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Abstract— This paper introduces a novel coding/decoding
mechanism that mimics one of the most important properties
of the human visual system: its ability to enhance the visual
perception quality in time. In other words, the brain takes
advantage of time to process and clarify the details of the
visual scene. This characteristic is yet to be considered by the
state-of-the-art quantization mechanisms that process the visual
information regardless the duration of time it appears in the
visual scene. We propose a compression architecture built of
neuroscience models; it first uses the leaky integrate-and-fire
(LIF) model to transform the visual stimulus into a spike train
and then it combines two different kinds of spike interpretation
mechanisms (SIM), the time-SIM and the rate-SIM for the
encoding of the spike train. The time-SIM allows a high quality
interpretation of the neural code and the rate-SIM allows a simple
decoding mechanism by counting the spikes. For that reason,
the proposed mechanisms is called Dual-SIM quantizer (Dual-
SIMQ). We show that (i) the time-dependency of Dual-SIMQ
automatically controls the reconstruction accuracy of the visual
stimulus, (ii) the numerical comparison of Dual-SIMQ to the
state-of-the-art shows that the performance of the proposed
algorithm is similar to the uniform quantization schema while
it approximates the optimal behavior of the non-uniform quan-
tization schema and (iii) from the perceptual point of view the
reconstruction quality using the Dual-SIMQ is higher than the
state-of-the-art.

Index Terms— Uniform quantization, non-uniform quantiza-
tion, leaky integrate-and-fire model, spikes, rate coding, time
coding.

I. INTRODUCTION

COMPRESSION is undoubtedly considered as one of
the most important and necessary processing steps in
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image communication. Images are highly correlated signals
as they consist of a lot of redundancy. A lot of effort has
been deployed to justify how to efficiently eliminate this
redundancy while ensuring high reconstruction quality (lossy
compression). The definition of redundancy is often associated
with the sensitivity of the human visual system (HVS) to
specific spatiotemporal frequencies. Thus, understanding and
modeling the visual perception seems to be very beneficial to
the progress of compression algorithms [1], [2].

The core of the state-of-the-art lossy compression algo-
rithms is quantization. The quantization objective is to fig-
ure out the best possible way to map a range of values
from the input signal into a single quantum value. There are
two different kinds of quantization; the uniform and the non-
uniform. Both methods are able to process the input signal at
once and achieve only one reconstruction quality depending
on their parameters. However, this single-step approach is in
contrast to the HVS where time has a key role in the quality
refinement of the reconstructed images. In other words, if we
neglect the saccadic eye movements, the HVS takes advantage
of the duration the input signal is available to enhance the
quality of the perceived image.

In this work, we are interested in adopting into a compres-
sion architecture, the aforementioned time-dependent capac-
ity of the HVS in order to improve the perception quality
of the reconstructed signal in time. We propose a novel
coding/decoding architecture inspired by the neurons which
are the main processing units of the HVS. In the literature,
there are plenty of spike generation mechanisms (SGM) which
approximate the way the neurons transform a constant positive
input stimulus I into a sequence of N ∈ N

+ discrete events
called a spike train. Each discrete event, namely a spike,
is generated if the input intensity is stronger than a threshold
θ , otherwise the neuron remains silent. The spikes are treated
as identical stereotype events, because their shape does not
seem to carry any information. Rather, it is the number of
spikes and/or the spike arrival times which matter [3].

During the last decade, the neural spiking mechanisms have
attracted the interest of the signal processing society. The most
challenging part of using these mechanisms is to find out the
best spike interpretation mechanism (SIM) which allows us
to use the code of spikes and reconstruct the highest quality
input signal (Fig. 1), since the brain uses the code of spikes
to learn, analyze, and take decisions instead of reproducing
the input stimulus. However, there are several architectures
that use neural models in order to encode signals using spikes
such as the rank order coders (ROC) [4], [5], time encoding
machines [6] and asynchronous pulse sigma-delta modulators
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Fig. 1. General framework of the proposed architecture. A 3 × 3 input
image I is fed to a group of 9 neurons (in blue). Each neuron is associated
and excited by an individual pixel. After a given observation window T the
spike trains are used to reconstruct an approximation of the input image Î .

(APSDM) [7]. The importance of the time parameter was
mentioned for the first time in [4] where the authors show
that when the observation window is long, the number of
spikes that participate in the reconstruction process is higher,
resulting in a better quality.

