acts when the labeled images are taken as inputs. The
parameters of two generators G f and Gb are shared. The discriminators are fixed when the generators are updated. (b) The updating of discriminators D f

and Db based on the ground-truth flow warping error and the flow warping error from the estimated flow. The two discriminators D f and Db also share
parameters and the generators are fixed when the discriminators are updated.

Fig. 3. The detailed network structure of the generator G . (a) The whole architecture of G consists of an encoder with five residual blocks and a decoder
with four times upsampling operation (“Up” is short for “Upsampling”). (b) Schematic illustration of the residual block. The residual is obtained from three
successive convolutions, and each convolution is followed by ReLU and BN. In particular, the 5th residual block does not contain a pooling operation.

the bidirectional flow fields are inverse to each other. The
generator networks for bidirectional flows are correlated by
enforcing a forward-backward consistency constraint over their
outputs.

2) Discriminators Updating: For the stage of updating
discriminator networks, we design two discriminators D f and
Db to distinguish whether the estimated flow is “real” or
“fake”. Two cases are fed into the discriminator alternatively,
namely the positive case where the flow warping error is
generated by ground-truth flow, and the negative case where
the flow warping error is generated by the predicted flow.
Since the training of the discriminator requires ground-truth
information, only the labeled image pairs are involved in this
step. These two discriminator modules (D f and Db) also share
network parameters, and they are updated alternately with the
generators.

B. Loss Functions and Objective

This part introduces the loss functions and the resultant
objective function for our method.

1) Symmetry Loss (Forward-Backward Consistency Loss):
In order to achieve a symmetric estimation of the bidirec-
tional optical flow, the symmetry loss is proposed to penalize
the motion differences between two flow fields from the
corresponding inverse mappings. It can enforce the forward
flow φ f (from I1 to I2) and the backward flow φb (from
I2 to I1) to be inverse to one another. Besides, we consider that
occlusion occurs when multiple objects in a complex scene
move with different displacements and overlap each other in
consecutive frames. The deformations of the occluded pixels
are difficult to maintain inverse consistency. Thus, we exploit
the bidirectional inconsistency check to handle the region of
occlusion [16], [43]. We mark one pixel as occluded when
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the mismatch between the forward flow φ f and the backward
flow φb is too large. Taking forward occlusion map O f as
an example, a pixel is considered to be occluded whenever it
violates the following constraint:
|φ f (x)+φb(x + φ f (x))|2

< α1(|φ f (x)|2 + |φb(x + φ f (x))|2) + α2. (6)

The occluded pixel is set to 1, and 0 otherwise. We obtain
the backward occlusion map Ob in the same way by simply
changing φ f and φb in Eq. (6). We set α1 = 0.01 and α2 = 0.5
in all of our experiments. Therefore, the proposed symmetry
loss at all non-occluded pixels x can be defined as:
Lsym = (1 − O f ) · ‖φ f − φ̃b‖2

2 + (1 − Ob) · ‖φb − φ̃ f ‖2
2,

(7)

where φ̃ f and φ̃b are generated by inverse network which will
be detailed in Sec. V-B.

2) Supervised Loss: Similar to the End Point Error (EPE)
in [18], we use supervised loss term to measure the shifts of
the predicted flow field of pixels from the ground-truth flow
field, namely:

Lsup = ‖φ f − φg f ‖2
2 + ‖φb − φgb‖2

2, (8)

where φg f , φgb denote the ground-truth forward flow and
the ground-truth backward flow, respectively. Therefore,
SDOF-GAN aims to minimize the Lsup for labeled images
with the ground-truth flow.

3) Adversarial Loss: To train the generator G and dis-
criminator D with semi-supervised learning on both labeled
images and unlabeled images, an adversarial loss [25], [34]
is applied to force the generated flow to be indistinguishable
from the ground-truth flow. For our generator G = {G f , Gb}
and discriminator D = {D f , Db}, the adversarial loss for
training GAN can be expressed as:
LG AN (G, D, χg , χ)=Eχg [log D(χg)]+Eχ [log(1−D(χ))],

(9)

where χ = {χ f , χb} denotes the generated flow warping error
and χg = {χg f , χgb} is the ground-truth flow warping error.
Note that the χ f = I1 − T (I2, φ

f ) can be expressed as the
generated forward flow warping error and χb = I2−T (I1, φ

b)
can be expressed as generated backward flow warping error.
Similarly, χg f = I1 − T (I2, φ

g f ) and χgb = I2 − T (I1, φ
gb)

can be understood as the ground-truth forward flow warping
error and the ground-truth backward flow warping error,
respectively.

