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Abstract— Although deep neural networks have achieved great
success on numerous large-scale tasks, poor interpretability
is still a notorious obstacle for practical applications. In this
paper, we propose a novel and general attention mechanism,
loss-based attention, upon which we modify deep neural
networks to mine significant image patches for explaining which
parts determine the image decision-making. This is inspired
by the fact that some patches contain significant objects or
their parts for image-level decision. Unlike previous attention
mechanisms that adopt different layers and parameters to
learn weights and image prediction, the proposed loss-based
attention mechanism mines significant patches by utilizing
the same parameters to learn patch weights and logits (class
vectors), and image prediction simultaneously, so as to connect
the attention mechanism with the loss function for boosting
the patch precision and recall. Additionally, different from
previous popular networks that utilize max-pooling or stride
operations in convolutional layers without considering the
spatial relationship of features, the modified deep architectures
first remove them to preserve the spatial relationship of image
patches and greatly reduce their dependencies, and then add
two convolutional or capsule layers to extract their features.
With the learned patch weights, the image-level decision of the
modified deep architectures is the weighted sum on patches.
Extensive experiments on large-scale benchmark databases
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demonstrate that the proposed architectures can obtain
better or competitive performance to state-of-the-art baseline
networks with better interpretability. The source codes are
available on: https://github.com/xsshi2015/Loss-based-Attention-
for-Interpreting-Image-level-Prediction-of-Convolutional-Neural-
Networks.

Index Terms— Deep neural networks, loss-based attention,
patch mining, weighted sum.

I. INTRODUCTION

OVER the past few years, convolutional neural net-
works (CNNs) have exhibited powerful capability on

discriminative feature extraction and achieved tremendous
success on many computer vision and pattern recognition
tasks [1]–[5]. However, CNNs still confront several limita-
tions. One notorious drawback is poor interpretability, e.g.
it is difficult to understand how they reach their decisions,
and which objects or their parts determine the image-level
prediction [6], [7].

To enhance the interpretability of CNNs, most existing stud-
ies focus on understanding the representations of pre-trained
CNNs or learning CNNs with interpretable/disentangled
middle- or high-layer representations [8]. These methods
usually collect the evidence from feature maps or filters to
discover the significant image regions or object parts for
an image-level decision, instead of directly and explicitly
explaining the significant parts during training. Additionally,
they are often based on current popular CNNs, most of which
do not maintain the spatial relationship of features in one
image because of pooling. This would make the effect of
any image part on a hidden activation highly depend on other
parts, thereby increasing the difficulty of interpretation, e.g.
which parts determine the image-level prediction. To better
understand or preserve the spatial relationship of features,
capsule networks [9], [10], which utilize vector-output cap-
sules to replace the scale-output feature detectors of CNNs,
employ dynamic routing to substitute one popular operator,
max-pooling. Because max-pooling only extracts the most
meaningful information in a local pool and potentially loses
some useful information. Nevertheless, dynamic routing is
an extremely expensive procedure, with consuming very high
computation and memory costs, especially for multiple routing
layers spending much training and inference time [11]. Addi-
tionally, dynamic routing cannot explicitly take into account
the significance of patches in an image, because it directly
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Fig. 1. The idea of the proposed convolutional architecture using a weighted sum of patches for the image-level decision. We remove max-pooling or stride
operations in convolutional layers to preserve the spatial relationship of patches, and we only utilize stride in one convolutional layer to extract patch features
for patch logit generation. A detailed convolutional architecture is displayed in the middle panel of Fig. 3.

[
αi1, · · · , αi M

]T denote the weight of patch logits[
pi1, · · · , pi M

]
, respectively. M is the number of patches.

calculates the class probability of each capsule instead of
patches. However, discovering significant patches in one image
is beneficial to the understanding of the image-level decision
and even the improvement of image prediction accuracy,
because some patches might contain the significant objects
or their parts.

Attention mechanisms [12] can be utilized to discover the
significant patches, because they are capable to assign large
weights to significant patches and meanwhile provide small
weights to trivial patches. However, current attention mech-
anisms [13] are widely applied to nowadays popular CNNs,
such as VGG [14], GoogleNet [15] and ResNet [5], which
often do not preserve the spatial relationship of patches in
an image. More importantly, they usually learn patch weights
and image prediction with different layers and parameters,
so that the image classification accuracy significantly depends
on the effectiveness of learned patch weights. Unfortunately,
attention mechanisms easily assign large weights to trivial
patches, thereby potentially decreasing model performance.

To better explain the image-level decision of deep neural
networks (DNNs), in this paper, we propose a general atten-
tion mechanism to mine significant patches in an image
for decision-making, with considering the patches’ spatial
relationship yet without using any additional annotations. The
proposed attention mechanism can be applied to different deep
architectures including convolutional or capsule networks,
so that their image-level decision is a weighted sum of patches.
Three major contributions of this paper are listed as follows:

• We propose a novel loss-based attention mechanism,
namely Loss-Attention, by using the same parameters to
learn patch weights and logits (class vectors), and image
prediction simultaneously, for connecting the attention
mechanism with the loss function. Specifically, the pro-
posed attention mechanism is to mine significant patches
and the new loss function is to further boost their preci-
sion and recall.

• Based upon Loss-Attention, we propose two deep archi-
tectures by modifying current popular CNNs with pre-
serving the spatial relationship of patches in an image
for better interpretation, e.g. the image-level decision is
a weighted sum of patches. One architecture exploits
convolutional layers and the other one adopts capsule
layers. For clarity, we present the idea of the proposed
convolutional architecture in Fig. 1. The proposed capsule

architecture is very similar to Fig. 1 and can be found on
released codes.

• Extensive experiments on multiple large-scale benchmark
databases demonstrate that the proposed deep archi-
tectures can obtain higher or competitive classification
accuracy to current popular convoluational or capsule
networks, with better interpretable capability. It is worth
noting that our proposed capsule architecture can obtain
competitive or even better performance than the popular
convolutional networks on large-scale complex databases.

II. RELATED WORK

In this section, we will briefly review some related work
including visual interpretability of CNNs, part-based models,
capsule networks, and attention-based deep multiple instance
learning (MIL).

