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Long-Term Tracking With Deep
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Abstract— Recently, most multiple object tracking (MOT)
algorithms adopt the idea of tracking-by-detection. Relevant
research shows that the performance of the detector obviously
affects the tracker, while the improvement of detector is gradually
slowing down in recent years. Therefore, trackers using tracklet
(short trajectory) are proposed to generate more complete trajec-
tories. Although there are various tracklet generation algorithms,
the fragmentation problem still often occurs in crowded scenes.
In this paper, we introduce an iterative clustering method that
generates more tracklets while maintaining high confidence. Our
method shows robust performance on avoiding internal identity
switch. Then we propose a deep association method for tracklet
association. In terms of motion and appearance, we construct
motion evaluation network (MEN) and appearance evaluation
network (AEN) to learn long-term features of tracklets for
association. In order to explore more robust features of tracklets,
a tracklet-based training mechanism is also introduced. Tracklet
groups are used as the input of the networks instead of discrete
detections. Experimental results show that our training method
enhances the performance of the networks. In addition, our
tracking framework generates more complete trajectories while
maintaining the unique identity of each target as the same time.
On the latest MOT 2017 benchmark, we achieve state-of-the-art
results.

Index Terms— Multi-object tracking (MOT), tracking-by-
tracklet, multiple hypothesis tracking (MHT), deep association.

I. INTRODUCTION

W ITH the rapid development of artificial intelligence
technology in recent years, the demand in the field

of safety supervision is also gradually increasing. As the basis
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of behavior analysis and anomaly detection, MOT is one of
the most concerned research topics. Tracking multiple targets
refers to obtaining the complete trajectory of each target in an
image sequence.

The main difference with object detecting lies in not only
accurately locating the position of each target in each frame,
but also distinguishing the one-to-one correspondence between
each bounding box and each target, thus obtaining independent
trajectory for each target. Although new research results are
published every year, especially tracking-by-detection meth-
ods, there are still some problems that are not effectively
solved. In this paper, we mainly focus on the problems of
low integrity and high fragmentation of trajectories that often
occur in crowded scenarios. The complete trajectory of a target
is broken into multiple fragmented trajectories usually because
the target is not detected, such as detector failure or mutual
occlusion.

To cope with detection failure, tracklet-based trackers are
proposed. They use short trajectories, also known as tracklets,
as the basis for target association and generates longer trajec-
tories. In this way, trackers are less sensitive to error detector
responses and individual missing detections. Tracklets are
built by similar detections in consecutive frames. Widely used
measurement methods include intersection-over-union (IOU),
Euclidean distance, appearance similarity, etc. Although var-
ious methods are proposed for tracklet generation, most of
them only consider the similarity between targets in adjacent
frames and result in drift problem. In this paper, we introduce
an iterative clustering method to ensure the high similarity
between any two detections in the same tracklet.

Long-term occlusion among targets is another common
problem that causes fragmentation of trajectories. Motion and
appearance features are changing over time. So, it has great
significance to extract features with long-term robustness for
associating long-time interval detections or tracklets. Long
Short-Term Memory (LSTM) networks have shown strong
memory and non-linear transformation ability in detecting,
classifying and visual tracking. We further develop its potential
to build long-term features and introduce a deep associa-
tion method for tracklet association. Thus, we build motion
evaluation network (MEN) and appearance evaluation net-
work (AEN) to associate tracklets during tracking. Experimen-
tal results show that our method has significant improvement
on maintaining long-term association of trajectories.

In summary, our main contributions include:
• An iterative clustering method to generate more tracklets

with high confidence.
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Fig. 1. (a) and (c) show the fragmentation problem in tracking multiple
targets. Different colors represent different target identities and dashed lines
indicate missing trajectory. The complete trajectory of a target is fragmented
into pieces due to detector failure and target occlusion. (b) and (d) is our
result by generating convincing tracklets and using deep association method.

• A tracklet-based mechanism for training networks in
tracking.

• MEN and AEN networks to learn long-term features of
tracklets for association.

• A tracklet-based tracking framework that generates
more complete trajectories than previous trackers and
achieves state-of-the-art performance on the popular
MOT 2017 benchmark.