The main contributions of this paper are the following.
First, the paper introduces a novel quantizer, namely the
Dual-SIM Quantizer (Dual-SIMQ), which is based on two
complementary aspects of SIM: i) the input value is converted
into a sequence of spikes by using a time-encoding and ii) it
is reconstructed by using a rate-decoding which counts the
spikes. It is shown that the combination of time-encoding
and rate-decoding leads to a natural quantization of the input
value. Second, the maximum number of spikes is controlled
by a given observation duration T > 0. The duration T is
interpreted as the maximum time period which is allowed
to encode and decode the spike train. The behavior of the
quantizer depends of the parameter T . Hence, this time con-
straint generates a dynamic quantizer whose behavior evolves
in time. The dynamic properties of the Dual-SIMQ give
rise to a ground-breaking compression system that permits a
time-dependent quality refinement of the reconstructed signal.
This is a great breakthrough compared to the conventional
quantizers which process the input stimulus in a single-step
without taking advantage of the observation duration. It is
also mathematically proven that this novel neuro-inspired
mechanism performs as a uniform or non-uniform quantizer
by choosing adequately some of its parameters. Last but
not least, this paper shows that the Dual-SIMQ outperforms
the capacity of a uniform scalar quantizer (USQ) without
deadzone, it coincides with the performance of a USQ
with deadzone and it approximates the optimal Lloyd-Max
quantizer (LQ).

Section II describes the principle of the neuro-inspired quan-
tization based on spike trains. Section III is an overview of
the spike generation and interpretation mechanisms, focusing
especially on the well-known leaky integrate-and-fire (LIF)
model. Section IV presents our main contribution introducing
how to combine the rate-SIM and time-SIM to derive the
Dual-SIMQ. Numerical results on simulated data and real
data are presented in Section V. A concise discussion and
the conclusion of this work are drawn in section VI.

II. PRINCIPLE OF NEURO-INSPIRED QUANTIZATION

This section briefly recalls the main concepts in quantization
and rate-distortion theory and how they are related to the
neuro-inspired quantization.

A. Basics of Quantization

Let I be a real random variable with the probability density
function (pdf) p(I ) and let the representation of I be denoted
as Î . If we are given r bits to represent I , the value Î can
take on 2r values. The general problem of quantization is to
find the optimum set of values for Î , called the code points
Î1, Î2, …and the regions S1, S2, . . ., that are associated with
each code point.

According to quantization theory [8], a 2r -rate distortion
code consists of an encoding function,

f : R → C, (1)

where C is a subset with 2r elements of the set of all integers
Z and a decoding function

g : C → R. (2)

The encoding function defines a partition {S1, . . . , S2r } of R

such that Si ∩ Sj = ∅ for all i �= j and ∪2r

m=1 Sm = R.
The interval Sm is called the m-th quantization region and
it is defined such that f (I ) is constant for all I ∈ Sm and
g( f (I )) = Îm for all I ∈ Sm .

The quantization can be uniform or non-uniform [9], [10].
A uniform quantizer is recommended when the input source
is either uniformly or non-uniformly distributed. In the latter
case, it is mandatory that the quantizer is followed by an
entropy coder where the statistics of the input source are taken
into consideration. Otherwise, it is better to calculate some
non-uniform quantization regions such that finer regions are
associated to more likely values. This paper does not make any
assumption on the probability distribution of the input source.

Most uniform quantizers for signed input value can be
classified as being of one of two types: mid-rise and mid-tread.
A typical mid-rise uniform scalar quantizer with a quantization
step size q > 0 can be expressed as

Qq (x) = q ×
(⌊

x

q

⌋
+ 1

2

)
, (3)

where �x	 corresponds to the greatest integer less than or equal
to x . For simplicity, it is assumed that C = Z is not finite.

The definition of the mid-tread uniform scalar quantizer
with deadzone ι > 0 is given by:

Qq,ι(x) = sgn(x) max

(
0,

⌊ |x | − ι/2

q
+ 1

⌋)
× q, (4)

where sgn(I ) denotes the sign of I : sgn(I ) = 1 if I > 0,
sgn(I ) = −1 if I < 0 and sgn(0) = 0. The zero output of
the quantizer is the interval

[−ι
2 , ι

2

]
called the deadzone. The

standard mid-tread quantizer corresponds to ι = q .
It has been proven that given a certain statistical distribution

of the signal it is possible to compute the best partition that
minimizes the power of noise using the non-uniform Lloyd-
Max quantizer which is explicitly described in [11], [12].

B. Neuro-Inspired Quantization

The neuro-inspired quantizer proposed in this paper encodes
the input value as a spike train and it exploits this spike train
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to estimate Î . More formally, it is assumed that the input value
I takes the form of a constant signal

I (t) = I 1[0≤t≤T ](t), (5)

for a given duration T > 0 where 1 is the indicator
function which equals 1 if 0 ≤ t ≤ T , and 0 otherwise.
Without any loss of generality, it is assumed that I ≥ 0.
It will be mathematically defined later on (see section IV-B),
that if I is real, the sign of I will be coded separately
with a dedicated single bit. Here, the encoding function is
a function f (I ) which transforms the signal I (t) into a
spike train

f : I �→
{

t1(I ), t2(I ), . . . , t N(I )(I )
}

=
{

t1, t2, . . . , t N
}

of N = N(I ) increasing positive time values t j = t j (I )
depending on I . The decoding function g(·) transforms the
spike train f (I ) in an estimated real value Î = g( f (I )).
In the rest of the paper, the symbol I is omitted in the
spike times t j and N in order to simplify the notations. The
duration T acts as a parameter to control the number N of
spikes.