A. Visual Interpretability of CNNs

Numerous methods have been proposed to explore visual
interpretability of CNNs, including network visualization,
model diagnosis, the disentanglement of CNN representations,
and explainable models. References [16], [17] are popular
network visualization methods, which exhibit the image
appearance that maximizes the score of a given unit.
Another popular network visualization technique is the
up-convolutional net [18], which inverts CNN feature maps
into images. Model diagnosis methods [7], [19]–[21] ana-
lyze CNN features to visual image regions that contribute
the most to the decision-making of CNNs. Disentangling
CNN representations is to disentangle complex feature maps
in conv-layers into human-interpretable representations. [6],
[22] select units from feature maps to describe “scenes”
and [23] discovers objects from feature maps of unlabeled
images. Reference [24] mines object-part concepts from a
pre-trained CNN by extracting certain neural units from fea-
ture maps of a filter, with using some object part annotations.
Most of aforementioned methods focus on the understand-
ing of a pre-trained CNN, but explainable models aim to
learn disentangled representations of neural networks with
clear semantic meanings. Reference [25] is a popular inter-
pretable method, which automatically assigns each filter
in a high conv-layer with an object part during training.
Additionally, visual interpretability methods usually generate
class-discriminate representations, fine-grained representations



1664 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

or both. Unlike previous fine-grained approaches [17], [26]
learning pixel-space representations, the proposed method is
similar to the class-discriminate methods [21], [22], which
generate class-discriminative representations. This is because
the proposed method learns patch weights by using class
information of the corresponding image. Previous methods
collect evidence from filters or feature maps to implicitly
explain the decision-making of nowadays CNNs, which do
not consider the spatial relationship of features. By contrast,
the proposed method considers the patches’ spatial relations to
directly and explicitly utilize a weighted sum of patches for an
image-level decision, and mines the significant patches, which
contain objects or their parts determining the image-level
prediction.

B. Part-Based Models

Object parts play a significant role in object recognition,
because they are able to capture localized discriminative
features of an object. Numerous detection methods are on
the basis of object parts. One popular method is deformable
part model (DPM) [27], which learns part constellation models
with the latent discriminative support vector machine (SVM).
However, these methods require ground-truth bounding box
annotations. Recently, some CNN-based methods learn or
select object parts without any additional part or bounding
box annotations. Reference [23] learns part models by finding
constellations of neural activation patterns. Reference [28]
utilizes elastic non-negative matrix factorization to analyze
the response of a pre-trained CNN and extract salient image
regions. Reference [29] proposes a multi-attention CNN in
order to reinforce part generation and feature learning. These
methods are usually on the basis of pre-trained CNNs and
most of them cannot directly and explicitly measure the signif-
icance of object parts on image-level decision during training.
By contrast, the proposed method modifies the architectures
of CNNs to preserve the spatial relationship of patches, so that
the image-level decision is a weighted sum of patches. And
meanwhile it can directly mine significant objects or their parts
during training.

C. Capsule Networks

A capsule is constituted by a group of neurons [9] and
thus it outputs an activity vector instead of a scalar to
represent different properties of a specific entity, such as an
object or its part. Because CNNs cannot preserve the spatial
relationship of features by using the pooling layer, e.g. max-
pooling, [10] proposes dynamic routing using “routing-by-
agreement” between capsules to substitute max-pooling. So it
can obtain better performance and more benefits on image
interpretation. Reference [30] adopts EM routing for matrix
capsules with representing each entity by a pose matrix.
Reference [31] formulates dynamic routing as an optimiza-
tion problem. DeepCaps [11] proposes 3D-convolution-based
routing to replace the original dynamic routing for significantly
decreasing computation costs. Although capsule networks have
achieved promising performance on several popular simple
databases and shown strong benefits on image interpretation,
their performance on complex databases is still not on a par

with that of CNNs. Additionally, the routing strategy can be
viewed as an attention mechanism [30], but it is different
from the proposed Loss-Attention: (i) The vector outputs of
capsules have distinct length in Loss-Attention, while the
routing strategy usually squashes the vector outputs of capsules
to equal length. This means that Loss-Attention and the routing
strategy utilize different ways to calculate the significance of
capsules. (ii) Loss-Attention aims to discover the significant
patches in an image so that the image-level decision is a
weighted sum of patches, but the routing strategy fails to
explicitly explore the significance of patches for the image
decision-making.

D. Attention-Based Deep MIL

MIL has been widely applied to real-world applica-
tions [32], [33], where only a general statement of the
category is given for multiple instances. For example, one
bag is composed of tens or hundreds of instances, and it
is usually described by a single bag label and there is no
label information associated with instances. Although attention
mechanisms [12], [34] with DNNs have been successfully used
in many tasks, such as image captioning and classification, few
efforts focus on attention mechanisms for deep MIL. One pop-
ular method is attention-based deep MIL (ADMIL) [13], which
proposes two attention mechanisms by using a two-layered
neural network to learn instance weights. However, these
two attention mechanisms might attain inferior performance
to mean-pooling [35] on large-scale image classification in
many cases, because they can easily assign large weights
to trivial patches. To reduce the effect of trivial patches,
loss-based attention mechanism [36] has been proposed to
simultaneously learn instance weights and generate bag-level
prediction. But its attention mechanism is on the basis of
the softmax+cross-entropy function, thereby possibly being
ineffective to remove the trivial patches and only suitable
for the single-label applications. By contrast, the proposed
Loss-Attention is based on the �2,1-norm to encourage row-
sparsity. It can be applied to both single-label and multi-label
scenarios, and simultaneously learn patch weights and logits
(class vectors), produce image-level prediction, and remove
the trivial patches.

III. CONNECTING ATTENTION MECHANISM

WITH LOSS FUNCTION

A. Preliminaries

We first briefly review two popular loss functions
including softmax+cross-entropy and sigmoid+binary-cross-
entropy, which will be utilized in the proposed objective for
tackling with single-label and multi-label tasks, respectively,
and an �2,1-norm used in our attention mechanism. For brevity,
we introduce the two loss functions using only one training
sample.