The rest of the paper is organized as follows. Related
work is discussed in Sec.II. Our method to generate tracklets
is introduced in Sec.III. The detailed tracking framework is
described in Sec.IV. We show and analyze the experiment
results in Sec.V. Conclusion is in Sec.VI.

II. RELATED WORK

In recent years, the research on MOT has been further
developed, most of which are based on tracking-by-detection
approach [1]. It is currently the most mainstream algorithm
framework. Different from single target tracking [2], [3], MOT
task not only considers feature representation but also focuses
on transforming tracking into a series of data association
problems. Firstly, all targets in each independent frame are
detected by the detector, and then these independent targets
are connected by analyzing their similarity, thus forming
continuous and complete trajectories. In addition to improving
the recall rate and accuracy rate of detectors, how to improve
the accuracy and robustness of data association has become
an important research direction of multi-object tracking and
various types of solutions have been proposed.

A. Tracking Frameworks

Network flow based trackers has shown convincing
efficiency on tracking multiple targets. They design different
cost functions between nodes and then solve the problem in
polynomial time. Zhang et al. [4] proposed non-overlapping
constraint and found the solution by a min-cost flow algorithm.
Pirsiavash et at . [5] analyzed the changes in the number of

trajectories. Later, Butt et al. [6] redefined the meaning of the
nodes in the network flow. Each node represents a candidate
of pair of matching detections. Pairwise costs were added
into the tracker to reduce the influence of detector failure by
Chari et al. [7]. Mclaughlin et al. [8] and Wang et at . [9]
tried to track occluded targets by motion and interaction
information. Benefiting from the advantages of network flow
in solving efficiency, these trackers can achieve good speed,
but the accuracy decreases obviously in complex scenes.

It is a common phenomenon that multiple detector responses
actually belong to the same target, so Tang et al. [10]–[12]
regarded MOT as a minimum cost subgraph multi-cut problem.
It clusters plausible detections of the same target and links
them through frames. They presented a method to solve the
graph, but it is an expensive approximate algorithm to find the
sub-optimal solution.

Some other trackers are developed based on energy min-
imization method. Andriyenko et al. [13]–[17] proposed a
continuous energy function to describe tracking task and
constructed an optimization scheme to find local minima of the
energy. Milan et al. [18] used superpixel-level segmentation
to capture partial occluded targets and improved the tracking
performance in crowded scenes. However, as the scene of the
tracking task becomes much more complicated, the difficulty
of searching minimum energy has been increased, which
affects the robustness and stability of trackers.

Multiple hypothesis tracking (MHT) is another type of the
popular trackers. MHT is a breadth-first search algorithm and
was originally designed for radar tracking by Reid [19]. Years
later, Cox et al. [20] suggested that MHT is suitable for
visual tracking in certain scenes and presented a feasible
implementation. Papageorgiou et al. [21] introduced maxi-
mum weight independent set problem (MWISP) into MHT
for data association. The main defect of MHT is that its expo-
nentially growing search space makes the solution inefficient.
Kim et al. [22] trained online appearance models for each
hypothesis and thus improved the efficiency and robustness of
tree pruning. Chen et al. [23] extended MHT by analyzing the
relationship between detections and scenario to deal with false
detector responses. Sheng et al. [24] exploited superpixel-
level information for recovering missing detections, and then
redesigned MHT framework based on tracklets in [25].

B. Deep Learning Methods

In the special field of MOT, the application of deep learning
is limited to a certain extent compared with object detection
[26] and re-identification [27]. MOT is a typical small sample
learning problem, which makes it difficult for deep learning
methods to give full play to their advantages. End-to-end deep
learning based trackers [28], [29] did not show remarkable
improvement. In spite of this, the deep learning methods dra-
matically promote the development of visual tracking through
motion modeling and appearance representation.

In the aspect of motion model, researchers mainly
focus on detection noise, object occlusion and object
interaction. Alahi et al. [30] presented a Long Short-Term
Memory (LSTM) model to learn the interactions between
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targets for motion trend prediction. Robicquet et al. [31]
collected a large-scale dataset to learn typical motion styles in
real world. Zhu et al. [32] proposed dual matching attention
network to handle noisy detections and frequent interactions.
Ren et al. [33] described a deep reinforcement learning
method to reduce the influence of occlusion and noise.

