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Deconvolved Image Restoration
From Auto-Correlations

Daniele Ancora

Abstract—The recovery of a real signal from its auto-
correlation is a wide-spread problem in computational imaging,
and it is equivalent to retrieve the phase linked to a given Fourier
modulus. Image-deconvolution, on the other hand, is a funda-
mental aspect to take into account when we aim at increasing
the resolution of blurred signals. These problems are addressed
separately in a large number of experimental situations, ranging
from adaptive astronomy to optical microscopy. Here, instead,
we tackle both at the same time, performing auto-correlation
inversion while deconvolving the current object estimation.
To this end, we propose a method based on I-divergence
optimization, turning our formalism into an iterative scheme
inspired by Bayesian-based approaches. We demonstrate
the method by recovering sharp signals from blurred auto-
correlations, regardless of whether the blurring acts in
auto-correlation, object, or Fourier domain.

Index Terms— Deconvolution, phase retrieval, computational
imaging, auto-correlation inversion, deblurring, inverse problem.

I. INTRODUCTION

ECONVOLUTION is an image processing tech-

nique with extensive usage in computer vision and
optics [1], [2], including astronomy [3] and optical
microscopy [4]. Its goal is the restoration of super-resolved
features of objects [5] imaged with diffraction-limited optics
or aberrated wavefronts. Conversely, another class of inversion
techniques in computational imaging deals with the estimation
of an object given its auto-correlation. The latter is becoming a
popular topic in recent years, thanks to the increased computa-
tional power available at the user level. This led to the imple-
mentation of fast reconstruction protocols in unconventional
imaging scenarios, giving rise to a multitude of techniques.
Applications based on auto-correlation imaging can be found
in -but are not limited to- image detection through a turbulent
medium (e.g. the atmosphere) [6], lens-less imaging [7],
hidden imaging [8], and tomography [9]. Typically, to form
a reconstruction of the object acquired in such conditions, one
needs to invert the auto-correlation of the signal. Since this
forms a pair with the modulus of the Fourier transform of the
object, the image reconstruction process is often referred to as
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the phase-retrieval (PR) problem. Given that it is not possible
to measure the phase directly with camera-sensors, PR tries
to find it by constraining the reconstruction to be real and to
have a given Fourier modulus [10]. There are several ways
to approach this inverse problem that inspired many computa-
tional strategies: alternating projections, distance optimization,
or iterative approaches embrace the vast majority of methods
available. Although the field is in continuous progress, Shecht-
man et al. provides an extensive review on the topic [11].

However, even in this case, the finite bandwidth of the
diffraction-limited detection system may blur the estimation
of the object auto-correlation. Hence, if we want to achieve
sharp reconstructions, we are left with the necessity to tackle
two consecutive inverse problems (deconvolution and phase
retrieval). Here, instead, we propose an iterative procedure
to obtain a deconvolved image directly from auto-correlation
measurements, solving both problems at the same time.
We start by noticing that the blurred auto-correlation is equiva-
lent to the target-object convolved by a kernel, which depends
on the object itself. Inspired by blind deconvolution strate-
gies [12], we discuss how neglecting the kernel’s dependence
on the object does not alter reconstruction abilities. We estab-
lishes our method by minimizing the /-divergence, similarly
to Richardson-Lucy (RL) [1], [2] deconvolution algorithm and
in close analogy with Schultz-Snyder (SS) approach [13].
Like other expectation-maximization (EM) protocols in sig-
nal processing, the algorithm can be further improved by
adding total-variation regularization [14] or deconvolution
with unknown kernels [12].

In the following section II, we start introducing the gen-
eral problem-framework, contextualizing its applicability in
different measurement-scenarios. In Sec. III, we introduce
the iterative algorithm that solves both the auto-correlation
inversion and the deconvolution problem. Sec. IV presents the
reconstruction results and examines the deconvolution ability
of the technique. After having introduced and described the
method, in Sec. V we compare it against existing methodolo-
gies and -furthermore- we propose an experimental validation
in the context of hidden auto-correlation imaging in Sec. VI.
The last section VII concludes the study, discussing potential
implementation and future ideas to continue its development.

December 04, 2020

II. PROBLEM STATEMENT

First of all, let’s define the formalism that we will use
throughout the manuscript. We will make use of integral
formulations, keeping in mind that we can turn each equation
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into its discrete equivalent by replacing the integral with
a summation over the integrated variables. For the sake of
notation, we use one-dimensional functions of the spatial
variable x, eventually shifted by the quantity ¢ when calcu-
lating convolution or correlation operations. This formalism
can be extended to any dimensionality, so we drop any
explicit variable dependence. The operator F{...} indicates
the Fourier transform and the dot - implies the element-wise
product. We indicate the cross-correlation between two generic
functions f (x) and g (x) as:

fxg =/Tx)g<é+x> dx =F {F(f]-Flg}}. (D)

Consequently, the auto-correlation of the function f with itself
is f = f. The convolution is defined as:

frg =/f(x)g(§ —x) dx=F\F(f) -Flg)) @

and the auto-convolution as f % f. In general, we are
interested in the reconstruction of an unknown object o. Its
auto-correlation is defined as:

x =oxo=F{|F{o}|*}. 3)

The identity on the right-hand side of Eq. 3 is given by the
Wiener—Khinchin power spectrum theorem.