4) Objective Function: The proposed SDOF-GAN is opti-
mized by minimizing the loss of the generator and meanwhile
maximizing the loss of the discriminator. Consequently, our
full objective is defined as:
L(G, D) = LG AN (G, D, χg , χ) + λ1Lsmooth(G)

+λ2Lsym(G, φ̃) + λ3Lsup(G, φg), (10)

where φg = {φg f , φgb} denotes ground-truth flow, and φ̃ =
{φ̃ f , φ̃b} is the inverse flow of each estimated flow. Three
parameters λ1, λ2 and λ3 are used to control the relative

importance of all terms. The goal of SDOF-GAN can be
described as a maximizing minimization problem, namely:

min
G

max
D

L(G, D). (11)

C. Adversarial Training

Our SDOF-GAN model is implemented in a
semi-supervised strategy with alternate training of the
generator G and the discriminator D (e.g., fix D when
training G). Convergence occurs when the discriminator
cannot distinguish the positive case and the negative case. For
both the labeled and unlabeled images, training G is driven
by one symmetry loss Lsym controlling the consistency of the
forward and backward optical flows, a spatial smoothness loss
Lsmooth characterizing local smoothness of the deformation
field, and an adversarial loss LG

G AN . Our objective for
updating G using unlabeled images is then written as:

Lu
G = LG

G AN + λ1Lsmooth(G) + λ2Lsym(G, φ̃), (12)

where LG
G AN = −D(χ). For the labeled images, we addition-

ally use a supervision loss Lsup with which the ground-truth
flow participates in the training process. The objective for
updating G using labeled images can thus be expressed as:
Ls

G = LG
G AN + λ1Lsmooth(G) + λ2Lsym(G, φ̃)

+λ3Lsup(G, φg). (13)

We train D to determine whether the flow is “real” or “fake”
by maximizing the adversarial loss LD

G AN . Consequently,
the objective for updating D using labeled images can be
expressed as:

LD
G AN = − log D(χg) − log(1 − D(χ)). (14)

V. NETWORK STRUCTURE AND IMPLEMENTATION

This section introduces the employed network architecture
and implementation details for predicting the high-precision
optical flow.

A. Generator

As shown in Fig. 3, our generator G takes full advantage
of the residual block [44] and U-Net architecture [45]. In the
encoder, we exploit a ResNet-style network with five blocks
that combine the features from shallow and deep layers by
using the deformed residual unit of ResNet. The network can
avoid vanishing gradient problem by the bypass connections in
the residual block during backpropagation. The residual block
of ResNet50 is illustrated in the right panel of Fig. 3. There
are three successive convolution layers with stride 1. The first
convolution layer and the third convolution layer use 1 × 1
convolutional filters, and the size of convolutional filters in
the second convolution layer is 3 × 3. Except for the last
residual block, three convolutions in each residual block are
followed by a 2 × 2 max-pooling layer with stride 2. Addi-
tionally, we exploit ReLU activation function [46] and batch
normalization (BN) [47] at the output of the convolutions.
Note that ReLU and BN are not used at the inputs to the sum
operation of the residual blocks. Instead, ReLU comes after the
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Fig. 4. Illustration of the inverse network. The generation process of the
inverse flow is explained by taking the forward optical flow as an example.

sum operation. The output of the encoder acts as an input to
the decoder. The decoder contains four upsampling operations
(deconvolution layers) and two successive convolution layers
(the same as the convolution layers of blocks without sum
operation). Furthermore, to recover the flow details, skip con-
nections are utilized between corresponding layers in encoder
and decoder to combine the high-frequency features from the
contracting path with up-sampled output.

B. Inverse Network

We use an inverse network to compute the inverse flow φ̃ of
flow φ based on [30] as shown in Fig. 4. Taking the forward
optical flow φ f as an example, we first calculate the negative
flow −φ f of flow φ f . Next, the inverse network takes the
flow φ f (in the I2 space) and the negative flow −φ f (in the I2

space) as inputs. We finally obtain the standard inverse flow φ̃ f

(in the I1 space) via a differentiable transformation operation
which is similar to [13], [42]. Specifically, the localization step
of Spatial Transformer Network [42] is not required in our
work, because the flow prediction, φ f , provides the necessary
parameters for the mapping between bidirectional flow fields.
Spatial Transformer Network [42] is applied to perform two
steps here, namely sampling grid generation and differentiable
image sampling. In this way, the differences of flow φb and
the inverse flow φ̃ f can be obtained by forward-backward
consistency loss that further guides the network optimization.

C. Discriminator

Our discriminator D is trained to solve the maximization
problem in Eq. (11), which leverages the patchGAN [34] to
distinguish whether an overlapping patch is “real” or “fake”,
rather than to distinguish the whole image. Such an approach
has fewer parameters compared with the entire image as input,
and it is suitable for the images with arbitrary size. Both the
ground-truth flow warping error and the flow warping error
from the predicted flow are taken as inputs to D, and the
output is a binary discriminant value.

D. Implementation Details

The entire network containing the generators and the dis-
criminators is implemented via using Pytorch [48]. The input

to the network is in the form of six-channel images which are
obtained by directly concatenating two source images. Each
network is trained on the NVIDIA Tesla V100 GPUs, using
Adam optimization [49]. In order to improve the stability of
the model, we train the network using a strategy that gradually
decays the learning rate. We set the initial learning rate as
0.0001 and then multiply by 0.5 every 100k iterations after
the first 200k iterations. We train the network for 50 epochs
in total. We tune the weighting parameters λ1, λ2 and λ3 based
on grid search in the range [0.001, 0.01, 0.1, 1], and finally
choose the best performing combination λ1 = 0.01, λ2 = 0.1,
and λ3 = 0.01.