As for appearance model, deep learning based features
have been widely studied [34] in recent years. Due to the
improvement of video quality [35], the target has more
effective information in the videos. It enables deep learning
methods to take better advantage of feature representation
and defeat manually constructed features in terms of both
distinguishability and robustness. Kim et al. [22] used the
convolutional neural network (CNN) features from [36] and
reduced its dimensionality to 256 for online appearance
learning and updating. Leal et al. [37] trained a siamese
convolutional neural network to generate matching probability
between detections. Ristani et al. [38] designed an adaptive
weighted loss in CNN for appearance matching. In [39],
LSTM was adopted to improve the performance of appearance
modeling. Maksai et al. [40] introduced an iterative scheme to
minimize the number of identity switches during training and
learned a scoring function for association. Chen et al. [41]
presented a method to align appearance features of tracklets.
They decomposed and aggregated the features of targets with
the spatial-temporal attentions.

C. Tracklet-Based Tracking

Tracking by tracklets instead of discrete detections has
received more attention in recent years [25], [42]–[44]. It has
better performance in avoiding identity switches and recover-
ing missing detections. Wang et al. [45] presented an online
learned method to describe motion and appearance features of
tracklets. Shen et al. [46] trained a learnable network flow to
associate tracklets. Wang et al. [29] proposed epipolar geom-
etry to generate tracklets and built a multi-scale TrackletNet
to cluster tracklets into groups considering their appearance
and temporal features. Chen et al. [41] proposed a multitask
CNN with both spatial and temporal features for appearance
modeling of tracklets. However, these trackers fail to take
full advantage of tracklet in suppressing identity switches and
generating longer and more continuous trajectories.

III. ITERATIVE CLUSTERING FOR CONFIDENT

TRACKLET GENERATION

In this paper, we propose a tracklet-based tracker for mul-
tiple object tracking. Similar to tracking-by-detection frame-
work, the bounding boxes of targets are first captured by
detector and then assigned with different labels to repre-
sent trajectories. In tracklet-based methods, detections are
first organized into groups as tracklet before labeling. All
detections of the same tracklet share the same label. Thus,
the tracking task turns out to be giving labels to tracklets
instead of discrete detections.

Obviously, the recall rate and accuracy of tracklets dra-
matically affect the performance of tracklet-based trackers.
In this section, we introduce our iterative clustering method

to generate confident tracklets while achieving a good balance
among the length, accuracy and quantity of tracklets.

A. Definition

Let D = {d1, d2, d3, . . . , dn} denotes the set of all detec-
tions of the image sequence and τi = {d1, d2, d3, . . . , dk}
denotes the i th tracklet that contains k detections. Each
detection has a 1540-dimensional feature vector includ-
ing 4-dimensional motion features and 1536-dimensional
appearance features. It can be expressed as νk =
(xk, yk, wk, hk , a1,k, a2,k, . . . , a1536,k) where (xk, yk, wk, hk)
is the location (midpoint of bottom edge of bounding box),
weight and height of dk and ak = (a1,k, a2,k, . . . , a1536,k) is
its 1536-dimensional appearance feature extracted from FC
layer in [47]. In addition, the confidence of each detection ck

is also used during tracking which is given by the detector.

B. K-Partite Graph Based Clustering

Tracklet generation is a basic but crucial part of tracklet-
based trackers. There are various types of solutions such
as greedy algorithm, bipartite graph matching, network flow
maximization, subgraph clustering, etc. Some of these methods
generate tracklet linearly, so only similarity of detections
between adjacent frames is considered. Therefore, the drift
problem easily occurs and generated internal identity switch,
as shown in Fig.2(a) (tracklet III). In this paper, we use a
K-partite graph based clustering algorithm for tracklet gener-
ation that considers similarity between any two detections to
restrain internal identity switch, as shown in Fig.2(b).

For an image sequence of n frames, we divide the whole
sequence into several batches. Each batch is a window that
contains lmax frames, while the step size is l0. Then we
generate tracklet batch by batch, e.g., frame 1 to frame lmax ,
frame (1 + l0) to frame (l0 + lmax ), frame (n − lmax + 1) to
frame n, etc.