1) Softmax+Cross-Entropy: Given a single-label training
sample X ∈ R

C0×H×W and its corresponding one-hot label
vector y = {yk}Kk=1 ∈ {0, 1}K , and an L-layer deep neural

network fθ (·) with the parameters
{
θ l

}L
l=1, where C0, H and

W denote image channels, height and width, respectively, K is
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the number of classes, and θ l represents the parameters of the
lth-layer in the neural network. Let z = {zk}Kk=1 = fθ (X) ∈
R

K be the output for X in the Lth layer of the network, and
s(z) ∈ R

K be the estimated class probability of X, where
s(·) denotes the softmax function and

∑K
k=1 s(z)[k] = 1.

To measure the dissimilarity between the true class probability
y and the estimated class probability s(z), the cross-entropy
loss is [37]:

Lce = −
K∑

k=1

yklog(s(z)[k]). (1)

Because X is a single-label sample and y ∈ {0, 1}K , we have∑K
k=1 yk = 1. Suppose that X belongs to the t th class, i.e.

yt = 1 and
∑K

k=1,k �=t yk = 0, Eq. (1) equals:
Lce = −log(s(z)[t]). (2)

2) Sigmoid+Binary-Cross-Entropy: When X is a
multi-label training sample, because the softmax function
is usually suitable for single-label classification tasks and
exhibits inferior performance on multi-label applications,
σ(z) ∈ [0, 1]K is often employed to handle multi-label tasks,
where σ(·) denotes the sigmoid function. Binary-cross-entropy
is defined as:

Lbce = −[y · log(σ (z))+ (1K − y) · log(1K − σ(z))]. (3)

where 1K ∈ R
K is a vector with all entries being ones.

3) �2,1-Norm: For a matrix Z = [z1, z2, · · · , zN ]T ∈
R

N×K , the �2,1-norm of Z is defined as:

‖Z‖2,1 =
N∑

i=1

√√√√ K∑
k=1

z2
ik . (4)

Eq. (4) can encourage the row-sparsity of Z [38], [39], because
it is the minimum convex hull of the �2,0-norm of Z, i.e.
‖Z‖2,0, which is to count the number of non-zero rows
of Z. Additionally, Eq. (4) has the property of rotational
invariance [40].

B. Loss-Based Attention

Traditional attention mechanisms [13] learn patch weights
and image prediction using different layers and parame-
ters, and thus the image classification accuracy is signifi-
cantly affected by the effectiveness of learned patch weights.
To address this issue, we learn the patch weights and logits and
generate image prediction simultaneously in order to connect
the attention mechanism and the loss function. Specifically,
the proposed attention mechanism is on the basis of the
�2,1-norm [40] and connects with the loss function, i.e. sharing
the same parameters with a fully connected layer for image
classification and calculating patch weights based on their
logits. For clarity, we show the difference between traditional
attention mechanisms and the proposed one in Fig. 2. The
proposed loss function employs the learned weights to guar-
antee the selected patches to be within the same class as its
image.

Fig. 2. Two different architectures of attention mechanisms. Left: Tra-
ditional attention mechanism. Right: The proposed attention mechanism.
[h1, h2, · · · , h M ] represents the feature representation of patches, θa1 , θa2

and θal are the parameters of the attention mechanism for weight generation,
[α1, α2, · · · , αM ] is the weight of patches, and θ L denotes the parameters for
image prediction. Note that in the proposed attention mechanism, θ L is used
for both the attention mechanism Eq. (5) or Eq. (6) and image prediction.

1) Attention Mechanisms: Because convolutional and cap-
sule neural networks are two different architectures, which
have distinct outputs for one training sample X ∈ R

C0×H×W ,
in the following we present general attention mechanisms
for these two different architectures based on their outputs.
To avoid the abuse of symbols, we still utilize fθ (·) to
represent the L-layer convolutional or capsule neural network.

a) Attention for convolutional neural networks: Suppose
that the image X is divided into M patches, and H =
{hm}Mm=1 ∈ R

C×M is its output of the L-1th layer, and
θ L ∈ R

C×K denotes the parameters of the Lth layer, where
hm ∈ R

C represents the feature representation of the mth

patch of the image X, and C is the number of channels. Let
P = {pm}Mm=1 be the Lth-layer output for image patches, where
pm ∈ R

K is the logit (class vector) for the mth patch and it
is calculated as pm = hmθ L . Then we present the proposed
attention mechanism as follows:

α j =
√∑K

k=1 p2
j k

∑M
m=1

√∑K
k=1 p2

mk

, (5a)

α j ← max(α j − ξ
M , 0)∑M

m=1 max(αm − ξ
M , 0)

, (5b)

h j ← α j h j , (5c)

z =
M∑

m=1

hmθ L, (5d)

where α j is the attention weight of the j th patch of X, ξ ∈
[0, 1] is a threshold to remove the trivial patches, and z ∈ R

K

is the Lth-layer output for X. It is worth noting that Eq. (5a)

utilizes the �2,1-norm, i.e.
∑M

m=1

√∑K
k=1 p2

mk , to encourage

the row-sparsity of P ∈ R
M×K , so as to enhance the weights of

significant patches and decrease the weights of trivial patches.
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Additionally, we empirically set the maximum of ξ as 1 during
the training process, because all patch weights might be zeros
during training when ξ > 1.

b) Attention for capsule neural networks: Suppose that
H = {Hm}Mm=1 ∈ R

C×M×D is the output of the L-1th layer
of a capsule network for X, where Hm = {hcm}Cc=1 ∈ R

C×D

represents the feature representation of the mth patch for the
image X, C is the number of channels and D is the capsule
dimension. Let θ L ∈ R

D×K denote the parameters of the
Lth layer, and P be the Lth-layer output corresponding to H,
e.g. Pm = {pcm}Cc=1 be the Lth-layer output corresponding to
Hm , where pcm = hcmθ L ∈ R

K . Afterward, we introduce the
proposed attention mechanism as follows:

αr j =
√∑K

k=1 p2
r j k

∑C
c=1

∑M
m=1

√∑K
k=1 p2

cmk

, (6a)

α j = max(
∑C

c=1 αcj − ξ
M , 0)∑M

m=1 max(
∑C

c=1 αcm − ξ
M , 0)

, (6b)

αr j ← sgn(α j )αr j∑C
c=1

∑M
m=1 sgn(αm)αcm

, (6c)

hr j ← αr j hr j , (6d)

z =
M∑

m=1

C∑
c=1

hcmθ L , (6e)

where αr j denotes the attention weight of the j th patch of X at
the r th channel, sgn(·) is a function defined as: sgn(αm) = 0
if αm = 0, and sgn(αm ) = 1 when αm > 0.