VI. EXPERIMENTS

To evaluate the performance of our proposed framework,
we compare our SDOF-GAN with state-of-the-art optical flow
estimation algorithms in this section. Then the ablation studies
are conducted to verify the effectiveness of our contribu-
tions. The computational costs of different methods are also
investigated.

A. Experimental Settings

We exploit several publicly available datasets to train and
evaluate our network, which include FlyingChairs [7], Fly-
ingThings3D [50], KITTI raw dataset [51], KITTI 2012 [52],
KITTI 2015 [53], and MPI-Sintel [54]. The FlyingChairs
dataset is a synthetic dataset with the dense ground-truth
forward flow by applying affine transformations to images. It is
collected from Flickr and a publicly available set of renderings
for 3D chair models. It contains 22232 training image pairs
and 640 test image pairs. The FlyingThings3D can be seen as
a three-dimensional version of FlyingChairs. It is a synthetic
scene dataset with ground-truth flow in forward and backward
directions and contains 25000 stereo frames. Compared with
the images in FlyingChairs which only have plane transforma-
tion, the images in FlyingThings3D have real 3D motion and
brightness changes, and also contain richer motion transfor-
mation information. The KITTI-related datasets are collected
from real-world driving scenarios. The KITTI raw dataset
is divided into the categories ‘Road’, ‘City’, ‘Residential’,
‘Campus’, and ‘Person’. It contains about 48000 frames. The
KITTI 2012 consists of 194 training image pairs and 195 test
image pairs, while KITTI 2015 consists of 200 training image
pairs and 200 test image pairs. They also provide ground-truth
flow by 3D laser measurements from a Velodyne laser scanner,
and the density per-frame is about 50%, resulting in sparse
optical flow ground-truth. The MPI-Sintel dataset contains
1064 training image pairs and 564 test image pairs with dense
ground-truth flow. There are two versions in the MPI-Sintel
dataset, namely the clean version containing small motion, and
the final version containing large motion blur.

1) Data Division: Since our model is semi-supervised,
we use the raw dataset of KITTI as unlabeled data for
training. For the selection of labeled data, we propose three
different ways, namely only using FlyingChairs (“Chairs”),
only using FlyingThings3D (“Things3D”), and the mixture
of the two datasets (“Mixed”). The ground-truth backward
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flows in FlyingChairs and MPI-Sintel are synthesized by affine
transformations, which are inverse to the ground-truth forward
flows. The 1041 training image pairs from the MPI-Sintel
dataset are used to fine-tune our network. We evaluate the
performance of SDOF-GAN on KITTI 2012, KITTI 2015,
MPI-Sintel, and the test image pairs of FlyingChairs.

2) Data Augmentation: To avoid overfitting, we follow the
semi-supervised optical flow estimation method [18] and do
data augmentation from different ways on the images in the
training datasets. We randomly rotate them with the angles in
(−17◦, 17◦), re-scaling them with the size in [1, 2], adding
white Gaussian noise with a standard deviation from [0, 0.01],
and changing the brightness, contrast, and saturation by using
Color J i tter with the random factor in [0, 0.04].

3) Fine-Tuning: Notably, the object types and motions con-
tained in different datasets vary broadly, and a single dataset
has a very limited number of data for training our network.
To solve this problem, we follow [7] and train the proposed
SDOF-GAN on FlyingChairs, FlyingThings3D, KITTI raw
dataset, and then fine-tune the network on the training set of
MPI-Sintel.

4) Evaluation Metrics: We use two metrics for evaluating
the performance of SDOF-GAN, which are described as
follows:

• End point error (EPE) [18]: EPE is defined as the
distance between the endpoints of the predicted flow
and ground-truth flow. It is suitable for evaluating the
performance of a method on the labeled data. In our
experiments, we compute average EPE over all pixels by
Eq. (8) for the images with the ground-truth flow.

• Percentage of erroneous pixels (Fl) [53]: Fl is the ratio
of erroneous pixels averaged over all ground truth pixels
of test images. We consider a pixel to be incorrectly
estimated if the disparity or flow EPE is larger than
3 pixels or 5% of the ground-truth value. As mentioned,
we denote the percentage of erroneous pixels over all
pixels as “Fl-all”, the error rate on foreground objects
flow as “Fl-f”, and the error rate on background motion as
“Fl-b”. By following [16], Fl is employed as an algorithm
evaluation metric on KITTI benchmarks.

B. Comparisons With the State-of-the-Art Methods

We report the results of our network on the FlyingChairs,
KITTI 2012, KITTI 2015, and MPI-Sintel benchmark datasets.
We compare our method with two CNN-based supervised
asymmetric methods (i.e., FlowNet2.0 [8], SpyNet [9]), two
CNN-based unsupervised asymmetric methods (i.e., SelFlow
[16], DDFlow [15]), a GAN-based semi-supervised asymmet-
ric method (i.e., SemiFlowGAN [18]), and a traditional sym-
metric optical flow prediction method (i.e., MirrorFlow [6]).
The SpyNet [9] used five pyramid levels with a mini-batch size
of 32 across all networks. For SelFlow [16], the supervised
fine-tuned model is achieved by pre-training the unsupervised
model in [16]. Note that SelFlow utilizes three frames, while
all other methods use only two consecutive frames. Addi-
tionally, we fine-tune our network on MPI-Sintel dataset and
compare the results with other fine-tuned baseline networks

such as FlowNet2.0 [8], SpyNet [9], DDFlow [15], SelF-
low [16], and SemiFlowGAN [18]. The fine-tuned SpyNet on
the Driving dataset [50], while other methods are fine-tuned
on the MPI-Sintel dataset. It is worth noting that for all
asymmetric methods, the forward and backward flows are
predicted separately.