C. Basics of Rate Distortion Theory

The distortion of a quantizer can be measured by the Mean
Squared Error (MSE):

D = MSE(I, Î ) =
L∑

m=1

∫
Sm

(I − Îm)2 p(I ) d I, (6)

where L is the number of the quantization layers. In the case
of a high resolution uniform scalar quantizer, when q is small
(or equivalently L sufficiently large), assuming that the pdf
p(I ) is smooth enough, it is shown in [9] that

D ≈ q2

12
. (7)

The rate r is given in bits/symbol (here, a symbol corresponds
to a codeword) by the entropy of the codewords:

r = −
L∑

m=1

pm log2 pm, (8)

where pm = ∫
Sm

p(I ) d I is the probability of the quantization
interval Sm . We also get from [13] that:

r ≈ H (I ) − log2 q, (9)

where H (I ) = ∫ +∞
−∞ p(I ) log2 p(I ) d I is the Shannon entropy.

Finally, we obtain the famous rate-distortion approximation

D = D(r) ≈ 1

12
22H(I )2−2r , (10)

which gives the optimum value of D for a given rate r in the
case of a high resolution uniform quantizer.

III. SPIKE GENERATION AND INTERPRETATION

This section describes usual mechanisms to transform a
signal into a spike train and to recover it from the spike
train.

Fig. 2. LIF model with observation window T and threshold θ . If the intensity
I satisfies R I > θ , the neuron spikes (case I ∈ {I2, I3}), otherwise it remains
silent (case I = I1).

A. Spike Generation Mechanism (SGM)
In the literature, there are several models which approximate

the neural activation. Hodgkin and Huxley [14] reproduced
the neural activity with high accuracy deriving a set of four
nonlinear differential equations which approximate the neural
behavior with a lot of details at the level of ion channels.
However, these equations are difficult to manipulate. A pos-
sible reduction of these equations leads to either a system
of two-dimensions [15]–[18] or the Spike Response Model
(SRM) [3], [19], [20]. On the one hand, the advantage of the
two-dimension simplification is the plane analysis of the neural
behavior. On the other hand, based on the SRM, it is proven in
[19] that the Hodgkin-Huxley equations can be approximated
by the simpler Leaky Integrate-and-Fire (LIF) model [3].

The well-known LIF model is simple [3]. It approximates
the neuronal encoding process by a first order differential
equation derived from a resistor-capacitor circuit:

I (t) = u(t)

R
+ C

du

dt
(t), (11)

where I (t) is the input signal, C is the capacitance, R is
the resistance and u(t) is the voltage across the resistor. The
voltage u(t) models the membrane potential of a neuron. It is
assumed that u(t = t(k)) = 0 mV after the emission of a spike
at time t(k), k ≥ 1, with the convention that t(0) = 0 ms.

The solution uk(t) of the differential equation (11) for the
constant signal I (t) in (5) after the emission of the k-th spike
at time t(k) is given by:

uk(t) = RI

[
1 − exp

(
− t − t(k)

τ

)]
, ∀t ≥ t(k), (12)

where τ = RC is the time constant. The neuron spikes when
uk(t) crosses the threshold θ > 0. The moment t(k+1) the
neuron spikes is called the (k +1)-th firing time and it satisfies

uk(t
(k+1)) = θ. (13)

It follows that

t(k+1) =
⎧⎨
⎩

+∞, if RI ≤ θ,

t(k) − τ ln

[
1 − θ

RI

]
, if RI > θ.

(14)

Just after the emission of the (k + 1)-th spike at time t(k+1),
the potential is reset to zero, i.e., uk+1(t(k+1)) = 0, and
the integration of the potential starts all over again for t >
t(k+1) until the next spike emission. The asymptotic value RI
determines the generation of the spikes: if RI ≤ θ , there is
no spike, otherwise, a spike is emitted (see Fig. 2). This paper



4308 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

does not consider any absolute refractory period [3] after the
spike emission.

B. Spike Interpretation Mechanism (SIM)
Due to the fact that spikes are characterized as stereotype

events, the information which is carried on a spike train is
either the number of spikes (rate) or the exact time each
spike arrives. This subsection is dedicated to the analysis
and comparison of the most widely used Spike Interpretation
Mechanisms (SIMs), the rate-SIM and the time-SIM.

1) Rate-SIM: The spiking activity of a neuron over time is
usually represented by a graph called the raster plot. Under
the assumption that the neurons are independent, it has been
proven that for a given input I (t) the firing rate is a stochastic
process which causes irregular interspike intervals reflecting
a random process [21], [22]. Then, the instantaneous spike
rate (mean firing rate) can be obtained either by averaging the
spikes of an individual neuron (spike count), or by averaging
the firing rate over multiple repetitions of the same experiment
(spike density) [3]. The performance of Rate-SIM methods
is poor if (i) it is impossible to repeat the experiment, and
(ii) when the observation window is too short such that the
neurons are able to emit only a small number of spikes.