2) Loss Function via Attention Weights: Based on the
attention mechanism Eq. (5) or (6), we can obtain the weight of
each image patch. However, when directly utilizing the loss in
either Eq. (2) or Eq. (3) for model training, it might have two
issues: (i) a trivial patch with a large weight, although ξ can
remove some trivial patches; (ii) low significant patch recall.
For better illustrating these two issues, based on the output
of convolutional networks for the sample X, we present two
propositions as follows. Their detailed proofs are shown in the
Appendix.

Proposition 1: For an image X with M patches, suppose
that qmt = epmt∑K

k=1 epmk
denotes the estimated class probability

of the mth patch belonging to the tth class. For the objective
of Eq. (2), there exists:

Lce ≥
∑K

k=1,k �=t
∏M

m=1(
qmk
qmt

)αm

1+∑K
k=1,k �=t

∏M
m=1(

qmk
qmt

)αm
. (7)

Proposition 2: For an image X with M patches, a lower
bound of the objective Eq. (3) is:

Lbce ≥
∑K

k=1,yk=1

∏M
m=1(e

−pmk )αm

1+∏M
m=1(e

−pmk )αm

+
∑K

k=1,yk=0

1

1+∏M
m=1(e

−pmk )αm
. (8)

Eq. (7) suggests that when Lce → 0, at least one patch
of the image X belongs to the t th class. Specifically, for any
patch, if it has qmk

qmt
→ 0 (∀k �= t) and αm 	 0, then Lce → 0.

However, Lce → 0 cannot theoretically guarantee the patch
with a large weight and more than one patch assigned to the
t th class, thereby potentially assigning a large weight to a
trivial patch and leading to the low significant patch recall.
For Eq. (8), when Lbce → 0, at least one significant positive
image patch and one negative patch will be assigned weights
larger than zeros. Unfortunately, it still cannot guarantee more
than one positive or negative significant patch to be selected,
and it is also very likely to assign a large weight to a trivial
patch. Similar findings can be obtained from the attention
mechanism for capsule networks.

To alleviate the aforementioned two issues, based on
Eqs. (2) and (3), we introduce regularization terms using
the weights obtained from the proposed attention mechanism
Eq. (5) and (6), and present the following loss functions to
handle single-label and multi-label tasks, respectively. Specif-
ically, given training data � = {Xi }Ni=1, let B denote the index
set of selected training samples in each mini-batch, yi be the
one-hot label vector of Xi and zi represent its Lth-layer output
in convolutional or capsule neural networks. The proposed loss
function for single-label tasks is:
Ls = − 1

|B|
∑

i∈B
[
∑K

k=1,yik=1
log(s(zi )[k])

+ γ (τ)
∑M

m=1
αim

∑K

k=1,yik=1
log(s(pim)[k])], (9)

where |B| denotes the number of selected images in the mini-
batch, the regularization term is to enforce selected patches to
share the same class with the image, γ (τ) is an unsupervised
weighting function to balance the weight between image and
patch classification, and τ is the number of current training
epochs.

Based on Eq. (3), the proposed loss function for multi-label
tasks is:
Lm = − 1

|B|
∑

i∈B
[yi · log(σ (zi ))

+ (1K − yi ) · log(1K − σ(zi ))

+ γ (τ)
∑M

m=1
αim max

1≤k≤K ,yik=1
log(σ (pim [k]))], (10)

where the term max
1≤k≤K ,yik=1

log(σ (pim [k])) aims to make the

selected patch share at least one class label with the image Xi .
Thus, the proposed method can discover significant patches
while ignore trivial ones.

IV. NETWORK ARCHITECTURES

Most current CNNs do not preserve the spatial relationship
of features in one image. This is because they usually adopt
max-pooling or stride operations following by large convo-
lution kernels (whose size is larger than 1), and thus the
effect of any part of the input on a hidden activation depends
on other parts. Additionally, the activity of one hidden unit
depends on the activity of other hidden units [41]. These
two causes significantly increase the difficulty to interpret
CNNs. To maintain the spatial relationship of patches and
reduce the complex dependency between input and hidden
activations for better interpretation, e.g. the image-level deci-
sion is a weighted sum of patches, we propose two schemes
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Fig. 3. The architecture of different networks for CIFAR-10. Left: the
VGG-11 model as a reference. Middle: a convolutional architecture with the
attention mechanism Eq. (5). Right: a capsule architecture with the attention
mechanism Eq. (6).

(one with convolutional layers and the other using capsule lay-
ers) by modifying CNNs. In the following, we present the two
schemes based on one popular network, VGG-11 [14] (The left
architecture of Fig. 3). Modification on other network, such
as ResNet, is similar. Due to limited space, we provide more
details on released codes.

A. Convolutional Architecture

We first remove the max-pooling operations and two
fully-connected layers in VGG-11, to preserve the spatial
relationship of patches within an image and reduce the com-
plex dependency between input and hidden activations. Next,
we introduce one convolutional layer with 512 channels, kernel
size 9 × 9 and stride 4 to determine the size and number of
patches and extract their features, and another convolutional
layer with 512 channels, kernel size 1 × 1 and stride 1 for
the nonlinear mapping of patch features. The 1× 1 kernel is
to reduce the dependency among patch features. Then we add
an attention layer using Eq. (5) to select significant patches
based on the attained patch features. For clarity, we present
this architecture in the middle part of Fig. 3.

B. Capsule Architecture

We first remove the max-pooling and two fully-connected
layers in VGG-11. Then we add two capsule layers, including

one capsule with 32 channels, kernel size 9× 9, stride 4, and
capsule dimension 16, and the second capsule with 64 chan-
nels, kernel size 1 × 1, stride 1 and capsule dimension 128,
so that the capsule architecture has the very similar number
of parameters to the convolutional one. To better show the
interaction between two capsule layers, we use an example
image for illustration as follows:

For an image X ∈ R
3×32×32, let H̃ =

{
H̃d

}16

d=1
∈

R
32×6×6×16 be the output of the first capsule layer. We trans-

form H̃ into the following form:

H̃← max(

√√√√ 16∑
d=1

H̃d − b11×6×6, 0), (11)

where H̃d ∈ R
32×6×6, b ∈ R

32 is to remove trivial image
pixels in each channel, and 11×6×6 ∈ R

1×6×6 is a matrix with
all entries being ones in order to expand b to have the same
size as H̃d . Based on Eq. (11), H̃ ∈ R

32×6×6 will be fed into
the second capsule layer. Afterward, we adopt an attention
layer using Eq. (6) to assign a weight to each capsule and
select significant patches. For better illustration, we present
this capsule architecture in the right part of Fig. 3.