We start with the first batch that contains frame 1 to frame
lmax and then deal with all batches one by one through time-
line. Without loss of generality, we use D = {d1, d2, . . . , dk}
to denote all the detections in this batch. Then, we build a
K-partite graph G = {V ; E; W } to generate tracklets. In real
tracking task, it is not necessary to link every two detections,
so we only link detections with high similarity between
different frames. The detailed definition of G is described as
follows:

1) Node Set: For each element in node set V , let node vi

denote a detection di in the batch, then all the detections are
expressed by V .

2) Edge Set: For any two node vi and v j that represent
detections from different frames, there is an edge ei j between
them.

3) Weight Set: The weight wi j of each edge ei j describes
similarity between di and d j including location and appear-
ance. It can be expressed as follows:

wi j = w1,i j · w2,i j (1)

w1,i j = ∥∥(xi , yi ), (x j , y j )
∥∥

2 (2)

w2,i j = cos(ai , a j ) (3)
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Fig. 2. (a) and (b) show two kinds of algorithms for tracklet generation.
Internal identity switch occurs in tracklet III in (a), while (b) divides four
detections into two separate tracklets.

assigned by the cosine distance between (a1,i , a2,i , . . . ,
a1536,i) and (a1, j , a2, j , . . . , a1536, j).

Then we can get the best cluster solution of G by finding
the maximum sum of all weights as formulated below:

arg max
ei j

∑

i, j

wi j ei j =
∑

i, j

w1,i j w2,i j ei j (4)

s.t . ei j + e jk � eik + 1 (5)

ei j = 0, w1,i j > max(hi , h j ) (6)

ei j = 0, w2,i j < appT H (7)

ei j ∈ {0, 1} (8)

ei j = e j i (9)

Specifically, Eq.(5) is used to ensure that all the nodes are
linked to each other in any clique in the solution. The value of
ei j is constrained to 0 or 1, so the solutions of this optimization
problem are all integer solution. We use linear program method
to solve it and get the optimal solution. Any edge ei j with its
weight wi j = 0 can be removed, then graph G is divided
into several subgraphs that can be solved respectively, thus
improving the efficiency of solving the optimization problem.

In the optimal solution, we get a set of clique C =
{C1, C2, . . . , Cn}. For each Ci , it contains at most lmax nodes,
representing a tracklet that is no longer than lmax . We select
Ci with no less than lmin nodes, and detections corresponding

Fig. 3. (a) and (b) show the different settings of step size l0 . lmax is set to
5 in the figures. Different settings will eventually result in different tracklets.

to these nodes will not be used in later batches. After getting
all the solutions in all batches, their union Call consists of all
candidate tracklets. We do the following processing to get the
final tracklets.

• First, we remove all the cliques with less than lmin nodes;
• Then, we remove every clique that is a subset of any other

clique in Call ;
• According to time order, we select pairs of cliques

from two adjacent batches with non-empty intersection.
We keep the clique with higher sum of weight and remove
the other clique.

In this way, we get a set of cliques, and each clique contains
lmin to lmax nodes to represent a tracklet. In addition, each
node exists in at most one clique, thus avoiding the situation
that multiple tracklets share the same detection.

C. Iterative Generation

As the cluster problem is solved iteratively with the window
size = lmax and step = l0. In order to cover the whole image
sequence, l0 can be set from 1 to lmax . A similar clustering
method is used for tracklet generation in [25] and they set l0 to
lmax to cover all frames. However, setting step size as same as
window size arises an unavoidable problem as demonstrated
in Fig.3.

In Fig.3(a), tracklet III and IV contain only two frames
of detections respectively. They regard these short tracklets
as unreliable tracklets and remove them from the candidate
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Fig. 4. (a) shows traditional tracking-by-detection MHT framework which tracks targets frame by frame. (b) is the tracklet-based MHT framework. It constructs
and updates hypothesis trees with tracklets in the batch.

tracklets that are used for tracking. In our method, we set
l0 = 1 to scan the whole sequence frame by frame. In Fig.3(b),
tracklet III is generated by batch 4 and contains 4 independent
detections. Although this method will lead to the same detec-
tion being used to generate multiple tracklets, our subsequent
processing strategy presented in Sec.III-B ensures that each
detection belongs to only one tracklet in the final results.
In the following, l0 = 1, lmin = 3, lmax = 5 unless otherwise
specified. Parameter analysis is in the experimental part in
Sec.V.