Throughout the text, we will make use of the greek-subscript
& when referring to a simulated/experimental measurement:
this indicates that the underlined quantity is blurred and subject
to noise. To avoid confusion from now on, we make use of
the word “measurement” when referring to a simulated effect
that may be observed in a real imaging experiment. The only
exception is in the last part of section VI, where we refer to
a real camera detection from an experimental measurement.
In the present paper, we address the cases in which the
auto-correlation is blurred, computed using a blurred object,
or in which the measurement was performed in a band-limited
Fourier space. Although slightly different, we report that these
problems are equivalent and we can approach them all with
the same iterative method.

A. Blurred Auto-Correlation

In some applications, we have access to a statistically
computed estimate of the auto-correlation. Looking through
turbulent atmosphere in astronomy [6], through scattering
slabs or behind corners [8], [15] and performing hidden
tomography [9] are just a few examples of that. The light that
propagated in these conditions has undergone unpredictable
scattering events and, when detected, resembles a random
arrangement of the intensity distribution. Under isoplanatic
conditions (also known as “memory effect” regime [16]) it
has been proven that the auto-correlation of this pattern closely
matches that of the object. To simplify, the turbidity acts as an
opaque auto-correlation lens. To estimate the auto-correlation
of the hidden object, we can use the pattern produced by the
light propagation through the turbid environment. Since the
auto-correlation is typically averaged through several detec-
tions, each of which is affected by blurring, the presence of an
effective point-spread function (PSF) blurs the final estimate of
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Fig. 1. A) Auto-correlation of an ideal object y = 0% o. Panel B) Gaussian
kernel H with standard deviation ¢ = 2 px used to blur the auto-correlation.
C) Auto-correlation y, corrupted by Poissonian noise ¢ and blurred by H. y,
reproduces the quantity that we can compute or measure in an auto-correlation
experiment. D) Noise-free test image o of a satellite [19] used to test the
reconstruction protocol (size 256 x 256 px). E) Gaussian kernel 4 used for
blurring the object. F) Auto-correlation y), calculated by using a blurred
and noisy object. All the images are peak-normalized and displayed using
a diverging color-map (reversed RdBu). .

the auto-correlation. Thus, we have access to a measurement
of the auto-correlation given by:

Ju=x*H+e, “)

where H is a blurring kernel for the original object
auto-correlation y = oxo. Figure 1 shows the test image of a
satellite o (panel D) used in this study, and its corresponding
auto-correlation y (panel A). We consider the case in which
the image is blurred by a Gaussian kernel H (panel B) and
leads to a noisy measurement of y, (panel C). Usually these
measurements benefit from the use of ensemble [17] averages
or comes from photon differencing [18]; thus, for the moment,
we consider ¢ as a generic form of additive noise. Approaching
this problem would initially require the deconvolution of the
auto-correlation (i.e. using Richardson-Lucy [1], [2]) and,
then, to find the signal that generated it (e.g. by using Fienup
iterative phase retrieval [10]), or vice versa. For completeness,
Sec. V compares our method with standard ones and Sec. VI
tests it in an experimental application.

Since we want to approach both problems simultane-
ously, we reduce the formula above to the convolutional
form o * KC, where the object of interest o is subject to
the blurring kernel K. Let’s rearrange the correlations and
convolutions in a convenient form:

x*xH=(*0)xH=0%(0*H)
=ox(Hx*0)=(0*xH)*o0
=ox(0xH)=0x%xK, 5)
where we used the fact that convolution between two

functions f and g permutes, f % ¢ = g * f, and the
correlation-convolution identity (f x g) xh = f % (g * h).
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In this way, we have introduced a new blurring kernel that
depends on the object itself I [0] = oxH. The convolution of
the object with K gives the measured auto-correlation under
the effect of a blurring factor 7.

B. Blurred Auto-Correlation Induced by Object-Blurring

The broad field of computed tomography (CT) gathers
together many imaging protocols that let us to virtually inspect
the features inside of the specimen of interest. Although
there exist several techniques approaching the problem with
different experimental designs, they share similar numerical
pipelines for the reinterpretation of the results. In particular,
deconvolution and alignment procedures are crucial tasks
to obtain faithful reconstructions in CT. Auto-correlations,
by definition, are centered in the shift-space so it is easy to
reconstruct a tomographic auto-correlation starting from its
projection sequence [20] by computing an auto-correlation
sinogram. The inversion of the latter would return an exact
reconstruction of the object with no prior alignment procedure
applied. Still, this reconstruction is affected by blurring and
needs to be treated accordingly to achieve a sharp result.
In alignment-free tomography, we thus often rely on the
computation of a blurred version of the auto-correlation y,
as in:

X;:(o*h+e/)*(o*h+a’), (6)

where the additive noise &’ perturbs the detection of each
blurred projection of the object 0. By dropping the noise term,
it is possible to rearrange the problem to reach the same form
as Eq. 5:

(oxh)yx(0oxh) = (0%x0)* (h*h)
= (ox0)*xH
=y xH, @)

where the definition of H = hxh makes the problem identical
to Eq. 5. In this case, the convolutional kernel becomes K =
ox(h x h). Equations 6-7 imply that the problem is symmetric,
thus starting from a blurred auto-correlation it is possible to
first deblur and then de-autocorrelate, or the other way around.
However, as previously stated, we are interested in performing
both actions at the same time. Further details concerning the
presence of noise are discussed in the appendix A.