2) Time-SIM: An alternative strategy is to interpret a code
of spikes by exploiting the time a neuron emits its spikes.
Generally, the time-to-first-spike is a time-SIM which assumes
that the neuron which fires shortly after the onset of the
stimulus is more sensitive to the input comparing to other
neurons which are activated somewhat later [23]–[27]. Another
famous time-SIM code is the Rank-Order-Coder (ROC) which
identifies the spike train of a neuron by ranking the arrival of
the first spike [4], [23], [28]. Finally, the LIF can also be
considered as a time-SIM as discussed hereafter.

According to Subsection III-A, the LIF encodes the input
stimulus into the spike train

{
t(1), . . . , t(N)

}
. From the def-

inition of the arrival times t(k+1) in (14), it follows that
the delay d = d(I ) between two spikes arrivals is constant
because I is assumed constant in the observation window T ,
i.e., d = t(k+1) − t(k) for any k, and satisfies

d(I ) =
⎧⎨
⎩

+∞, if RI < θ,

h(I ) = −τ ln

[
1 − θ

RI

]
, if RI > θ.

(15)

The stronger the input signal is, the smaller the delay between
spikes. On the contrary, a weak input signal corresponds to
a larger delay. Figure 2 illustrates the LIF model for three
different temporally constant inputs I1 < I2 < I3 and a
threshold θ . Based on (15), the intensities I2 and I3 are able to
spike with delays 3 < 2. The third intensity I1 remains silent
because RI1 < θ so its spiking delay turns to infinity.

Let us denote h−1(d) the inverse function of h(I ) given by

h−1() = θ

R
(

1 − exp
(
−

τ

)) , for d �= 0. (16)

If the delay , finite or infinite, was perfectly known, the recon-
structed value would be Î :

Î =
{

0, if d > T,

h−1(), if d ≤ T .
(17)

When d is larger than the observation duration T ,
the receiver does not receive any spike. Hence, any arbitrary
value of Î is acceptable; the zero value is a reasonable choice.
In addition, there is no error of reconstruction when the delay
is smaller than T . Based on the analysis above, the substitution
of the delay d with the observation window T in (16) results
in a new threshold ι associated to the reconstruction error

ι = R h−1(T ) = θ

(
1 − exp

(
− T

τ

))−1

. (18)

Therefore, according to the aforementioned example where
the delay is known, if RI > ι there will be no reconstruction
error. It can be noted that ι > θ (since T > 0 and τ > 0) and
ι converges to θ as T becomes arbitrarily large.

The characteristic function of such a “perfect" coding/
decoding system, called the Perfect-LIF, is a thresholding
function [29]. The temporal constraint T implies that all the
input value I such that θ < RI ≤ ι cannot be recovered
by the time-constrained perfect-LIF. As discussed in [30],
the transmission of the exact value of the delay d is very
expensive regarding the number of coding bits. To decrease the
binary rate of the perfect-LIF, this paper proposes to combine
the spike counter rate-SIM and the delay coder time-SIM
mechanisms resulting in the Dual-SIMQ. The proposed quan-
tizer ensures (i) time-dependency, similar to the HVS behav-
ior, (ii) low memory cost, (iii) high reconstruction quality,
(iv) simplicity in terms of the overall processing and
(v) extension feasibility to higher dimensional signals.

IV. DUAL-SIM QUANTIZER

This section is dedicated to the analysis of our novel
Dual-SIMQ which was first briefly introduced in [30].

A. Dual-SIMQ Coder/Decoder

The first step of the Dual-SIMQ encoder consists in encod-
ing the input value I as a spike train by using the LIF
encoder (14). When the input signal is constant, since the
interspike delay (15) is constant, we propose, as a second
step, to count the spikes instead of coding the interspike
delay. The theoretical number of spikes over the time interval
[0, T ] is:

N = N(I ) =
⎧⎨
⎩

0, if RI ≤ ι,⌊ T

d(I )

⌋
, if RI > ι.

(19)

Once the number of spikes, N , has been transmitted to the
decoder, one can easily estimate the interspike delay by

d̂ =
⎧⎨
⎩

∞, if N = 0,
T

N
if N > 0.

(20)

Fig. 3 illustrates how the Dual-SIMQ counts the number
of spikes with respect to the input intensity I . For any input
intensity I such that RI < ι, there will be no spikes emitted
(N = 0) because > T . Consequently, all the input values
which belong to interval

S0 = {I > 0 : RI < ι} =
[
0, h−1 (T )

)
(21)
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Fig. 3. The input values I is arranged in quantization regions Sk depending
on the number k of emitted spikes.

will be recovered by the single output intensity Î0 = 0. Based
on the above equation, it is obvious that the length �0 of the
interval S0 is �0 = ι/R. Let us now suppose that only one
spike arrives for the input signal I , i.e., N = 1. According
to (19), all the input intensities I which have caused the
generation of a single spike belong to