IV. LONG-TERM TRACKLET ASSOCIATION

WITH LSTMS

In this section, we introduce our deep association method
for tracking multiple targets based on LSTMs. We construct
motion evaluation network (MEN) and appearance evaluation
network (AEN) to learn long-term features of tracklets. Our
tracking method is based on MHT framework which is a clas-
sical method for tracking multiple targets. It builds hypothesis
trees for targets and each tree has several branches to represent
potential trajectories. The optimal hypothesis in each tree is
selected by strategic delay. At the same time, global optimiza-
tion and pruning strategies are also used in MHT to deal with
conflict and to control the exponential growth of its scale.

A. Overview

In traditional MHT based trackers, the basic nodes are
independent detections from detectors. Association relation-
ship is built between detections in adjacent frames. Thus
hypothesis trees are constructed and updated frame by frame
as demonstrated in Fig.4(a). Compared with them, our tracker
focuses on the association between tracklets instead of detec-
tions in hypothesis trees. In Fig.4(b), the basic nodes in the
trees are tracklets generated in Sec.III. The similarity between
independent detections is not used in the tree construction
process, but instead the measurement and association between
tracklets.

Since detection in each frame is no longer the basic node
in our tracklet-based tracker, the hypothesis tree is updated
by batch that consists of several continuous frames. In order
to avoid ambiguity between tracklets, multiple tracklets of the
same target should fall into different batches. Therefore, we set

the length of all batches to be lmax which is the maximum
length of tracklets.

B. Track Tree Construction and Updating

Similar with traditional MHT framework, there are two
main process of the growing of hypothesis trees, constructing
new trees and updating existing trees. Based on the first frame
of each tracklet, we divide all tracklets into different batches.

For a given batch, new hypothesis trees are built for each
tracklet in this batch. These new trees represent new targets
appearing in the scene. Since each node in the tree represents a
tracklet rather than detection, most discrete wrong detections
generated by detector are not used in the tracklets. In this
way, compared with traditional MHT trackers, our method
suppresses false hypothesis trees from the root.

Then, we updates hypothesis trees to represent the temporal
extension of targets’ trajectories. Already existing trees are
extended with tracklets in current batch. Because the time span
of adjacent batches is quite small, features such as position and
appearance of the target do not change suddenly in most cases.
Therefore, we have filtered tracklets through a basic similarity
measure, and only tracklets similar to their parent nodes
are used for the updating of hypothesis trees. Because it is
only a preliminary filtering and considering the computational
complexity, we use the average value of detections in tracklets
to select candidate tracklets for updating as expressed below:

∥∥(x̄ p, ȳp), (x̄c, ȳc)
∥∥

2 � max(h̄ p, h̄c) (10)

cos(āp, āc) � appT H (11)

For a given tracklet τc in current batch, we calculate
its average location (x̄c, ȳc) and appearance feature āc. The
average of its parent node τp is also calculated and denoted as
(x̄ p, ȳp) and āp. If both of their Euclidean distance of location
and cosine distance of appearance satisfy Eq.10 and Eq.11, τp

will be extend by τc as a child node.
In addition, we use the dummy node mechanism to deal

with missing detections. When extending a leaf node with
similar tracklets in current batch, we use a dummy node
to extend this node as well. Dummy nodes share the same
features (xi , yi , wi , hi and ai ) as their parent nodes that are
used for selecting potential extension. Although using tracklets
instead of detections as nodes in the hypothesis trees can
reduce the impact of occasional detector failure, continuous
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missed detection of targets still leads to trajectory breakage,
such as long-term occlusion. These dummy nodes can connect
tracklets in non-adjacent batches together, thus improving the
integrity of potential trajectories.

C. Deep Association for Tracklets

The core idea of MHT algorithm is to delay decision-
making, and select the globally optimal branch by comparing
all hypotheses. In this section, we introduce our deep associ-
ation method to measure and evaluate branches in hypothesis
trees.