C. Blurring Due to Band-Limited Fourier Measurement

Let us consider the case in which we are performing a
Fourier measurement limited by a generic window function W,
as in coherent [21] or partially coherent [22] diffraction
imaging (CDI). In these experiments, the detector acquires the
squared modulus of the Fourier transform of the object, while
it is not possible to access the phase information due to elec-
tronic limitations. Given that the phase of an electromagnetic
signal is not measurable, imaging is usually accomplished by
solving a phase retrieval problem [11] which has its Fourier
modulus as a fixed constraint. The signal detected under these
conditions can be expressed as:

M, = |[F{o}I>- W + ¢, (8)
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where we introduced the window function to describe the
limited size of the detector, which inevitably cuts some high
spatial frequencies. By computing the auto-correlation from
the sole measurement of M, we have that:

xn=F 1My}, ©)

where we used the Wiener-Kinchin power-spectrum theorem.
We reach a formulation similar to Eq. 5 by making use of the
convolution theorem:

FUY|IF{o}I? - W} = F'{F{y} - F{H}}
=F (F{y =1}

— g+ H. (10)

Here, for the band-limited Fourier measurements, the convo-
lution kernel reduces to K = o« F~!{W}. This result for the
auto-correlation is analogous to the convolutional blurring in a
band-limited measurement, as dictated by the limited aperture
of a detection objective. The convolutional kernel is, in fact,
a filter in the frequency domain. So far, we considered the
effect of the noise to be negligible, but we provide a thorough
discussion on the topic in the appendix A.

III. ITERATIVE METHOD

As discussed in the previous section, several measure-
ments fall within the same class of inverse problems that
involve the inversion of the auto-correlation coupled with the
simultaneous deconvolution of the reconstruction. Similarly to
auto-convolution inversion [23], the problem examined can be
generalized as a convolution with an effective kernel, which
contains the object itself correlated with a blurring factor H.
In our formalism, H retains the description of the problem
that we are interested in, among the three classes examined in
section II. Before stepping further, let’s introduce an approx-
imation by dropping the explicit functional dependence on o
from K [o] — K. This approximation implies the complete
knowledge of the convolution kernel: we will motivate this
choice in the following paragraph.

Let us call a generic measurable distance between y, and
x* as d (xullx*), where y* = o* x K is the best estimate
of the auto-correlation. Provided that y, is the measurement,
the optimal object’s reconstruction o* is reached when such
distance d ()(ﬂ|| ){*) is minimized. Thus, the reconstruction
problem turns into:

Y

To satisfy the equation above, a necessary -but not sufficient-
condition is given by setting to zero the functional derivative
with respect to the object to be optimized o™:

o* =argmind (x,llx*).

0
—d (X,u”)(*) =0.

do* (12)

There are several possible choices for d ( Xull X*), each of
which would turn the search for the reconstruction into a dif-
ferent inverse problem. We deal with intensity measurements
and it is therefore desirable that o (x) > 0,Vx. To comply
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with the positiveness of the solution, we chose the Csiszar’s
I-divergence [24] as distance estimator:

I(X,u”)(*)

= / [xﬂ (©)In [”’; (5)} + 25 ) = 1 (©) ] . (13)
yal(9)

Such quantity is a generalization of the relative entropy, known
as Kullback-Leibler distance. This measure is common in
iterative convolution/correlation inversion schemes [13], [23],
whereas choosing the Euclidean norm d ()(ﬂll)(*) = llxu —
2*|I* would usually turn the reconstruction into a least-square
problem (see [3] for a thorough overview). We calculate the
functional derivative of the /-divercence with respect to the
optimal reconstruction o*:

0

0
ol (tallx”) = =5 / {utog [ @] = 1 @) | de

N G
:/(1—;’(5))%[% (©] de.

By setting it to zero and inserting the functional derivative
calculated in the appendix B (Eq. 30), we obtain:

— X’u — —
/(1 x*(:))m wde =0

We cannot provide a general closed solution for Eq. 15,
but we can estimate an approximated one by using Picard’s
iterative-scheme [25]. The latter uses a fixed-point iterative
formulation:

(14)

15)

o1 (x) = o' (x) X' (), (16)
where the updating rule A’ (x) is:
t _ Xu ©) _
A (x) _/ fo e a €D an

The theory above is related to the expectation-maximization
(EM) approach often used in similar procedures [26]. Using
Csiszar’s I-divergence guarantees that Eq. 16 converges to
its minimum while keeping o'*! subject to non-negative
constraints. Seminal works in the field [23], [26], [27] further
discuss details and properties of this approach.