We use different labeled datasets as training data, denoted as
‘SDOF-GAN(Chairs)’, ‘SDOF-GAN(Things3D)’ and ‘SDOF-
GAN(Mixed)’. From Table I, we can find that the SDOF-GAN
shows a large performance difference under different labeled
datasets. The network model training on a mixture of two
labeled datasets is more robust because the FlyingChairs
has plane transformation and the FlyingThings3D has real-
istic 3D motion and brightness changes. We finally select
the pre-trained model with the best performance which is
trained on both datasets for further analysis. That is to say,
the SDOF-GAN mentioned below is trained on a mixture of
two labeled datasets as well as the KITTI raw dataset.

The detailed comparison results of different methods are
shown in Table I. From this table, we have four important
findings. Firstly, the SDOF-GAN outperforms asymmetric
prediction methods on almost all datasets. Our method with-
out fine-tuning reduces the previous best EPE from 1.68 to
1.58 on the FlyingChairs dataset and achieves 23% relative
improvement on the Sintel-Final dataset. This is benefited from
the symmetric property of SDOF-GAN, which simultaneously
predicts optical flow in both directions. Secondly, by com-
paring with the symmetric prediction method MirrorFlow,
our SDOF-GAN without fine-tuning achieves state-of-the-art
results on all three datasets, with EPE = 3.46 on Sintel-
Clean, EPE = 4.61 on Sintel-Final, and Fl-all = 8.22% on
KITTI 2015. The superior performances of our method to
MirrorFlow indicate that GAN-based adversarial training can
effectively improve the precision of optical flow estimation.
Thirdly, our SDOF-GAN outperforms all unsupervised flow
estimation methods on all datasets. Furthermore, the fine-tuned
SDOF-GAN achieves EPE = 3.24 on Sintel-Clean and
EPE = 4.08 on Sintel-Final, which is even better than the
results of supervised methods FlowNet2.0 [8], SpyNet [9] and
fine-tuned SelFlow [16]. This shows that the semi-supervised
strategy combined with the adversarial training effectively
improves the performance of the algorithm by learning from
the labeled and unlabeled data. Finally, we see an improvement
of EPE by fine-tuning the trained models, which means
that fine-tuning can improve the generalization ability and
robustness of the model.

In addition, since our SDOF-GAN runs in a semi-supervised
way, we randomly select 50% and 20% of the labeled data
from the original labeled datasets and the remaining 50% and
80% image pairs are left as unlabeled data. We also train the
semi-supervised method SemiFlowGAN [18] with the same
amount of labeled data for comparison. For the supervised
methods such as FlowNet2.0 [8] and SpyNet [9], only the
labeled image pairs are used for training. In particular, we train
supervised networks with the same amount of labeled data for
comparisons.

As shown in Table II and Table III, the proposed
SDOF-GAN based on semi-supervised strategy achieves the
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TABLE I

THE RESULTS OF VARIOUS METHODS ON THE FIVE DATASETS, WHERE “FT” REPRESENTS THE METHOD WITH FINE-TUNING

TABLE II

THE RESULTS OF VARIOUS METHODS ON THE FIVE DATASETS WHEN 50% OF LABELED DATA FROM TRAINING DATASETS

TABLE III

THE RESULTS OF VARIOUS METHODS ON THE FIVE DATASETS WHEN 20% OF LABELED DATA FROM TRAINING DATASETS

top level performance when the networks are trained with
partially labeled images. First, the proposed semi-supervised
method consistently outperforms the previous best-supervised
method FlowNet2.0 and achieve 2.97%, 2.35% relative
improvement on the KITTI 2015 dataset in Table II and
Table III, respectively. Besides, by comparing Table II and
Table III, we can see that the SDOF-GAN achieves a greater
improvement on all datasets than previous supervised methods.
This shows that the semi-supervised approach is superior to
the supervised approach as the amount of labeled images
decreases. Therefore, in the real-world situations where the
amount of labeled data is limited, semi-supervised strategy
can improve the performance of the algorithm. Furthermore,
our proposed SDOF-GAN is consistently better than the
previous semi-supervised method SemiFlowGAN on partially
labeled data. This is due to the fact that SDOF-GAN uses a

forward-backward consistency constraint to ensure consistent
bidirectional optical flow estimation.