Each branch in MHT represents a potential trajectory of a
target, so evaluating each branch is to score the confidence of
this hypothesis. How to construct stable long-term features to
accurately describe the changes of target features over time is
always an important issue in MOT. Whether in experimental
datasets or practical applications, video scenes are becom-
ing much more complex. Many feature description models
proposed earlier have been unable to accurately describe the
feature change trend of targets, and many errors have occurred
in associating targets and evaluating trajectories. In terms of
motion features, IOU algorithm, linear model, pairwise model
and other methods have been proposed. As for appearance fea-
tures, there are cosine algorithm, weighted average algorithm,
online learning, etc.

Recurrent neural network (RNN) is a kind of network with
memory ability. Compared with traditional neural network,
it has better processing ability for time series data. Compared
with vanilla RNN, LSTM network can effectively avoid the
problem of gradient disappearance, and can retain the earlier
data features in back propagation. Therefore, LSTM networks
have many applications in recent MOT algorithms.

The common usage of LSTM network mainly includes two
types, regression and classification. In the former category,
the current and future frames are predicted by the existing
trajectory, and then compared with detection (e.g., calculating
IOU), and similar detections are selected as potential extension
of the trajectory. Other methods connect the existing trajectory
and the detections in current frame into new trajectories
respectively, and then classify them in turn to select those
trajectories that are more likely to represent the same target.

By comparing the theoretical analysis and experimental
results in many literatures, we find that the regression method
has higher accuracy but lower recall rate. This is because
the detection in actual tracking often contains noise, such as
position offset or inaccurate size. These noises cause errors in
the extraction of motion and appearance features of the target,
which lead to deviations in the prediction of LSTM networks.
Therefore, LSTM networks are required to have strong anti-
noise robustness. In addition, the trajectories of various targets
vary greatly, and a large amount of training data is needed to
obtain reliable prediction, otherwise it is easy to have over-
fitting problems.

In contrast, the classification method has a false positive
problem, but also has a higher recall rate. Although these
LSTM networks do not directly predict the motion or appear-
ance features of the target, the potential probability of each

detection can be given by comparing the detection of the
current frame with the existing trajectory. Because the MHT
framework has strong search and comparison decision-making
capabilities, we prefer add potential branches to the hypothesis
tree as much as possible to avoid false negative. Therefore,
we are convinced that LSTM networks for classification are
more suitable for MHT.

In addition, it cannot be ignored that the input of the
networks has a great influence on the evaluation performance.
Early researches [48], [49] on deep learning for tracking
mainly focused on the structure of the network. For a long
time, tracking networks just took discrete detections as input
during training and testing. Recently, tracklet-based tracking
has shown impressive performance and training with tracklets
has also been widely discussed [39]. However, the input
tracklets only simply splicing multiple detections. The rich
temporal information among detections in the tracklet is not
fully explored. Therefore, we introduce a novel tracklet-based
training mechanism in this study to learning deeper features of
the tracklets. The detail of our network structure and training
method is discussed as follows.

Similar to most popular methods, we evaluate each branch
in the hypothesis tree from two aspects: motion and appear-
ance. Appearance feature consists of a 1536-dimensional
vector, while motion feature is only a 4-dimensional vector.
Considering the huge difference in dimension between the
two features, we construct two different LSTM classification
networks for motion and appearance to evaluate branches,
as demonstrated in Fig.5.

First, we introduce our motion evaluation network (MEN)
for motion features. MEN is a sequence-to-one type of LSTM
network, in which the LSTM layer contains 64 hidden units.
The input of the MEN is n data sets (n tracklets) and the output
is pm , which indicates the probability that the n data sets
belong to the same target. Each data set in the input consists
of 3 feature vectors, and each vector contains 4-dimensional

features. Features include (
xi
W −μx

σx
,

yi
H −μy

σy
,

wi
W −μw

σw
,

hi
H −μh

σh
),

where W and H are the width and height of the image, while
μ and σ represent mean value and standard deviation.