The size of input images is 32× 32 in Fig. 3. When input
images have a larger size, they will consume much more
computation and memory costs. In this case, we can utilize
stride operations in convolutional layers of the backbone
network only to reduce the image size, and then adopt the
proposed two convolutional or capsule layers and the attention
layer to preserve their spatial relationship and discover the
significant patches. Note that we do not adopt max-pooling
to reduce the image size, because it might lose some useful
information. Moreover, the proposed schemes can also be
applied to other CNNs, such as ResNet [5], upon which we can
first remove the stride operations in convolutional layers, and
then add the proposed convolutional or capsule and attention
layers. In addition to VGG-11, in our experiments we apply
the proposed two schemes on a popular network ResNet18.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the proposed architectures, we conduct experi-
ments on multiple large-scale benchmark databases for image
classification and patch interpretability.

A. Implementation Details

We implement the proposed architectures by using
the PyTorch framework and adopt VGG11_bn [14] and
ResNet18 [5] as our backbone networks mostly. We employ
the optimizer, SGD, to update model parameters, and totally
run the model 200 epochs with a batch size being 128.
By default, we first train the model 100 epochs using the
learning rate η = 0.1, and then run the model 50 epochs
via the learning rate 0.01, afterwards, we set the learning
rate to 0.001 during the last 50 epochs. For the threshold
ξ in Eqs. (5)-(6), we set ξ = 0.1 in default. For the
unsupervised weighting function γ (τ), we utilize a Gaussian
ramp-up function γmaxe−‖1−T ‖2F and set γmax = 0.1, where T
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TABLE I

THE PERFORMANCE (%) OF DYNAMIC ROUTING AND MEAN-POOLING
USING SGD AND ADAM ON DIFFERENT DATABASES, WITH

EMPLOYING RESNET18 AS THE BACKBONE

linearly increases from 0 to 1 during the first 80 epochs, and
then it keeps unchanged.

B. Experimental Settings

Because the proposed architectures utilize VGG11_bn and
ResNet18 as their backbone networks, we compare them with
the baseline methods VGG11_bn and ResNet18. Additionally,
because the proposed method adds convolutional layers, which
might increase model parameters, for a fair and better com-
parison, we report the classification results of VGG16_bn and
ResNet50, which have more parameters than our convolutional
architectures. Moreover, to better illustrate the strength of
the proposed Loss-Attention, we present the results of Mean-
pooling, Attention and Gated-Attention [13], and Dynamic
Routing [10] using our modified architectures. Mean-pooling
means assigning each patch to the same weight. Note that
Attention and Gate-Attention utilize the same training proce-
dure as our method, but Mean-pooling and Dynamic Routing
do not exploit this procedure. Thus, we adopt a different
learning procedure for Mean-pooling and Dynamic Routing as
follows: we adopt the optimizer, Adam [42], with initializing
momentum parameters β1 = 0.9 and β2 = 0.99. We also
train the model 200 epochs. The learning rate ramps up to
the maximum 0.003 during the first 80 epochs by using the
function e−‖1−T ‖2F . Then the learning rate keeps unchanged
during the following 40 epochs; afterward, the learning rate
decreases to 0.0003, and it becomes 0.00003 during the last
40 epochs. The Adam momentum parameter β2 becomes
0.999 after the first 80 epochs. We run each experiment 4 times
and calculate the average accuracy. Note that for the proposed
method, the selection of batch size, optimizer type, learning
rate and its strategy is the same as the backbone network.
However, the performance of Mean-pooling and Dynamic
Routing might be greatly affected by different optimizers, e.g.,
Adam and SGD (see Table I). The major possible reason is
that Mean-pooling and Dynamic Routing cannot provide sig-
nificant patches, so that trivial patches significantly affect the
gradient update. Additionally, Adam can be viewed through
the lens of clipping, thereby leading to better performance in
heavy-tail noise settings [43].

C. Experiments for Image Classification

We run experiments to evaluate the proposed architec-
tures on image classification by using the following popular
single-label databases:

CIFAR-10 [45] consists of 60K color images in 10 classes,
each of which contains 6K images. These images are divided

TABLE II

CLASSIFICATION ACCURACY (%) OF TWO ARCHITECTURES:
CONVOLUTIONAL AND CAPSULE NETWORKS, ON THREE

LARGE-SCALE BENCHMARK DATABASES. WE BOLD THE

BEST RESULTS OF EACH ARCHITECTURE AND THEIR

SIMILAR ACCURACY WITHIN 0.1%. ∗ DENOTES
THE RESULTS OBTAINED BY ENSEMBLE

AND † MEANS THE ACCURACY ACHIEVED

BY USING THE IMAGE SIZE 64× 64

into a training set of 50K examples and a testing set of 10K
ones. Each one is aligned and cropped to 32× 32 pixels.

CIFAR-100 [45] is composed of 60K color images belong-
ing to 100 classes, with 600 images per class. These images
are also divided into 50K training and 10K testing ones. Each
image is with a size of 32× 32.

SVHN [46] has 73,257 training, 26,032 testing and
531,131 additional digits, which are from ‘0‘ to ’9’. Each digit
is cropped and resized to 32 × 32. We adopt 73,257 training
and 26,032 testing digits in our experiments.

1) Experimental Results: On the three databases,
Loss-Attention adopts Eq. (9) for classification. Besides
the four comparative methods, Mean-pooling, Attention and
Gated-Attention, and Dynamic Routing, we also present the
results of several popular capsule networks [10], [11], [47],
[48] to better evaluate the proposed capsule architecture.