S1 =
{

I > 0 : T

2
< d(I ) ≤ T

}
. (22)

According to the quantization theory [9], assuming that
the pdf, p(I ), is uniform over S1, it is well known that the
MSE error is minimized when the quantization interval is
represented by its center. Hence, we choose to reconstruct any
value I associated to S1 as its centroid value

Î1 = 1

2

(
h−1

(
T

2

)
+ h−1 (T )

)
. (23)

With the same reasoning, let us define Sk as the quantization
region associated to the input value I which has generated
exactly k spikes for any k ≥ 1, i.e.,

Sk =
{

I > 0 : T

k + 1
< d(I ) ≤ T

k

}
. (24)

The length �k of an interval Sk for k ≥ 1 is given by

�k = h−1
(

T

k + 1

)
− h−1

(
T

k

)
. (25)

A value I ∈ Sk is reconstructed by the interval’s centroid

Îk = 1

2

(
h−1

(
T

k + 1

)
+ h−1

(
T

k

))
. (26)

B. Dealing With Real Values

In signal processing, it is very common that an input
source has to be first transformed before the quantization.
The transformation enables to concentrate most of the signal
information in few low frequency components. However, after
the transformation, most of the times, occur negative values,
so here we describe how the proposed Dual-SIMQ deals with
negative inputs.

Suppose that the input value I corresponds to one of the
pixel values of an image. We have decided to assign 1-
bit per pixel to encode the sign of each input intensity as
following

sgn(I ) =
{

1, if I ≥ 0,

−1, otherwise.
(27)

Thus, the Dual-SIMQ coder receives as an input the absolute
value of each input intensity |I | and computes the number of
the emitted spikes k within the observation window T . Then,
the decoder receives the sign information, sgn(I ), and the
number of spikes k which are associated to the quantization
interval Sk represented by the centroid value | Î |. Finally,
the output of the decoder is given by Ĩ = sgn(I )| Î | and the
reconstructed values belong to the set

Ĩ ∈
{

Ĩ0, Ĩ1, . . . , Ĩk, . . .
}

. (28)

C. Dynamic Properties of the Dual-SIM Quantization

As explained in the previous sections, the performance of
the Dual-SIMQ is mainly driven by the threshold parameter θ .
Figure 4(a) shows for a zero-mean normal distribution input
with σ = 2 that when the threshold value increases, the dis-
tortion generated by the Dual-SIMQ increases. This is also
obvious by the characteristic function of the Dual-SIMQ
(see Fig. 4(b)) where the length � of the quantization steps are
wider as theta increases. However besides θ , there are other
parameters that also influence the Dual-SIMQ response such
as the observation window T and the resistance R.

1) Time-Dependent Dual-SIMQ: The “dynamic" behavior
of the Dual-SIMQ is one of its most important properties
associated with the fact that the number of spikes depends
on the length of the observation window T . According to (19),
the longer the input signal is “flashed" in front of a LIF neuron,
the more the number of spikes that correspond to this input
intensity. On the other hand, if the observation window is too
small, the number of spikes will fail to precisely describe the
input signal.

As depicted in Fig. 4(c), for a normal distribution input,
while increasing the observation window T , the quality of the
reconstructed signal substantially improves. It is remarkable
that when time is too short (T < 20 ms) the Dual-SIMQ
is not able to perceive any information regarding the input
signal. This is a natural coincidence due to the neuroscience
models and parameters embedded in the Dual-SIMQ. This
time could be intuitively explained as the propagation time
of the visual stimulus to the spiking neurons. In addition, it is
obvious that at a given time (T ≈ 100 ms) the reconstruction
quality vanishes into an asymptotic value.

2) Resistance-Dependent Dual-SIMQ: It has been shown in
[30] that the Dual-SIMQ can be approximated by a USQ for
very large values of the resistance R. In this work, we extend
this proof and we show that R determines the Dual-SIMQ
response that varies from uniform to non-uniform.

Proposition 1: Given a value of R arbitrarily large. Let
us assume that the input value I has generated exactly
N = k spikes for any k ≥ 1 during T milliseconds. Then,
the Dual-SIMQ behaves as a uniform quantizer where the
length �k of each quantization interval is constant for all k and
given by:

�k = � = θC

T
+ o

(
1

R

)
, ∀k, (29)

where the notation o(·) is the little-o notation, which is
used to express the asymptotic behavior of a function.
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Fig. 4. (a) Impact of the threshold θ on the performance of the Dual-SIMQ for a zero-mean normal distribution with σ = 2; the distortion increases with
theta (set of parameters: C = 50 F, T = 200 ms). (b) Dual-SIMQ characteristic function for different θ values (parameters: T = 150 ms, R = 100 �,
C = 1 F). (c) Impact of the size of the observation window T on the performance of the Dual-SIMQ. The reconstruction quality improves when the size of
the observation window increases (set of parameters: C = 50 F, θ = 1 V).