Our appearance network is also a sequence-to-one LSTM
network, called appearance evaluation network (AEN). But
different from MEN, AEN contains 2 LSTM layers with
256 hidden units. Graves et al. [50] demonstrated that stacking
multiple RNN layers has a better effect than only increasing
the number of hidden units, and can learn more abundant
features. Due to the high dimension of appearance features,
we stack 2 LSTM layers to learn the changes of appearance
features of the target with time. The upper LSTM layer outputs
a sequence instead of a single value to the LSTM layer below.
In order to reduce over-fitting, we add a dropout layer with
the probability of 0.5 after the LSTM layers respectively. The
input of the network is n data sets (n tracklets) as well, and
the output is pa to indicate the probability of the input belong
to the same target. Data set of the input is 3 feature vectors
with 1536-dimensional appearance features. Features include
(

a1−μa1
σa1

, . . . ,
a1536−μa1536

σa1536
), where μ and σ are mean value and

standard deviation.
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Fig. 5. (a) is the structure of Motion Evaluation Network (MEN), and (b) is the structure of Appearance Evaluation Network (AEN).

Both the inputs to MEN and AEN are all nodes of a branch
in the track trees. The n inputs consist of n tracklets traced
upward by the leaf nodes. Considering the different lengths of
tracklets, from lmin = 3 to lmax = 5, we unified the lengths of
all tracklets to 3 before inputting them into the network. For
tracklets longer than 3, we retain the detection of the first and
last frames, and take the average value of the other remaining
detections as the third node. Then, these adjusted tracklets
with the same length are taken as the input of the networks,
and the networks output the probability of each hypothetical
branch in terms of motion and appearance. For a specific leaf
node, its evaluation score can be denoted as Si , which can be
calculated as follows:

Si = Si−1 + pm,i + pa,i (12)

S0 = 0 (13)

where Si−1 is the score of its parent node, pm,i and pa,i is
the probability, 0 to 1, from the classification layer in MEN
and AEN. In addition, the score of dummy node is set to 0 as
penalty. As described in Eq.12, we do not only use the score
of the leaf node, but evaluate the branch by accumulating the
scores of all nodes on the branch. In this way, the branches
with more nodes can have higher scores, thus stimulating the
generation of longer trajectories.

D. Training Sequences

Designing appropriate training data for networks is a key
step of deep learning method. By referring to the experience
and results of related applications, we construct the training
data of our networks by the following methods.

Due to the different forms of trajectories in complex scenes
and various camera angles, many literatures have pointed
out that tracking tasks require a large amount of data for
training networks. Specifically, Manen et al. [51] verified
through experiments that large-scale training data can effec-
tively improve the performance of tracking algorithm. In this
paper, we use datasets including KITTI tracking [52], MOT
2017 [53], CVPR19 challenge [54] and PathTrack [51]. KITTI
tracking is a subset a KITTI dataset which is a well-known

dataset in computer vision. It consists of 21 training and 29 test
sequences for cars and pedestrians. MOT17, CVPR19 and
PathTrack are specially designed for pedestrian tracking. Due
to the variety of videos, MOT17 has become a popular dataset
in recent years containing 21 training and 21 test sequences.
In addition, CVPR19 and PathTrack have much larger scale
and can be used as an effective supplement. These datasets
provide labeled ground truth data and include manually labeled
positions of occluded targets. For occluded targets, the datasets
have special marks for distinguishing. Meanwhile, they cover
a wide range of video types, such as sports competitions, street
interviews, car videos, surveillance videos, etc.

First, we introduce the organization of training data for
MEN. Different from the bounding boxes in ground truth,
the detections in actual tracking are noisy, including missed
detection, false detection and position offset. We find that the
recall rates of commonly used detectors are about 70% to 80%
in datasets mentioned above, such as FRCNN, YOLOv3, SDP,
etc. Therefore, in order to make the training data as similar
as possible to the real distribution of the detections, we first
randomly delete 25% of the detections for each trajectory in
the ground truth to simulate the detection noise. In addition,
the precision rate of these detectors reach about 90%, so we
randomly selected 10% of the remaining ground truth and
shifted their positions so that the IOU ratio of the new position
to the old position is greater than 0 and less than 0.5.