It is worth noting that Eq. 17 is rigorous when /C is fully
determined and closely relates to RL-like schemes. However,
similarly to the case of blind deconvolution [28], we do not
have access to an exact estimate for /C. In blind-RL schemes,
the point spread function (PSF) is updated via RL-steps, using
the current object estimate as to the (transiently fixed) kernel
that blurs the recorded image [12]. Here, instead, we decide to
anchor the update (AU) of this kernel with the current estimate
of the object, inferring a refined kernel at each step of the form:

K @) = [ TG+ a. (1)
In a compact convolutional notation, the whole iterative
AU-process becomes:

t _ At
Ky =o' xH

0t+1 -0 Xu *IEI
o'« KYy, AU

19)
(20)
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where K = K (—x) denotes reversed axis. The convolutional
kernel is refined at each iteration, taking into account the pre-
vious object estimate and used to deblur the auto-correlation
into the new object reconstruction o’*!. In the particular case
of H = J, the problem is not reduced to the deauto-convolution
method as one would think [23], since K5 = 0o xd = o (—x).
For ease of notation, we do not use normalization constants,
assuming all the quantities to be energy-normalized before
processing. This procedure guarantees the conservation of the
total intensity throughout the minimization.

IV. RECONSTRUCTION RESULTS

In order to test the reconstruction protocol, let’s define a
metric to assess the quality of the images obtained. Given a
generic measured signal corrupted by additive noise, s, =
s + &, we estimate the fidelity of the measurement against the
noiseless signal with the signal-to-noise ratio (SNR):

k] o

[ sudx
SNR (sﬂ||e) = 20 log, [ Tedx }
These equivalent forms are commonly used for intensity
detection and expressed in decibel, d B. In the cases examined,
s (and s,) might stand either for the auto-correlation y (and
xu) or for the object o (and 0y,).

SNR (sﬂ ||s) = 20 log;, |:

(22)

A. Reconstruction From a Blurred Auto-Correlation

We start our analysis by discussing the results of the AU on
the image of the satellite, subject to the experimental condi-
tions described in section II-A. Thus, we want to reconstruct
the object 0* from the auto-correlation y, = y*H+¢e. We start
with y having 16-bit accuracy, to which we add a random
Poissonian noise with different parameters 1 = 212 28 and 24.
For a Poisson distribution, we recall that A corresponds both
to the mean value and to the variance. To quantify the effect of
the noise on the measured signal, we use the SNR as defined in
Eq. 22. Here, we consider a Gaussian point-spread function 4
with standard deviation ¢ = 2 px, defining the blurring kernel
for the auto-correlation as H = h % h. The quantity H
is also a Gaussian, having a broader ¢ = 4 px. Adding
Poissonian noise (with the A defined above) to the blurred
object auto-correlation, y * H, results into three different
SNR()(ﬂHe) =2.6dB, 26.7dB and 50.8dB for the y,. For
the post-processing, we subtract the mean of the noise to the
auto-correlation, then we take its absolute value since negative
correlation would be unphysical for the reconstruction of an
intensity image. After this, we normalize by dividing for its
total intensity. As from the problem statement, we know the
generic blurring function H and we start from a strictly pos-
itive initial guess of the object 0o'=0 = o', energy-normalized
so that [o'(x)dx = 1. In principle, o' could accommodate
any known prior, such as information about sparsity or a
low-resolution estimate of the object, if available. However,
we assume the object to be completely unknown, feeding a
random initial guess to the AU-iterations.
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Fig. 2. Panel A) shows a schematic of the AU iteration, as in Eq. 20. A random guess is chosen as the starting point for # = 0, and then the results after
t = 60 iterations are displayed. Panel B) visualizes the result after around 107 iterations of the deblurred auto-correlation inversion subject to Poissonian noise
A = 2% This reconstruction refers to section IV-A. In C), the plot relative to the SNR during the iteration steps for all the noises examined in the present

study.

Fig. 2 presents a view of the iterative scheme at t = 60 in
the case of low-noise, where it appears evident the formation
of a blurred version of the satellite. Since AU minimizes the
I-divergence, we rely on the signal-to-noise ratio to monitor
the reconstruction quality as the iteration progresses. We com-
pute the SNR (), |l x") as defined in Eq. 21, treating the current
estimate for the (blurred) auto-correlation y' = o’ * IC%U as
a perturbation with respect to the given quantity y,. Thus,
the noise of the current auto-correlation estimate after ¢ steps
would be ¢ = y, — x'. While progressing, we expect that
our method would increase the SNR until achieving an optimal
point, after which the reconstruction quality degrades. There-
fore, we stop the iteration when the SNR of the reconstruction
becomes lower than the previous value. The plot in Fig. 2C
shows the trend for the three noises considered, and the dots
represent the stopping point for each reconstruction. The initial
increase is similar for all cases, in general, but a low-noise
measurement leads to a reconstruction with a higher SNR. This
trend can be compared with the measured SNR( Xu ||g) since,
in either case, it is calculated directly on auto-correlations.

B. Reconstruction From an Auto-Correlation of a Blurred
Object

Here, we discuss the results in the case where the
auto-correlation is obtained by a blurred estimate of the object,
asin y, = (oxh+¢') * (o h+¢'). This study refers to
section II-B and we consider o acquired with 16-bit accuracy.
The kernel & was chosen to be a Gaussian with standard
deviation ¢ = 2 px. The blurred object is perturbed by the

addition of Poisson’s noise with three different 4 = 2!2,
28 and 2%, as in the previous case. Here, the SNR of the
measurement is referred to the measured object 0, = o *

h + ¢, thus SNR(ol|¢’), rather than to its auto-correlation.
Remarkably, in all cases, the AU-iteration converged to faithful
reconstructions during an entire run of 10° iterations.