Then, the number of the generated spikes is

N = N(I ) =
⌊ I

�

⌋
=

⌊ T

θC
I
⌋
. (30)

Proof: Using the Taylor series it follows that, for k ≥ 1,

h−1
(

T

k

)
= θC

T
k + θ

2R
+ θT

12 R2Ck
+ o

(
1

R2

)
. (31)

Combining (25) and (31) yields (29). Furthermore, we get

ι

R
= h−1 (T ) = θC

T
+ θ

2 R
+ θT

12 R2 C
+ o

(
1

R2

)
.

Finally, a short calculation based on the Taylor series of the
logarithm shows that

d(I ) = h (I ) = θC

I
+ Cθ2

2RI 2 + o

(
1

R

)
. (32)

Incorporating (32) in (19) yields (30). �
Proposition 1 shows that the Dual-SIMQ coincides with a
USQ, Qq=�∞,ι=2�∞(x), as R becomes arbitrarily large, with a
quantization step q = �∞. This confirms that a large T yields
an accurate quantization. On the opposite, a large value of θ
or C decreases the accuracy of the quantizer.

Proposition 2: Given a value of R relatively small, then the
Dual-SIMQ behaves as a non-uniform quantizer. The length
of each quantization interval depends on the number of spikes
k. When k increases, the length �k converges to an asymptotic
value

lim
k→∞ �k = θC

T
. (33)

Proof: See the proof in the Appendix A. �
Figure 5 illustrates how the value of R affects the length

� of the quantization intervals in function of the number
of spikes. When R is small and k ≥ 1, the length of the
quantization interval is a strictly increasing function which is
upper-bounded by �0. However, when R is large, the Dual-
SIMQ becomes completely uniform. As we show later on,
when the Dual-SIMQ is applied to a normal distribution signal,
it is expected to better encode the low than the high intensities
when R is small. On the contrary, whatever the intensity is,
if R is high it will behave towards a uniform manner. The
interpretation of the above behavior will be more evident in
section V.

Fig. 5. Performance of the Dual-SIMQ as (i) non-uniform quantizer (small
R) and (ii) uniform quantizer (R arbitrarily large). The number of spikes
varies in function of the intensity I (set of parameters: θ = 5 V, C = 10 F
and T = 100 ms.

V. NUMERICAL RESULTS

The proposed neuro-inspired Dual-SIMQ is compared to the
state-of-the-art and evaluated in terms of the rate- distortion
trade-off on both simulated and real data against.

A. Experiments With Simulated Data

In this section, we aim to study the validity of the
rate-distortion theory which is determined by the comparison
of the rate-distortion approximation and the performance of the
Dual-SIMQ when the distribution of the input signal is normal.
It has been proven in Section IV-C, that the Dual-SIMQ is a
dynamic quantizer that performs either as a uniform or as
a non-uniform quantizer. The distortion approximation (7) is
only related to an asymptotic behavior thus, the comparison
is considered against the uniform Dual-SIMQ. If the constant
length of the quantization intervals �k (33) takes the place of
the quantization step q in (7), it is trivial to visualize that the
distortion approximation perfectly overfits the behavior of the
Dual-SIMQ leading to the following formula:

D = (θC)2

12T 2 ∼ α

T 2 . (34)

Interestingly, we can see that the distortion of the Dual-SIMQ
quantizer is inversely proportional to the observation time T
for given θ and C .

Fig. 6 compares the performance of the Dual-SIMQ and
the USQ with deadzone for input samples following zero
mean Laplacian and Gaussian i.i.d. distributions with σ = 2.
According to [13] for a USQ with deadzone, there is an
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Fig. 6. Comparison of the asymptotic performance of the Dual-SIMQ with
the USQ with deadzone for inputs following (a) the Laplacian distribution
and (b) the Gaussian distribution (set of parameters: C = 1 F, R = 103 �,
θ ∈[5,800] V and T = 150 ms).

Fig. 7. Comparison between (i) the Dual-SIMQ, (ii) the USQ with deazone
ι = q, (iii) the USQ without deadzone (ι = 2q) and (iv) the non-uniform
Lloyd quantizer for 100 synthetic normal zero mean distribution signals (set
of parameters: C = 1 F, T = 150 ms, θ ∈ {1, R, . . . , 10R} V, ι = q,
q = {1, 8, 10, 15, 20, 40, 60, 80, 100}).

optimal relationship between the quantization step q and the
deadzone ι; for Laplacian distributions the deadzone equals
ι = 2q and for Gaussian distributions ι = q . Proposi-
tion 1 has shown that the performance of the Dual-SIMQ is
asymptotically equivalent to the optimal USQ with deadzone.

It is proven in Section IV, that by tuning some of the
Dual-SIMQ parameters its behavior might be uniform or non-
uniform. For this reason, we have decided to contrast the
performance of the Dual-SIMQ with the uniform USQ and
the non-uniform LQ. Figure 7 illustrates the average behavior
of (i) the proposed Dual-SIMQ, (ii) the USQ with deadzone,
(iii) the USQ without deadzone and (iv) the LQ when trained
with 100 synthetic zero mean normal distribution images with
σ = 2. As expected, for the same rate values the performance
of Dual-SIMQ, outperforms the USQ without deadzone, coin-
cides with the optimal USQ with deadzone ι = q , while it
approximates the capacity of the optimal LQ quantizer. The
quality evaluation of the results was measured by the PSNR
metric (35) while the rate was computed according to (9).
Throughout this paper the entropy is given in bits per pixel
(bpp).