The visualization of optical flow estimation obtained by
different methods is shown in Fig. 5 and Fig. 6. For all
asymmetric optical flow estimation methods (i.e., FlowNet2.0
[8], SpyNet [9], DDFlow [15], SelFlow [16], and SemiFlow-
GAN [18]), forward flow and backward flow are obtained by
swapping the source image and target image. We can clearly
see that the SDOF-GAN is better than all the other methods
on Sintel-Final. Our method produces the smoother flow fields
compared with MirrorFlow and SemiFlowGAN. This means
that combining the symmetric properties of optical flow and
the adversarial training mechanism can effectively improve the
performance of the algorithm. Apparently, Fig. 6 indicates
that the SDOF-GAN can do better than previous methods
on moving object boundaries. Besides, on the difficult KITTI
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Fig. 5. Visualization of results on Sintel-Final dataset. The overlaid image pair on the upper left is the input image pair. In the lower left corner of each
flow map: ‘F’ represents forward flow and ‘B’ represents backward flow.

Fig. 6. Visualization of results on KITTI 2015 dataset. The overlaid image pair on the upper left is the input image pair. In the lower left corner of each
flow map: ‘F’ represents forward flow and ‘B’ represents backward flow.

2015 dataset, SDOF-GAN is even slightly better than the clas-
sic symmetric method MirrorFlow. CNN-based asymmetric
methods perform unsatisfactorily in object boundaries. In con-
trast, our GAN-based symmetric method further improves the
precision of motion estimation through the forward-backward
consistency constrain under a semi-supervised strategy.

C. Ablation Study

In addition, to emphasize the importance of our intro-
duced symmetric constraint (forward-backward consistency)
and adversarial loss, we design four variants of SDOF-GAN
and compare them with the completed SDOF-GAN on Sintel-
Clean, Sintel-Final, and KITTI 2015 datasets. Specifically,

we first remove the symmetry loss (forward-backward consis-
tency loss) from SDOF-GAN to form a variant named “DOF-
GAN”, which learns the bidirectional flow fields indepen-
dently. Then, we remove the adversarial loss of SDOF-GAN
and degenerate our model to a fully supervised setting
(denoted as “SDOF-S”). SDOF-S is carried out by minimizing
the squared error between the estimated flow and the ground-
truth. Besides, we use the data term Ldata in Eq. (4) to replace
the adversarial loss and arrive at an unsupervised learning
setting denoted as “SDOF-U”. Finally, we train the generator
of SDOF-GAN to a semi-supervised deep network (denoted
as “SDOF-Semi”).

1) Symmetry Analysis: Table IV shows the quantitative eval-
uation of SDOF-GAN and its asymmetric variant DOF-GAN.
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Fig. 7. Visual comparison of our symmetric (SDOF-GAN) and asymmetric (DOF-GAN) models on Sintel-Clean dataset.

Fig. 8. Visual comparison of our models with and without GAN on Sintel-Final dataset. Here we only show the flow field in one direction.

TABLE IV

THE RESULTS OF THREE VARIANTS OF SDOF-GAN. “DOF-GAN”
DENOTES THE PROPOSED FRAMEWORK WITHOUT SYMMETRIC

CONSTRAINT, “SDOF-S” DENOTES THE PROPOSED FRAMEWORK

THAT IS TRAINED IN A SUPERVISED FASHION, “SDOF-U”
REPRESENTS THAT THE PROPOSED METHOD IS TRAINED

IN AN UNSUPERVISED FASHION, AND “SDOF-SEMI”
IS THE SEMI-SUPERVISED DEEP MODEL WITHOUT

GAN ARCHITECTURE

We can find that the error produced by the symmetric method
decreases substantially by about 3.7% on KITTI 2015 dataset.
Furthermore, the symmetric method achieves better perfor-
mance than the asymmetric method on the MPI-Sintel dataset,
especially on “Final” data. This implies that the symmetry
constraint makes significant contribution to the high accuracy
of optical flow estimation. As shown in Fig. 7, an asymmetric
approach may produce bias and cause object boundaries to
be ambiguous. In addition, the curves of adversarial loss are
shown in Fig. 9 (b). One could observe that the value of
loss in SDOF-GAN drops faster than the loss in DOF-GAN.

Fig. 9. The subgraph (a) presents the training curves for the model with
GAN structure (i.e., SDOF-GAN) and without GAN structure (i.e., SDOF-S,
SDOF-U and SDOF-Semi) during training. The subgraph (b) presents the
training curves for the model with symmetry constraint (i.e., SDOF-GAN)
and without symmetry constraint (i.e., DOF-GAN) during training. The loss
values of different models have been rescaled to the same range.

The underlying reason may be that the symmetry constraint
controls the consistency of the bidirectional flows, therefore
the decreasing speed of the loss value is accelerated.

2) Adversary Analysis: Optical flow estimation tradition-
ally relies on the assumptions of brightness constancy and
spatial smoothness. Arguably, this produces limited precision
in predicting the optical flow in the boundary region and in
the presence of complex motion. From Table IV, we can
find that the flow accuracy of our SDOF-GAN significantly
surpasses the three variants (i.e., SDOF-S, SDOF-U, and
SDOF-Semi). From the visualization results in Fig. 8, we see
that SDOF-GAN yields higher accuracy in predicting optical
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Fig. 10. The results produced by the SDOF-GAN under different weighting parameters. For Sintel-Clean and Sintel-Final, the vertical axis represents EPE.
For KITTI 2015, the vertical axis represents Fl-all. (a) presents the results by changing λ1 when fixing λ2 to 0.1 and λ3 to 0.01; (b) presents the results by
changing λ2 when fixing λ1 to 0.01 and λ3 to 0.01; (c) presents the results by changing λ3 when fixing λ1 to 0.01 and λ2 to 0.1.