The results are shown in Fig. 3. Panel A displays
the output result with SNR= 6.3dB, whereas panel B
refers to SNR= 25.2dB and panel C to SNR= 48.8dB.
As expected, the results improve by reducing the noise, and
fine details become visible for both the reconstructions in

80+ A) SNR(o0,l¢’) = 6.3 dB
S B) SNR(o,]l¢') = 25.2 dB
< 601 __ ¢ SNR(o,|l¢") = 48.8 dB
540 "
3 -
£ 20+ //
zZ )

ol A

10° 10! 102 103 104 10° 108
Iteration step (t)
Fig. 3. Simulation results for the experiment described in section II-B. A)

Output of the reconstruction after 109 iteration for the lowest SNR. B) Result
for the intermediate SNR and C) for the highest. The bottom panel shows the
plot of the SNR as a function of the iteration step (in log-scale).

panels 3B and 3C. In these cases, the quantity SNR(o,¢)
cannot be directly compared with the values shown on the
bottom graph, since it is referred to the object, not to the auto-
correlation. We should compare, instead, the SNR( Xullx * H)
that turns to be 32.9dB, 44.5dB and 56.6dB respectively
for panels 3A, 3B and 3C. In this case, a seemingly good
SNR( Xullx * ’H) = 32.9dB gives poor reconstruction quality
(Fig. 3A), especially if compared to the one obtained in the
previous section. This may be happening because additive
noise in this experimental regime is transported into the
auto-correlation in a non-trivial fashion, as discussed in the
appendix A. However, these results are visually comparable
to those obtained in the previous section.

It is worth noting that the problem treated here is equivalent
to a classical deconvolution approach. To understand this,
we focus on the dashed line profiles in Fig. 4. The original
object o in panel A is compared against its blurred version
oy = oxh+ &’ (panel B) and with our reconstruction
(panel C). The latter is aligned against the original object
by finding the peak of their cross-correlation and translating
the reconstruction accordingly. The results can be interpreted
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A) Original o
6 B) Blurred oxh
—— C) AU recon. o*

Intensity (a.u.)
H

2 4
07 T T T T T T T T
0 25 50 75 100 125 150 175
Position along dashed line (pz)
Fig. 4. Top row, profile comparison between the original object, shown

in panel A), the blurred object B) as in o % h + ¢ and the results of the
AU algorithm C) for the experiment described in II-B. The dashed lines in
A,B,C represent where, in the images, the profile was analyzed. The noise
is generated using A = 28, The plot at the bottom shows the profile through
these directions in the images.

by focusing the analysis on the leftmost spike in the plot of
Fig. 4. We notice that the smooth-peak (orange dashed) is
sharpened by the AU iterations (green line), approaching the
resolution of the original object (blue line, reference). Along
this profile, the recovered intensity exceeded the expected
value in the central region (over-shoot): this might happen also
with RL-deconvolution that preserves the overall energy, but
local fluctuations may alter the reconstructed values. The same
concept applies to all the features in the image, as can be seen
by a more accurate analysis of the plot. In particular, the flat
region on the right side of the plot exhibits oscillations (under-
and over-shoot) around the correct value. These results suggest
that AU is inverting an auto-correlation sequence, deblurring
the reconstruction at the same time. However, our method
is not meant to be an alternative to standard deconvolution.
In the case of single real-space acquisitions, a deconvolution
approach is still the appropriate option for image-deblur. On
the other hand, one could encounter situations in which the
object is not visible as a whole [29], [30] and the sample needs
to be measured from different perspectives. This situation
typically requires an alignment or co-registration procedure
of each view to form the reconstruction. Here, protocols
based on auto-correlation inversion may lead to alternative
reconstruction strategies since auto-correlations are inherently
aligned to the shift-space origin.

V. COMPARISON WITH SS-RL MIXED APPROACH

The AU method is capable of inverting the auto-correlation
and simultaneously deconvolving the reconstruction. So far,
we have tested it under different measurement conditions,
obtaining faithful reconstructions. However, it is worth com-
paring it against other methods used in the literature, briefly
discussing its applicability in an experimental scenario. In
the following, we test AU reconstructions against standard
deauto-correlation and deconvolution methods, using similar
working conditions for each protocol. Our method starts from
an auto-correlation sequence that we assume to be blurred
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by the kernel H. For this comparison, we consider once
again Poisson noise with 2 = 2* and a Gaussian kernel
h with ¢ = 2. Since AU was developed to tackle both
tasks simultaneously, we have to split the comparing pipeline
into deconvolution and auto-correlation inversion. The latter
falls within the realm of the phase-retrieval problems where,
given the Fourier modulus of the object, we want to recon-
struct its underlined phase. A gold-standard approach to the
PR problem is to use alternating-projection schemes proposed
by Fienup [10]. We initially approached the problem by
implementing a standard combination of hybrid input-output
(HIO) and error reduction (ER) strategies. We spoil the results
right ahead: PR combined with RL deconvolution always
turned into poor-quality reconstruction.