PSNR(I, Î ) = 10 ∗ log10

(
2552

MSE(I, Î )

)
, (35)

where MSE(I, Î ) is defined by (6).

B. Dual-SIMQ on Real Data

This section is dedicated to the comparison of the proposed
neuro-inspired quantizer to the state-of-the-art. Figure 8 illus-
trates the schema of every quantization architecture that
participates to this comparison. The first quantization is
when the input value I is quantized by a USQ or the LQ
(see Fig. 8 (a) and (b) respectively). The second type of
quantization is composed of three steps: (i) the input value
I is transformed in a spike train with a constant interspike
delay d(I ), (ii) the interspike delay d(I ) is quantized with a
USQ or the LQ (see Fig. 8 (c) and (d), respectively) (iii) the
reconstructed value Î is given by:

Î =
{

0, if d̂ > T,

h−1(d̂), otherwise,
(36)

where h−1(·) is defined in (17). The third quantization is given
by the Dual-SIMQ (see Fig. 8 (e)).

The first goal of this section is to show that, in terms of
compression, counting the number of spikes is more efficient
than quantizing the delays (see Fig. 8 (e) versus (c)-(d)).
The second mission is to compare the proposed neuro-inspired
quantizer to the state-of-the-art (i) USQ with and/or without
deadzone and (ii) LQ when applied directly to the pixel inten-
sities (see Fig. 8 (e) versus (a)-(b)). Let the input intensities
I1, . . . , In correspond to the pixel values of each input image
I = (I1, . . . , In).

Figure 9 visually compares the performance of all
the aforementioned quantization architectures. As expected,
the Dual-SIMQ (see cases (e.1) and (e.1)) outperforms the
state-of-the-art USQ (see cases (c.1) and (c.2)) and LQ
(see cases (d.1) and (d.2)) applied to the delays. This is evident
both numerically, by the fact that for similar rates the quality
assessment using the PSNR metric (35) is higher, and visually
especially for lower rates (see cases (c.2),(d.2) and (e.2)),
where not only the details but also the intensities range of
the input image are better approximated by the neuro-inspired
method. For instance, paying attention to the brim of the
hat or the woman’s hand we observe that the Dual-SIMQ
has better approximated the original intensities. Figure 9
verifies that for the same rate r (bpp) counting the number of
spikes (see cases (e.1) and (e.2)) is as efficient as quantizing
the pixel intensities uniformly (see cases (a.1) and (a.2))
but less efficient than the non-uniform manner (see cases
(b.1) and (b.2)).

Similar to Fig. 7, the experiment in Fig. 10 compares the
performance of Dual-SIMQ to the state-of-the-art for real data.
In particular, it exploits 100 images with n = 256×256 pixels
taken from the USC-SIPI database [31]. The best performance
of the proposed neuro-inspired quantizer is the one of the
uniform Dual-SIMQ (blue diamond curve). Its rate-distortion
behavior is similar to the USQ with deadzone (red dotted
curve) but much better than the USQ without deadzone (red
dashed curve). As expected, the optimal quantizer still remains
the LQ. From the computational complexity point of view,
the LQ requires a training process which is time demanding
whereas Dual-SIMQ and USQ require only 0.0137 sec. and
0.0112 sec., respectively to quantize/dequantize a still image
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Fig. 8. Quantization schemes used to evaluate the performance of Dual-SIMQ: (a) USQ Qq,ι applied to I , (b) Lloyd Quantizer QL applied to I , (c) USQ
Qq,ι applied to delays d(I ), (d) Lloyd Quantizer QL applied to delays, and (e) Dual-SIMQ.

Fig. 9. Visual comparison between Dual-SIMQ (e.1) and (e.2)), USQ applied to the delays (c.1)-(c.2), Lloyd applied to the delays (d.1)-(d.2), USQ applied
to the pixel intensities (a.1)-(a.2) and Lloyd applied to the pixel intensities (b.1)-(b.2) for similar rates (set of parameters: R = 104 �, C = 1 F, T = 100 ms).

with 230 ×230 pixels on a MacBook Pro with a 2.6GHz Intel
Core i7 processor.

C. Progressive Reconstruction

The Dual-SIMQ is a time-dependent quantizer as discussed
in section IV-C. It is also evident according to Proposition 2
and Proposition 1 that the lengths of the quantization regions
depend on T , especially the quantization step �∞ vanishes as
T becomes arbitrarily large. Fig. 11 illustrates the dynamic
behavior of the Dual-SIMQ comparing its reconstruction per-
formance for different observation windows T .