flow at motion boundaries than all the other variants, espe-
cially the unsupervised method “SDOF-U”. This is due to
the brightness constancy used in unsupervised method does
not hold in the occluded regions and motion boundaries.
Moreover, the convergence speed of the models with and
without GAN (i.e., SDOF-S, SDOF-U, and SDOF-Semi) is
also compared. The convergence curves of different models
are shown in Fig. 9 (a). For SDOF-GAN, we show the loss
curve of the generator model during training. We can find that
the GAN-based model performs a faster convergence rate than
the model without GAN. Therefore, it can be seen that the
use of adversarial loss term improves the performance when
compared with the variants that do not contain a discriminator.

3) Parameter Sensitivity: For the proposed SDOF-GAN,
the weighting parameters of different losses may significantly
affect optical flow estimation performance. In this section,
we evaluate how the selections of each of the parameters λ1,
λ2, and λ3 influence the model performance. For the three
weighting parameters, we fix two of them and vary the value
of the other one. Fig. 10 shows how the performance of optical
flow estimation on the test set is influenced by the weighting
parameters in the proposed SDOF-GAN. From the results,
we can see that when a smaller or larger weight is assigned to
the loss, the performance of the network will degrade. It is
difficult to find the optimal parameter combination for all
evaluated datasets based on grid search. Therefore, we choose
a combination λ1 = 0.01, λ2 = 0.1, and λ3 = 0.01 that
performs well in most cases.

D. Computational Speed

Here we compare the testing time of our SDOF-GAN
with other baseline methods. For the asymmetric methods
(i.e., FlowNet2.0 [8], SpyNet [9], DDFlow [15], and Semi-
FlowGAN [18]), we only calculate the time of the forward
flow prediction. For SelFlow [16], we count the total time of
predicting bidirectional flows from the current image to the
previous image and from the current image to the next image.

As shown in Table V, we compute the run-time of different
methods in seconds. From the experimental results, we find
that our method is more efficient than the traditional symmetric

TABLE V

COMPUTATIONAL COST OF SEVEN DIFFERENT METHODS IN THE

TESTING STAGE. ALL REPORTED TIME CONSUMPTIONS ARE

MEASURED ON THE KITTI 2015 DATASET EXCLUDING THE
IMAGE LOADING TIME. NOTE THAT THE LAST ROW SHOWS

THE TIME OBTAINED BY UNIDIRECTIONAL FLOW OR

BIDIRECTIONAL FLOWS. “F” DENOTES THE FORWARD

FLOW ESTIMATION, AND “B” DENOTES THE
BACKWARD FLOW ESTIMATION

flow estimation method (i.e., MirrorFlow) and the CNN-based
unsupervised approaches (i.e., DDFlow, SelFlow). That is to
say, our GAN-based symmetric flow estimation method is
superior to all other bidirectional flows prediction methods
in terms of computational efficiency. The calculation speed of
SDOF-GAN is comparable to the unidirectional flow estima-
tion methods (i.e., FlowNet2.0 and SemiFlowGAN). The speed
of our method is slightly slower than the currently published
most efficient method (i.e., SpyNet) for optical flow estima-
tion. This is mainly because that the SpyNet only estimates the
flow in one direction and the network structure of SpyNet is
relatively simple. In general, our proposed symmetric optical
flow estimation method SDOF-GAN effectively overcomes
the time-consuming defect and slow convergence by using a
forward-backward consistency constraint and the adversarial
training mechanism. Therefore, SDOF-GAN makes a good
balance between efficiency and accuracy.

VII. CONCLUSION

In this paper, we have proposed SDOF-GAN for achieving
symmetric optical flow estimation with generative adversarial
networks. Specifically, it achieves symmetric effect in opti-
cal flow estimation by jointly estimating the forward and
backward flows while enforcing consistency between them.
In addition, it is trained adversarially to learn the pattern of the
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error map between the target image and the one obtained by
warping the source image. Moreover, SDOF-GAN is trained
in a semi-supervised fashion with which both the labeled and
unlabeled data can be fully exploited. Experimental results
show the superior performances of SDOF-GAN to several
other representative state-of-the-art techniques. Our future
work would focus on incorporating occlusion-disocclusion
symmetry as well in SDOF-GAN.

REFERENCES

[1] L. Alvarez, J. Weickert, and J. Sánchez, “Reliable estimation of dense
optical flow fields with large displacements,” Int. J. Comput. Vis., vol. 39,
no. 1, pp. 41–56, 2000.

[2] E. Mémin and P. Pérez, “Dense estimation and object-based segmen-
tation of the optical flow with robust techniques,” IEEE Trans. Image
Process., vol. 7, no. 5, pp. 703–719, May 1998.

[3] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “EpicFlow:
Edge-preserving interpolation of correspondences for optical flow,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 1164–1172.

[4] L. Alvarez et al., “Symmetric optical flow,” in Proc. Int. Conf. Comput.
Aided Syst. Theory. Springer, 2007, pp. 676–683.