Each inversion strategy comes with its artifacts that do not
behave well when concatenated with different methods. In
particular, PR that uses alternating projections apply sharp
thresholds back and forth between the real and Fourier space
that may lead to unpredictable behavior where the signal is
low [31]. Instead, Schultz-Snyder’s method entirely operates
in the spatial domain, alike our AU extension. Thus, a smooth
comparison has to involve the usage of the Richardson-Lucy’s
(RL) algorithm for the deconvolution and Schultz-Snyder’s
(SS) to invert the auto-correlation since both optimize the
same [-divergence metric. Clearly, even if the kind of metric
optimized is the same, the divergence minimized by RL is that
of a linear problem in o, while SS and AU attempt to work
out a quadratic problem.

To begin with, we perform a deconvolution, then we
invert the auto-correlation (RL then SS). Conversely, we also
test the reverse procedure, inverting the auto-correlation and
then deconvolving the result (i.e. applying SS then RL).
As discussed in II-B for H = h x h, the convolution and
auto-correlation operators commute and both procedure should
be equivalent. AU and SS are the same class of algorithm
and have a slow convergence rate, so we consider the case
of running Nay = Nss = 10 iterations. RL typically
converges faster than SS, so an excessive number of iterations
may enhance artifacts: we set Ngp = 102 iterations. For
the first test (displayed on the first row of Fig. 5), we run
RL on the auto-correlation and then SS on the result. Visu-
ally, the deconvolved auto-correlation resembles the expected
auto-correlation y as in Fig. 1A, with the reddish-core
shrunk back similarly to its not-blurred counterpart. How-
ever, the reconstruction obtained inverting this auto-correlation
exhibits the presence of artifacts. On the contrary, the second
row in Fig. 5 shows the output after running an initial set of
SS iterations on y,, which is later deblurred by & via RL
steps. The plot on the first panel of the second row shows an
increasing trend for the auto-correlation SNR solely for the SS
and AU methods (RL measures it against the actual object).
The profile-plot on the bottom row of Fig. 5 compares the
reconstructed intensities against each other. In either case of
panels C and E, the final reconstruction is loaded with artifacts,
particularly if compared with the result of our AU-method in
panel F. The number of iteration for each protocol is a crucial
parameter to fine-tune if we want smoothly move to the next
inverse problem. The large plethora of combinations available
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Fig. 5.  Comparison of mixed SS-RL approaches against AU. A) The

measured blurred auto-correlation y,, corrupted with noise. This is the starting
point for each of the three cases examined. B) Deblurred reconstruction of
the auto-correlation via RL. C) Deauto-correlated reconstruction after SS
iterations. D) Result obtained inverting blurred auto-correlation with SS and E)
deconvolved result. F) Direct deblurred and deauto-correlated reconstruction
obtained with the AU method developed in this work. The plot in the second
row monitors the SNR for the SS and AU algorithms. The plot on the bottom
row shows a profile along the dashed line in panels C, D, and F. The dashed
black curve in the plot is the profile of the original image o, taken from
Fig. 4A. Here it serves as the ground truth for the reconstructions.

for the mixed models leaves the user with the necessity to look
for the best sequence of iterations for both RL and SS, together
with an appropriate choice of two starting guesses. The design
of AU helps in this respect, having just one parameter to set
(Nay) to ensure the accomplishment of deconvolution and
deauto-correlation at the same time. In principle, we cannot
exclude that a perfect combination of iterations for RL and
SS may lead to better reconstructions. However, we found that
incorporating both aspects within the same inversion behave
more robustly than concatenating two different problems.

VI. RECONSTRUCTION IN EXPERIMENTAL
HIDDEN IMAGING

So far, we have performed numerous numerical experiments
on synthetic datasets corrupted by Poissonian noise. To finalize
our study, we put AU in action by working out reconstructions
in a challenging experimental imaging scenario. This test
serves as an experimental proof-of-concept of its application
for the solution of real problems.

Let us consider the case in which we want to image an
object hidden behind a random medium, subject to memory
effect isoplanatism [8]. Experimental imaging in these condi-
tions typically deals with the reconstruction of an unknown
incoherently-emitting sample hidden behind an opaque dif-
fuser. In this context, we are not interested in the imaging
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procedure per se: we refer to relevant literature on the topic
for further details [8], [15]. For our purpose, we need to
consider that the light emerging from a random surface has
undergone unpredictable -yet deterministic- scattering events.
This gives rise to the formation of a seemingly random speckle
pattern s, determined by the convolution between the random
(and usually unknown) point response of the system A and
the hidden object, as s, = o * hy. The pattern produced by
the light that propagated through the obstacle can be recorded
by placing a camera detector in front of the diffuser. No
optics are generally involved in these imaging setups. The
speckle s, shown in Fig. 6A represents a typical detection
under these conditions: here, we are interested to study how
our algorithm behaves in this case study. The pattern was
generated by hiding a number “4”, isolated from a USAF
test target, behind a ground-glass diffuser and was taken
from the work of Wu er al. [32], to which we refer to
for experimental details. Before stepping further, we perform
flat field correction by dividing the camera detection by its
low-pass version (Gaussian smoothed with ¢ = 50) and then
we subtract the mean value of the resulting pattern. It is
a standard preprocessing pipeline for the best estimation of
the auto-correlation in speckle imaging. In these conditions,
Xu closely resembles the one of the hidden object itself
(panel B), and imaging is accomplished typically by solving
a Fienup-like phase retrieval problem [15] or via bispectrum
analysis [32]. Following the theoretical framework for hidden
imaging, we have that:

X = Su xSy
= (0 x hg) * (0 * hy)

= (0% 0) x (hg x hs) = y * Hs, (23)

where & is the speckle pattern ideally produced by a single
point source laying at the object plane. Since we do not have
access to the object plane by hypothesis, & is not directly
measurable and strictly depends on the observation point of the
camera with respect to the scattering slab. When the random-
ized scrambling process is fully developed, however, H; can
be calculated theoretically and depends on the parameters of
the system:

2
Hy =4 [M} ) (24)

7w Dr/Av

Here, J; is a Bessel function of the first kind, D the pupil of
the system, r the radial coordinate, A the wavelength, and v
the image distance. In this situation, then, 7 blurs the object’s
auto-correlation directly and does not depend on which portion
of the turbid slab is illuminated.

Currently, to deal with the problem of the reconstruction of
a sharp object o from speckle acquisition, an intricate sequence
of PR and RL is used to isolate /s from s, [33]. Here we do
not solve the PR. Instead, we make use of SS to reconstruct
a blurred version of the hidden object, comparing the result
with that of our AU method. Experimentally, both methods
converge after approximately 107 iterations. The hidden “4”
taken from the USAF test target was correctly retrieved by
either SS, in panel C, and AU, in panel D, of Fig. 6. Due to the
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Fig. 6.  Deconvolved image restoration from hidden measurements. A)

Speckle pattern s acquired by [32] hiding an object o behind an opaque
diffuser. B) Auto-correlation of the speckle pattern. C) Reconstruction of the
object obtained by applying SS on the auto-correlation. D) Reconstruction
with AU considering the theoretical auto-correlation PSF . The plot-profile
along the dashed lines in panels C and D shows the deblurring effect of using
our AU method with respect SS. The dashed curve, instead, is taken from the
original object acquired with an objective lens, and serves as reference for
the reconstructions. The curves are normalized with respect to the peak on
the right side.

simultaneous deconvolution effect, the reconstruction obtained
with our AU method is sharper with respect to the one derived
with SS. Drawing a profile through the reconstructions (bottom
row plot in Fig. 6) highlights the effect of the deconvolution,
exhibiting narrower lines and preserving the overall shape of
the reconstructed object. The experiments described above
are preliminary results, further investigations are currently
ongoing to explore the functionality of our method in optical
microscopy, tomography, and hidden imaging.

VII. CONCLUSION

So far, we have discussed the problem of simultaneous
deconvolution and auto-correlation inversion. Our approach
was grounded on the theoretical basis of [I-divergence
optimization: the results from RL-deconvolution [1], [2],
deauto-correlation [13] and deauto-convolution [23] strongly
inspired the development of the present algorithm. We studied
the reconstructions using auto-correlation that are directly
blurred, calculated from a blurred object, or obtained with
a band-limited detection. Here, we studied how to incor-
porate these inverse problems within the same formalism,
proposing and testing the AU-algorithm as a reconstruction
scheme. Remarkably, the method showed promising perfor-
mances under a variety of experimental noise-levels, leading
to faithful and robust reconstructions. Since the problem is
similar to a phase retrieval process (with added deblurring),
we expected the solution to be statistically sensitive to prior
initialization [11]. As a matter of fact, the method behaved
well in all the conditions tested, converging to visually similar
reconstructions even with independent random initialization.
Being the auto-correlation insensitive to the absolute posi-
tioning of the object, it is worth noting that any independent
reconstruction grows randomly positioned in space. This is
considered a trivial non-uniqueness connected with this class
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of inverse problems, as it is an inherent feature of the
auto-correlation (and to the Fourier modulus of the object).
Even if not explicitly mentioned, every reconstruction was
realigned against the original object for visual comparison
only. In fact, the Fourier phase encodes the information about
the absolute position of the object, which shares the same
class of shift-invariant solutions as in PR approaches [11].
Although interesting per se, this approach might have potential
applications where ensemble averages are the sole (or the
optimal) way for the estimation of the object auto-correlation.
Imaging through turbulence [6], hidden imaging [8], or related
problems, are scenarios where AU could be applied. As
an experimental validation, we tested the AU method for
the reconstruction of an object hidden behind opaque glass,
obtaining a sharp and deconvolved reconstruction. This proof-
of-concept paves the road for further investigations in the
field of auto-correlation sensing, in which our method can
find extensive usage. Furthermore, AU may allow further
developments in the field of multi-view tomography [20] since
the auto-correlation is insensitive to translations, and it can
be easily estimated to neglect data-alignment procedures. Of
course, similar schemes deal with the solution of a generic
phase-retrieval problem that is well known to produce not
stable results under various experimental conditions [10].
This is why we decided to approach the problem using a
fix-point iteration scheme rather than including deconvolution
in alternate-projection PR methods. The choice to optimize
the I-divergence gives room also for further improvements
by, for example, importing strategies developed in standard-
ized deconvolution methods. Among the others, blind kernel
updates [28], or total-variation regularization [14] are two fea-
tures that we are considering to include in future developments
of the AU protocol.