Table II presents the classification accuracy of differ-
ent deep methods. For convolutional networks, when using
VGG11_bn as the backbone network, Mean-pooling, Atten-
tion, Gated-Attention and Loss-attention obtain superior per-
formance over VGG11_bn and VGG16_bn on CIFAR-10 and
CIFAR-100, and Loss-Attention achieves better classification
accuracy than the other methods on all the three databases.
Additionally, when using ResNet18 as the backbone network,
Loss-Attention also attains better accuracy than the others on
CIFAR-10 and CIFAR-100, and achieves competitive perfor-
mance with the best competitors on SVHN. These results
suggest that the proposed architectures, whose image-level
decision is a weighted sum of patches, can obtain better or
competitive classification performance with popular CNNs.
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TABLE III

CLASSIFICATION ACCURACY (%) OF LOSS-ATTENTION WITH
RESNET50 AND GOOGLENET AS THE BACKBONE ON

BENCHMARK DATABASES. BASELINE DENOTES THE

BACKBONE NETWORK. WE BOLD THE BEST

RESULTS IN EACH SETTING

For capsule networks, Loss-Attention obtains superior per-
formance over Dynamic Routing and other deep capsule
methods [10], [11], [47], [48] when using VGG11_bn and
ResNet18 as backbone networks. Moreover, Loss-Attention
with the capsule architecture can achieve competitive and
even better classification accuracy than that with the convo-
lutional architecture on CIFAR-10 and SVHN. The capsule
architecture attains slightly worse accuracy than that with the
convolutional one on CIFAR-100, probably because its capsule
dimension is similar to the number of classes. They suggest
that capsule networks with Loss-Attention can obtain superior
or similar performance to convolutional ones on complex
databases. It is worth noting that when using our proposed
architecture with VGG11_bn and ResNet18 as backbone net-
works, Dynamic Routing can attain better performance than
the deep capsule methods [10], [11], [47], [48] on CIFAR-10,
and it only attains slightly worse accuracy than DeepCaps on
SVHN.

The proposed method can also be applied to more deeper
versions of ResNet or other different architectures. Table III
displays the accuracy of Loss-Attention with ResNet50 and
GoogleNet [15] as backbone networks on CIFAR-10 and
CIFAR-100. It suggests that Loss-Attention outperforms Base-
line (ResNet50 and GoogleNet). Additionally, Loss-Attention
can achieve better performance on large-scale databases. For
example, when using ResNet18 as the backbone, the accu-
racy of Loss-Attention and ResNet18 is 56.57% and 55.40%
respectively on ImageNet [2], where each image is resized
to 32 × 32. Additionally, Loss-Attention using ResNet18 as
the backbone takes one week to train a model for Ima-
geNet, with 4 GPUs and a batch size being 128. When we
utilize ResNet50 and GoogleNet as the backbone, the time
cost for model training is respectively 4.5 and 6 times
more than using ResNet18. Hence, here we do not show
their results on ImageNet because of limited resources and
spaces.

D. Experiments for Image Patch Interpretability

Because test images in the aforementioned databases do not
contain bounding boxes, we run experiments for image patch
interpretability on two popular databases with bounding boxes
as follows:

Tiny ImageNet [49] is a single-label database, which has
200 classes with each category consisting of 500 training,
50 validation and 50 test images. Among them, validation and
test images have bounding boxes. We adopt training images

as a training set and validation images for test. Each image is
with a size of 64× 64.

Microsoft COCO [50] is one multi-label database, which
consists of around 328,000 images belonging to 91 object
types. We utilize the 2014 training and validation sets, includ-
ing 82,081 training and 40,137 validation images. We adopt
the training images for training and validation ones for testing.
We crop and resize each image to 64× 64 pixels.

Note that we do not resize each image to 32× 32 in order
to illustrate that the proposed architecture can handle a larger
image size (> 32× 32).

1) Experimental Settings: Because the size of images in
the two databases is 64 × 64, we adopt stride 2 in the
fourth convolutional layer of VGG11_bn and in the sixth
layer of ResNet18 and remove max-pooling or stride oper-
ations in other layers. The patch sharing at least one com-
mon label as its corresponding image and more than half
size locating in the bounding box is viewed as a correct
one. Additionally, we show the image localization accuracy
of Attention, Gated-Attention and Loss-Attention on Tiny
ImageNet by using the estimated bounding box, which is
the minimum square to contain selected patches. For Loss-
Attention, we select the patches with weights larger than 0,
and for Attention and Gated-Attention, we choose the patches
with weights bigger than ξ

M . The estimated bounding box is
considered correct if intersection over union (IoU) is larger
than 0.5. Then we show the average precision (AP) of image
localization. Moreover, we present the image classification
accuracy (Accuracy for Tiny ImageNet and mAP for COCO,
where mAP is defined in [44]) of the aforementioned methods
and the baselines VGG11_bn and ResNet18. Note that we
do not report the performance of Dynamic Routing on Tiny
ImageNet due to its high memory cost for a large number
of classes. We also do not show the image localization
accuracy AP of COCO, because many images contain multiple
bounding boxes belonging to one category of objects and the
attention methods cannot directly handle this case. For Loss-
Attention, we utilize the aforementioned parameter settings for
image classification, and we adopt Eq. (9) for Tiny ImageNet
and Eq. (10) for COCO to train models.

2) Experimental Results: Tables IV-V present the per-
formance of different deep methods on Tiny ImageNet
and COCO. Attention and Gated-Attention obtain better
image classification accuracy, patch precision and recall than
Mean-Pooling on Tiny ImageNet, while they achieve signifi-
cantly worse performance than Mean-Pooling on COCO. This
might be because they align large weights to trivial patches
and obtain low patch recall, thereby decreasing the model per-
formance. Loss-Attention obtains better image classification
and localization accuracy, and F-score for patches than Mean-
pooling, Attention, Gated-Attention on the two databases. The
proposed attention mechanism can remove trivial patches,
and the introduced regularization term in the loss function
can further boost the patch precision and recall, thereby
decreasing the effect of trivial patches on model performance.
Loss-Attention with the modified convolutional architecture
also outperforms the baseline methods on image classification.
For example, when using VGG11_bn as the backbone network
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TABLE IV

RESULTS (%) OF DIFFERENT CONVOLUTIONAL AND CAPSULE NETWORKS ON A SINGLE-LABEL DATABASE TINY IMAGENET. WE BOLD THE
BEST IMAGE CLASSIFICATION, LOCALIZATION ACCURACY AND F-SCORE FOR PATCHES AT EACH GROUP