[5] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sánchez, “Symmetrical
dense optical flow estimation with occlusions detection,” in Proc. Eur.
Conf. Comput. Vis. Springer, 2002, pp. 721–735.

[6] J. Hur and S. Roth, “MirrorFlow: Exploiting symmetries in joint optical
flow and occlusion estimation,” in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 312–321.

[7] A. Dosovitskiy et al., “FlowNet: Learning optical flow with convolu-
tional networks,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 2758–2766.

[8] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“FlowNet 2.0: Evolution of optical flow estimation with deep net-
works,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,
pp. 2462–2470.

[9] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jul. 2017, pp. 4161–4170.

[10] Z. Teed and J. Deng, “RAFT: Recurrent all-pairs field transforms
for optical flow,” in Proc. Eur. Conf. Comput. Vis. Springer, 2020,
pp. 402–419.

[11] S. Zhao, Y. Sheng, Y. Dong, E. I.-C. Chang, and Y. Xu, “Mask-
Flownet: Asymmetric feature matching with learnable occlusion mask,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2020,
pp. 6278–6287.

[12] A. Ahmadi and I. Patras, “Unsupervised convolutional neural networks
for motion estimation,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2016, pp. 1629–1633.

[13] J. Y. Jason, A. W. Harley, and K. G. Derpanis, “Back to basics:
Unsupervised learning of optical flow via brightness constancy and
motion smoothness,” in Proc. Eur. Conf. Comput. Vis. Springer, 2016,
pp. 3–10.

[14] Y. Wang, Y. Yang, Z. Yang, L. Zhao, P. Wang, and W. Xu, “Occlusion
aware unsupervised learning of optical flow,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4884–4893.

[15] P. Liu, I. King, M. R. Lyu, and J. Xu, “DDFlow: Learning optical flow
with unlabeled data distillation,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 8770–8777.

[16] P. Liu, M. Lyu, I. King, and J. Xu, “SelFlow: Self-supervised learning of
optical flow,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2019.

[17] Y. Kuznietsov, J. Stuckler, and B. Leibe, “Semi-supervised deep learning
for monocular depth map prediction,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 6647–6655.

[18] W.-S. Lai, J.-B. Huang, and M.-H. Yang, “Semi-supervised learning for
optical flow with generative adversarial networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 354–364.

[19] Y. Yang and S. Soatto, “Conditional prior networks for optical flow,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 271–287.

[20] A. Odena, “Semi-supervised learning with generative adversarial net-
works,” 2016, arXiv:1606.01583. [Online]. Available: https://arxiv.
org/abs/1606.01583

[21] R. K. Thakur and S. Mukherjee, “A conditional adversarial network
for scene flow estimation,” in Proc. 28th IEEE Int. Conf. Robot Hum.
Interact. Commun. (RO-MAN), Oct. 2019, pp. 1–6.

[22] K. Ohnishi, S. Yamamoto, Y. Ushiku, and T. Harada, “Hierarchical video
generation from orthogonal information: Optical flow and texture,” in
Proc. AAAI Conf. Artif. Intell., 2017, pp. 1–8.

[23] P. Yan, S. Xu, A. R. Rastinehad, and B. J. Wood, “Adversarial
image registration with application for MR and TRUS image fusion,”
in Proc. Int. Workshop Mach. Learn. Med. Imag. Springer, 2018,
pp. 197–204.

[24] J. Fan, X. Cao, Z. Xue, P.-T. Yap, and D. Shen, “Adversarial similarity
network for evaluating image alignment in deep learning based registra-
tion,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.
Springer, 2018, pp. 739–746.

[25] I. J. Goodfellow et al., “Generative adversarial networks,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 3, 2014, pp. 2672–2680.

[26] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “DeepFlow:
Large displacement optical flow with deep matching,” in Proc. IEEE
Int. Conf. Comput. Vis., Dec. 2013, pp. 1385–1392.

[27] P. Zille, T. Corpetti, L. Shao, and X. Chen, “Observation model based
on scale interactions for optical flow estimation,” IEEE Trans. Image
Process., vol. 23, no. 8, pp. 3281–3293, Aug. 2014.

[28] D. Rufenacht and D. Taubman, “HEVC-EPIC: Fast optical flow estima-
tion from coded video via edge-preserving interpolation,” IEEE Trans.
Image Process., vol. 27, no. 6, pp. 3100–3113, Jun. 2018.

[29] G. E. Christensen and H. J. Johnson, “Consistent image registration,”
IEEE Trans. Med. Imag., vol. 20, no. 7, pp. 568–582, Jul. 2001.

[30] J. Zhang, “Inverse-consistent deep networks for unsupervised
deformable image registration,” 2018, arXiv:1809.03443. [Online].
Available: https://arxiv.org/abs/1809.03443

[31] Z. Zhang, L. Yang, and Y. Zheng, “Translating and segmenting mul-
timodal medical volumes with cycle- and shape-consistency generative
adversarial network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 9242–9251.

[32] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis., Oct. 2017, pp. 2794–2802.

[33] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” 2017,
arXiv:1701.07875. [Online]. Available: https://arxiv.org/abs/1701.07875

[34] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 1125–1134.