As expected, when the available observation time of the
Dual-SIMQ is short, the number of spikes corresponding to
high intensities is limited. As a result, the quality of the
reconstruction is poor because most of the small intensities
will be represented by one or none spikes. On the other
hand, when the observation window is large almost all the
pixel intensities will generate some spikes improving in that
sense the reconstruction quality. As a consequence, the pro-
gressive enhancement of the reconstructed signal is definitely
among the most important and ground-breaking benefits of
the Dual-SIMQ taking under consideration that none of the
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Fig. 10. Comparison between (i) the Dual-SIMQ, (ii) the USQ with
deazone ι = q, (iii) the USQ without deadzone (ι = 2q) and (iv) the
non-uniform Lloyd quantizer for 100 real images taken from [31] (set of
parameters: C = 1 F, T = 150 ms, θ ∈ {1, R, . . . , 10R} V, ι = q,
q = {1, 8, 10, 15, 20, 40, 60, 80, 100}).

Fig. 11. Dual-SIMQ progressive reconstruction for T = 50 ms (a)-(b)and
T = 150 ms (c)-(d) (set of parameters: R = 103 � and C = 1 F).

state-of-the-art quantization methods is able to improve the
quality of the signal along time.

VI. CONCLUSION

This paper has introduced a novel, bio-inspired
encoder/decoder of natural images called the Dual-SIMQ.
The Dual-SIMQ encoder is based on the LIF model, a very
efficient spike generation mechanism which approximates
the neural spiking process. The Dual-SIMQ decoder is a
combination of two spike interpretation mechanisms which
approximates the spike arrival delay by counting the number
of spikes within a given observation window.

The Dual-SIMQ framework can play a pivotal role in the
signal, image and video processing fields because it allows
to encode the input values in a simple and dynamic manner,

mimicking the neural behavior. At the same time, it enables
to progressively reconstruct the input value.

We aim at extending this work and apply the Dual-SIMQ
to videos where time is an important parameter which is
directly linked to the frame rate of the video stream. Last
but not least, the “bigger picture" of this work is the devel-
opment of a compression system that understands the visual
word according to the human visual perception. Within this
framework, merging different neuro-inspired processing tools,
such as the retina-inspired filter [32] and the proposed Dual-
SIMQ, could establish an alternative signal reconstruction
methodology depending on neurons capabilities.

APPENDIX A
PROOF OF PROPOSITION 2

Let f : [1,+∞) �→ R be the differentiable function:
f (x) = 1

1 − exp
(
−α

x

) (37)

where α = T/τ > 0 and let g(x) = f (x + 1) − f (x). It is
straightforward to verify that

�k = θ

R
g(k), ∀k ≥ 1.

Let us show that g is an increasing function. The first deriva-
tive of g is

g�(x) = f �(x + 1) − f �(x) (38)

where

f �(x) =
α exp

(
−α

x

)
x2

(
1 − exp

(
−α

x

))2 . (39)

A short calculation shows that

f �(x) = α

4x2 sinh2
( α

2x

) (40)

where sinh(·) is the hyperbolic sine. Let u : [1,+∞) �→ R be
the function defined by

u(x) = x sinh
( α

2x

)
.

The function u(x) is strictly decreasing over [1,+∞) since
its first derivative is strictly negative. Indeed, we get

u�(x) = sinh
( α

2x

)
− α

2x
cosh

( α

2x

)
where cosh(·) is the hyperbolic cosine. So, u�(x) < 0 is
equivalent to

tanh
( α

2x

)
<

( α

2x

)
.

A short calculation shows that

tanh(y) < y, ∀y > 0,

where tanh(·) is the hyperbolic tangent, which proves that
u�(x) < 0 for all x ≥ 1. Since u(x) is strictly positive and
strictly decreasing, u2(x) is also strictly decreasing. It follows
that f �(x) is strictly increasing. From (38), it follows that
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g�(x) > 0 for all x ≥ 1. This shows that g is strictly increasing
and, hence, �k is a strictly increasing sequence of reals.

Let us calculate the limit of the sequence �k . The Taylor
series of h−1(x) at x = 0 is given by

h−1(x) = θC

x
+ θ

2R
+ θx

12 R2C
+ θ

R
o

( x

RC

)
, (41)

where o(·) is the little-o notation such that f = o(g) means
that there exists a function ε(x) satisfying f = gε and ε(x) →
0 as x → 0. Indeed, a short calculation shows that:

1

1 − exp(−x)
= 1

x
+ 1

2
+ 1

12
x + o(x), (42)

and the derivation of (41) is straightforward. Assuming that k
is large and applying (41) to each term of (25) yields

�k = θC

T
+ o

(
1

k

)
. (43)

The limit �∞ is immediate.
Finally, let us show that �0 > �∞. It is well known that

exp(−x) > 1 − x for all x �= 0. Hence, it follows that

�0 = ι

R
= θ

R

(
1− exp

(
− T

RC

))−1

>
θ

R

RC

T
=�∞. (44)
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