TABLE V

RESULTS (%) OF DIFFERENT CONVOLUTIONAL AND CAPSULE NETWORKS ON A MULTI-LABEL DATABASE COCO. WE BOLD THE

BEST IMAGE CLASSIFICATION ACCURACY AND F-SCORE FOR PATCHES AT EACH GROUP

Fig. 4. Heat maps of sample images from COCO by using Grad-CAM [21] and the convolutional architecture+Loss-Attention. Both of them adopt ResNet18 as
the backbone network. The first and second rows show heat maps of Grad-CAM and Loss-Attention, respectively.

of convolutional architectures, Loss-Attention attains 0.83%
higher image classification accuracy, 1.78% better AP and
13.27% F-score than the best competitors on Tiny ImageNet.
It achieves 7.70% higher mAP and 1.70% F-score than the best
competitors on COCO. Additionally, Loss-Attention achieves
better image classification and patch precision than Dynamic
Routing on COCO. Moreover, Loss-Attention with a convo-
lutional architecture achieves better image classification than
that with a capsule architecture on Tiny ImageNet and COCO.
This might be because the capsule architecture adopts a small
capsule dimension, which is less or close to the number of
classes on the two databases.

To better illustrate the effectiveness of the proposed archi-
tectures, Fig. 4 displays heat maps of sample images from
COCO by using Grad-CAM [21] and the convolutional
architecture+Loss-Attention with ResNet18 as the backbone.
It suggests that both Grad-CAM and Loss-Attention can gen-
erate class-discriminative representations, but Loss-Attention

produces more accurate representations. This is because
Loss-Attention selects significant patches and meanwhile
removes trivial patches. For clarity, Fig. 5 presents selected
patches of some images from COCO by using the convo-
lutional architecture+Loss-Attention with ResNet18. Fig. 6
presents the estimated bounding boxes of some images from
COCO with the convolutional architecture. Similar observa-
tions can be found when using VGG11_bn as the backbone
network or the capsule architecture. They suggest that the
proposed architectures can be viewed as a weighed sum of
patches, and Loss-Attention can effectively mine the signifi-
cant patches containing objects or their parts to interpret the
image-level decision, i.e. which parts of the image determine
the decision-making.

E. Ablation Study and Parameter Analysis

Here, we evaluate the essential parameters γmax and ξ in the
proposed Loss-Attention, with the convolutional architecture
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Fig. 5. Selected patches of some images from COCO by using the convolutional architecture+Loss-Attention with ResNet18 as the backbone network.

Fig. 6. Predicted bounding boxes of some images from COCO by using the convolutional architecture+Loss-Attention with ResNet18 as a backbone network.

TABLE VI

RESULTS (%) OF LOSS-ATTENTION WITH THE CONVOLUTIONAL ARCHITECTURE ON TINY-IMAGENET

using VGG11_bn and ResNet18 as backbone networks on
Tiny ImageNet. Table VI presents the results of Loss-Attention
on setting γmax = 0 or ξ = 0. It displays that when γmax =
0.1, ξ = 0.1 achieves higher patch precision yet lower recall
than ξ = 0; when ξ = 0.1, γmax = 0.1 attains better image
classification and localization, patch precision and recall than
γmax = 0. Similar findings can be observed on other databases.

Fig. 7 presents the effects of γmax within [0, 5] and ξ
during [0, 1] on Loss-Attention. Fig. 7(a)-(d) show that when
ξ = 0.1, Loss-Attention attains the best image classification
accuracy for γmax = 0.1 and it achieves the best AP for
γmax = 0.5, after which the accuracy decreases with the
increasing value of γmax . Patch recall has a similar trend to the
image classification accuracy, while patch precision gradually
grows with the increasing value of γmax . They suggest that
γmax can increase the patch precision when γmax ∈ [0, 5],
and it can boost the image classification accuracy and patch
recall when γmax ∈ [0, 0.1], and improve the localization
accuracy when γmax ∈ [0, 0.5]. Fig. 7(e)-(h) illustrate that
when γmax = 0.1, AP and patch precision grow with the
increasing value of ξ , while the image classification accuracy
and patch recall decrease. Similar findings can be observed on
COCO, so we do not show them for brevity.

Both Table VI and Fig. 7 infer that the regularization term
can be used to boost the image classification and localization
accuracy, patch precision and recall. Additionally, ξ can be
used to adjust the value of image classification accuracy, AP,
patch precision and recall.

F. Discussion and Analysis

Based on experimental results of image classification
in Tables II–V, we can see that the proposed convolutional and
capsule architectures significantly reduce the dependency of
multiple parts of the input by removing max-pooling or stride
operations, so that their image-level decision is a weighted sum
of patches. However, they still can achieve competitive and
even better performance than the popular CNNs, VGG11_bn,
VGG16_bn, ResNet18, ResNet50 and GoogleNet. This is
mainly attributed to the loss-based attention mechanism, which
can effectively mine the significant image patches. As shown
in Tables II–V, Mean-pooling, Attention and Gated-Attention
mechanisms cannot always outperform the backbone when
they adopt the same backbone networks, but the loss-based
attention mechanism usually has superior performance over
all of them.

Table II presents that Dynamic Routing with the modified
capsule architecture outperforms previous capsule networks
on CIFAR-10 and achieves competitive performance to the
best competitor on SVHN. This might be because we adopt
Adam for Dynamic routing to handle trivial patches [43] and
a different training procedure, i.e. gradually increasing the
learning rate to smooth the training process, which is usually
able to improve the model generalization performance [51].
Additionally, when we utilize the same training procedure as
that of previous capsule networks, Dynamic Routing with the
modified capsule architecture usually achieves much worse
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Fig. 7. The effect of the parameters γmax and ξ in Loss-Attention with the convolutional architecture using VGG11_bn and ResNet18 as backbone networks
on Tiny ImageNet.

accuracy. They might suggest that previous capsule networks
can achieve better performance by using the same procedure
as ours. Moreover, the capsule networks with Loss-Attention
can achieve better or competitive performance to convolutional
networks on CIFAR-10, CIFAR-100 and SVHN. This infer
that the performance of capsule networks can be on a par
with that of CNNs on complex databases.