[35] L. Wang et al., “SAR-to-optical image translation using super-
vised cycle-consistent adversarial networks,” IEEE Access, vol. 7,
pp. 129136–129149, 2019.

[36] K. Lata, M. Dave, and K. N. Nishanth, “Image-to-image translation
using generative adversarial network,” in Proc. 3rd Int. Conf. Electron.,
Commun. Aerosp. Technol. (ICECA), Jun. 2019, pp. 186–189.

[37] C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4681–4690.

[38] H. Wang, W. Wu, Y. Su, Y. Duan, and P. Wang, “Image super-resolution
using a improved generative adversarial network,” in Proc. IEEE 9th
Int. Conf. Electron. Inf. Emergency Commun. (ICEIEC), Jul. 2019,
pp. 312–315.

[39] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton,
“Big self-supervised models are strong semi-supervised learners,”
vol. 33, 2020, arXiv:2006.10029. [Online]. Available: https://arxiv.
org/abs/2006.10029

[40] A. Sedghi et al., “Semi-supervised deep metrics for image reg-
istration,” 2018, arXiv:1804.01565. [Online]. Available: https://arxiv.
org/abs/1804.01565

[41] A. Hering, S. Kuckertz, S. Heldmann, and M. P. Heinrich, “Enhancing
label-driven deep deformable image registration with local distance
metrics for state-of-the-art cardiac motion tracking,” in Bildverarbeitung
für die Medizin 2019. Springer, 2019, pp. 309–314.

[42] M. Jaderberg et al., “Spatial transformer networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 2017–2025.

[43] S. Meister, J. Hur, and S. Roth, “UnFlow: Unsupervised learning of opti-
cal flow with a bidirectional census loss,” in Proc. AAAI, New Orleans,
LA, USA, Feb. 2018, pp. 1–9.

[44] G. Ma, Y. Zhu, and X. Zhao, “Learning image from projec-
tion: A full-automatic reconstruction (FAR) net for sparse-views
computed tomography,” 2019, arXiv:1901.03454. [Online]. Available:
https://arxiv.org/abs/1901.03454



CHE et al.: SDOF-GAN: SYMMETRIC DENSE OPTICAL FLOW ESTIMATION WITH GANs 6049

[45] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Springer, 2015, pp. 234–241.

[46] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” 2015.

[47] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1505.00853. [Online]. Available: https://arxiv.org/abs/1505.00853

[48] N. Ketkar, “Introduction to PyTorch,” in Deep Learning With Python.
Springer, 2017, pp. 195–208.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[50] N. Mayer et al., “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 4040–4048.

[51] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
2013.

[52] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3354–3361.

[53] M. Menze and A. Geiger, “Object scene flow for autonomous vehi-
cles,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 3061–3070.

[54] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open
source movie for optical flow evaluation,” in Proc. Eur. Conf. Comput.
Vis., 2012, pp. 611–625.

Tongtong Che was born in Shandong, China,
in 1995. She received the M.S. degree from the
School of Information Sciences and Engineering,
Shandong Normal University, China. She is cur-
rently pursuing the Ph.D. degree with the School
of Biological Science and Medical Engineering,
BUAA, China. Her research interests include med-
ical image processing and deep learning.

Yuanjie Zheng (Member, IEEE) received the Ph.D.
degree from Shanghai Jiao Tong University, China,
in 2006. He is currently a Full Professor with the
School of Information Sciences and Engineering,
Shandong Normal University, China, where he is
serving as the Dean. He was a Senior Research
Investigator with the Perelman School of Medicine,
University of Pennsylvania, USA. His research inter-
ests include computer vision, artificial intelligence,
medical image analysis, and translational medicine.

Yunshuai Yang was born in Shandong, China,
in 1997. He is currently pursuing the M.S. degree
with the School of Information Sciences and Engi-
neering, Shandong Normal University, China. His
research interests include computer vision and med-
ical image analysis.

Sujuan Hou (Member, IEEE) received the Ph.D.
degree from Chongqing University, China, in 2016.
She is currently an Associate Professor with the
School of Information Sciences and Engineering,
Shandong Normal University of China. Her research
interests include computer vision, video data mining,
and pattern recognition.

Weikuan Jia received the Ph.D. degree from Jiangsu
University, Zhenjiang, China, in 2016. He is cur-
rently an Associate Professor with the School of
Information Science and Engineering, Shandong
Normal University, Jinan, China. His research inter-
ests include artificial intelligence, smart agriculture,
and computer vision.

Jie Yang (Member, IEEE) received the B.S. and
M.S. degrees from Shanghai Jiao Tong University,
China, in 1985 and 1988, respectively, and the Ph.D.
degree from the University of Hamburg, Germany,
in 1994. He is currently a Professor and the Director
of the Institute of Image Processing and Pattern
Recognition, Shanghai Jiao Tong University, China.
His research interests include machine learning,
image processing, and medical image analysis.

Chen Gong (Member, IEEE) received the B.E.
degree from the East China University of Science
and Technology in 2010 and the dual Ph.D. degree
from Shanghai Jiao Tong University and the Uni-
versity of Technology Sydney in 2016 and 2017,
respectively. He is currently a Full Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology. His
research interests include machine learning, data
mining, and learning-based vision problems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