APPENDIX A
NOISE IN CROSS-CORRELATION PROBLEMS

Since we have used the Csiszdr’s I-divergence, the ideal
inversion-scenario happens when the signal is corrupted by
Poisson noise. However, it has been proven that similar
approaches behaved well in the case of high SNR measure-
ments with experimental noise. Here we discuss, in all the
cases, how detection noise can be related to the additive noise
described in section II-A, where we had that y, = y *H +e¢.
Separating all the noise-terms in X,l/l leads to:

X = (oxh+e&)x(oxh+e)
=ysH+(@xh)yxe' +& x(0oxh)+& xe&'. (25)
We can recognize that this expression matches with y, when:

e=(0xh)xe +& x(oxh)+¢& x¢. (26)

For uncorrelated, random noise with uniform variance
throughout the image, the last term reduces to & x &' = 4.
Furthermore, if the noise is not correlated with the signal oxh
itself, also the first two terms vanish when ¢ — 0. For the
band-limited measurement considered in Eq. 9, it is easy to
recognize that the noise is related to ¢ via:

e =F1{"). (27)
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For random high-frequency additive noise, the formulation
above implies that ¢ perturbs the auto-correlation as a strongly
peaked function ¢ — J, centered at the zero-shift space of
the auto-correlation. In all the cases aforementioned, the noise
does not diverge when computing the auto-correlations.

APPENDIX B
PARTIAL VARIATIONAL DERIVATIVE OF y*

In this section, we consider the case study in which we
ignore the explicit dependence of K [o] from o. This implies
that we can estimate /C as not being a functional form of o.
As for the definition of variational derivative [34], we let the
function o variate by a small amount o + €6 that implies:

oF [o]
— 6
o /5[ 17 () 4

If we apply this to the optimal auto-correlation y* that mini-

d
— Flo+ €0]

T (28)

mizes the /-divergence, dropping the asterisk in o*, we have:
d *
— %
déx [0 e ] e=0
= 4 / [o(x) + e@(x)] Kx— dx
de e=0
d
:—/e@(x)lC(x—f) dx
de e=0
_ /H(x)IC(x—f) dx. (29)

Sometimes, it is useful to identify the action of the variational
derivative on a Dirac’s delta function, that would let us re-
write:

[ox K]

=0xK=K(E—x). (30)

0
dlo (x)]
Let us notice that this is similar to the functional derivatives
that, in Richardson-Lucy deconvolution, lead to a convolution
with a reversed kernel [1], [2]. In our case, in contrast with
the latter, the kernel does not remain stable during the whole
minimization.

APPENDIX C
COMPLETE VARIATIONAL DERIVATIVE OF y*

Here, we calculate the complete variational derivative of
the auto-correlation. Again, we drop the asterisk in o* and
x* to denote the optimal estimation of the object and
auto-correlation y*. For this task, let us consider that all the
signals we are dealing with are real so that we do not treat

explicitly complex conjugates. We have that:

0
3lo oy el

0
(5[o(x> 0)*’” ]

0
IC 31
o (5[()1”) G
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Fig. 7. Result comparison of: A) the full-model (updating with /1’1 +/1’2), B)
the AU approximation (update A"l) and C) the remaining term (update /1’2) as
described in Eq. 35. The plot at the bottom shows that making use of the AU
approximation does not degrade the image quality achievable by the model,
whereas the remaining term A does not suffice reconstruction purposes.

The first term is identical to what obtained in the appendix B,
the second, instead:

0
S !

0
= St 2

0)*7-(:5*7-(. (32)

( 0
dlo(x)]
Here, the order of the terms is important since the correlation
operator is not commutative. We have that:

0
5[ ™l [o x K [o]]

=0xK+ox(0*H)
=0« K+ (O0rxH)*o0

=0xK+0x(H=*0) (33)

To reach the formulation above, we have kept the Dirac’s
delta functions to take advantage of its correlation/convolution
properties. Eq. 33 suggests that the correct update of the
iterative method is:

@+( A

R ( Xu )*
¢ O[Of*IC’

o' [i’l (x) + 45 (x)] .

The update rule A’ (x) is now composed by two terms,
in analogy with what found for the auto-correlation inversion
by Schultz and Snyder in [13]. The first term A} (x) can
be recognized as the formulation given by the AU iteration
in Eq. 20, instead, A5 (x) is a new term that enforces the
update. We can test how much the result changes in case we
consider: A) the full model given in Eq. 35, B) the AU iteration
(obtained by setting 45 (x) = 0) and C) using the remaining
term only (where 4] (x) = 0).

In figure 7, we report the results of the comparison carried
on the numerical experiment described at II-A. From the
plot in the bottom panel plot, we notice that the full model
completes the run with the highest SNR, and the AU closely

)*@*Hﬂ(M)
(35)
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performs, following a very similar trend. On the other hand,
the remaining term started diverging from an ideal behavior
after 10? iterations, slowly saturating the reconstruction’s
SNR. The output images of the full model in Fig. 7A and
the AU in Fig. 7B are almost indistinguishable, whereas the
remaining term returned a noisier image (Fig. 7C). In the latter
image, we notice that the long antenna is formed both on the
correct and on the wrong side. It is an indication that this
approximation may suffer from a twin-image reconstruction
problem, were the algorithm stagnates into a reconstruction
given by the combination of the object o and its mirrored
version o. This is a well-known issue in the error-reduction
PR method that stimulated further studies to overcome this
algorithmic behavior [35]).
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