Experiments for image patch interpretability
(Tables IV-V) suggest that a better patch precision or
recall does not always result in a higher image classification
or localization accuracy for the proposed convolutional
architectures. This is because the image-level prediction is
determined by a weighted sum of patches, i.e. each patch
has different significance, while the patch precision or recall
only shows how many significant patches are selected and
does not consider their significance. Therefore, a single patch
precision or recall is not correlated with classification and
localization. However, as shown in Tables IV-V, a better
F-score usually leads to better classification and localization
performance for the proposed convolutional architectures on
Tiny ImageNet and COCO. Ablation study demonstrates
that the parameter ξ can remove trivial patches to improve
the image localization accuracy and patch precision, and
the introduced regularization term can further boost patch
precision and recall.

The modified deep architectures consider the spatial rela-
tionship of features, and obtain competitive or even higher
accuracy than baseline networks with better interpretability.
However, because of removing max-pooling or stride opera-
tions, they have two major disadvantages: (i) consuming more
GPU memory, (ii) increasing computational costs. These are
caused by feeding inputs with a larger size into the next layer
and using more parameters, e.g. the layer with 512 channels,
kernel size 9 × 9 and stride 4 in Fig. 3. In practice, when
the image size is larger than 32× 32, we can add stride into

TABLE VII

CLASSIFICATION ACCURACY (%) AND TRAINING TIME (SECONDS) OF
LOSS-ATTENTION WITH RESNET18 ON CIFAR-10 WITH THE IMAGE

SIZE 64 × 64 AND DIFFERENT STRIDE VALUES. NOTE THAT

WE UTILIZE TWO GPUS AND SET THE BATCH SIZE AS
48 FOR A FAIR COMPARISON, “ADDED” REPRESENTS THE

ADDED CONVOLUTIONAL LAYER, AND TIME DENOTES

THE AVERAGE TIME OF MODEL TRAINING FOR

ONE EPOCH. IN THE FIRST ROW, [4] × 1 AND
[2] × 1 REPRESENT THE ADDED LAYER WITH

STRIDE 4 AND 2, RESPECTIVELY; IN THE

FIRST COLUMN, [2] × k (0 ≤ k ≤ 3)
MEANS THE NUMBER OF

LAYERS IN THE BACKBONE

WITH STRIDE 2

several layers before the two introduced convolutional layers to
reduce the image size. For clarity, Table VII presents the clas-
sification accuracy and training time of Loss-Attention with
ResNet18 on CIFAR-10 for a larger size 64×64. It illustrates
that Loss-Attention using one layer with stride 2 consumes
less time cost. Additionally, adding stride 2 into one layer
achieves higher accuracy than that without using stride. This
is because a larger image size usually generates more patches,
which increase the difficulty of mining significant patches.
Loss-Attention’s time cost mainly depends on the number
of layers with stride 2 in the backbone, because the stride
can reduce the input size. Meanwhile, the accuracy is very
close when the stride is used in the backbone. Moreover,
the added convolutional layer using stride 2 only consumes
slightly more time than that using stride 4, but with almost the
same accuracy. We respectively set kernel size and stride as
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9×9 and 4 in our experiments, because we follow the setting in
Dynamic Routing for a fair comparison and better interpreting
image-level decision. In practice, if we only want to obtain
better accuracy than the backbone with low computational
complexity, the stride can be used in more convolutional
layers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a general attention mechanism
and modify previous convolutional and capsule networks
to mine significant patches, which contain objects or their
parts determining the image-level prediction. The proposed
Loss-Attention shares the parameters between attention mech-
anisms and loss functions to learn patch weights and logits,
and image prediction simultaneously, in order to connect the
attention mechanism and the loss function for boosting patch
precision and recall. The modified deep architectures consider
the spatial relationship of features by removing max-pooling
or stride operations in convolutional layers, so that the
image-level decision is a weighed sum of patches. Exten-
sive experiments on multiple large-scale benchmark databases
demonstrate the superior performance of the proposed deep
architectures over comparative popular deep neural networks
with better interpretation.

Although the proposed architectures can attain promising
performance on single-label image localization, it still cannot
locate multiple objects belonging to one category in an image.
This might be because our method focuses on the patch
interpretation rather than region proposal selection. However,
it is promising to extend and apply our method for weakly
supervised localization on universal scenarios. Additionally,
our capsule architecture utilizes convolutional layers as back-
bone, and in the future it is promising to design different
capsule networks based on the proposed two capsule layers
to handle large-scale tasks.

APPENDIX

A. Proof of Proposition 1

Proof: Because pm = hmθ L , and Eq. (5) contains
h j ← α j h

L−1
j and z = ∑M

m=1 hmθ L , combining these three

terms, it has z = ∑M
m=1 αmhmθ L = ∑M

m=1 αmpm . Then,
a lower bound of the objective in Eq. (2) can be obtained
by:

Lce = −log
ezt
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= −log
e
∑M

m=1 αm pmt

∑K
k=1 e

∑M
m=1 αm pmk

= −log

∏M
m=1 eαm pmt

∑K
k=1

∏M
m=1 eαm pmk

= −log

∏M
m=1(e

pmt )αm
∏M

m=1(
∑K

k=1 epmk )αm

∑K
k=1

∏M
m=1 eαm pmk∏M

m=1(
∑K

k=1 epmk )αm

= −log

∏M
m=1(qmt )

αm

∑K
k=1

∏M
m=1(qmk)αm

= −log(1−
∑K

k=1,k �=t

∏M
m=1(

qmk
qmt

)αm

1+∑K
k=1,k �=t

∏M
m=1(

qmk
qmt

)αm
)

≥
∑K

k=1,k �=t
∏M

m=1(
qmk
qmt

)αm

1+∑K
k=1,k �=t

∏M
m=1(

qmk
qmt

)αm
, (12)

where the fifth equality is derived from qmt = epmt∑K
k=1 epmk

and

the seventh inequality is on the basis of log(1 + a) ≤ a for
all a > −1.

Therefore, Proposition 1 is proved. �

B. Proof of Proposition 2

Proof: Based on z =∑M
m=1 αmpm , a lower bound of the

objective in Eq. (3) can be calculate as:
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where the fourth inequality is derived from log(1 + a) ≤ a
for all a > −1.

Therefore, Proposition 2 is proved. �
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