After that, we randomly divide each trajectory into groups
of 3-5 frames in length to represent tracklets in real track-
ing. Then, we use the same average-based method we
present in the previous subsection to unify the number
of detections in groups to 3. All groups contained in
each trajectory are then used as inputs to the MEN. Each
input sequence consists of ni groups of tracklets. Each
group has 3 vectors with 4-dimensional features including

(
xi
W −μx

σx
,

yi
H −μy

σy
,

wi
W −μw

σw
,

hi
H −μh

σh
), where W and H are the width

and height of the image, and μx,y,w,h and σx,y,w,h are mean
value and standard deviation for each dimension.

As for training AEN, we make additional process on the
datasets. Although the ground truth provides the real bounding
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Fig. 6. A demonstration of MWIS problem that describes conflict between
hypotheses. Nodes indicate hypotheses in different track trees while edges
link hypotheses that have conflict of representing the same trajectory. Red
nodes are the solution of the problem that do not have any conflict.

box position of the occluded target, different from motion
features, it is meaningless to extract appearance features.
When the target is occluded, its position can be gained
through ground truth. However, limited to two-dimensional
image, the image only contain the information of the occlu-
sion, and cannot represent the information of the occluded
target. Therefore, we remove the data in ground truth with
a visible rate less than 0.5 or marked as occlusion. (The
data provided by different datasets are slightly different.)
Then, we process the data in the same way as generating
training data for MEN. Finally, we get a series of input
sequences. Each sequence represents a trajectory in the ground
truth, and contains several groups of tracklets. Each group
consists of 3 vectors with 1536-dimensional features including
(

a1−μa1
σa1

, . . . ,
a1536−μa1536

σa1536
), where μ1,...,1536 and σ1,...,1536 are

mean value and standard deviation for respective dimensions.
In MEN, we set initial learning rate to 0.01 with batch

size of 128. For training AEN, we adjust the learning rate to
0.001 with batch size of 64. For both MEN and AEN, we set
the drop rate of learning rate to 0.9 for every epoch while the
maximum epoch is 100. The Adam optimizer is used for both
training as well.

E. Global Optimization

After all branches in each batch are scored, we get a series
of hypotheses from different track trees. Since all the tracklets
in each batch are used as the root nodes to build new track
trees, branches from different trees may represent the same
trajectory. Therefore, we need to optimize hypotheses globally
to deal with the conflicts among branches. This task can
be defined as a problem of finding the maximum weighted
independent set (MWIS), as demonstrated in Fig.6. Assuming
there are n hypotheses in current batch, the problem can be
described as follows:

arg max
xi

n∑

i=1

wi xi (14)

s.t . xi + x j � 1, xi and x j i s con f licted (15)

xi ∈ {0, 1} (16)

where xi is the indicator of the i th hypothesis and wi is its
score calculated by Eq.12. xi is set to 1 if the i th hypothesis
is selected, otherwise set to 0. For multiple hypotheses that

conflict with each other, Eq.15 limits that at most one of them
can be selected. We solve the problem by the method that we
have introduced in our previous work in [25].

V. EXPERIMENTS

In this section, we compare and analyze the effectiveness
of our proposed tracklet generation and deep association
method. Then, we show qualitative and quantitative tracking
results on the public benchmark. In this study, our method
is implemented in MATLAB R2019b and the main hardware
configuration includes: Intel(R) Core(TM) i7-9700K, Nvidia
GeForce RTX 2080Ti.

A. Datasets and Metrics

We evaluate our tracker on MOT 2017 [53] which is the
latest public benchmark for MOT. There are 42 sequences
(21 training, 21 test) with 33,705 frames in MOT 2017.
It consists of the same video as MOT 2016 but has different
sets of detections for each video by three detectors. It is
well known that the performance of the detector has a great
influence on trackers. Therefore, we use MOT 2017 instead
of MOT 2016 for comparison experiments as it can better
evaluate the performance of tracking algorithm under different
detector conditions. In addition, for fair comparison and to test
the real performance of our method, we do not use any private
detectors to gain additional detections.

We adopt the widely used CLEAR MOT metrics [55] for
quantitive evaluation. There are some basic items such as
FP↓ (false positives), FN↓ (false negatives), IDS↓ (identity
switches), MT↑ (mostly tracked, > 80%), ML↓ (mostly lost,
< 20%) and track fragmentations (FM)↓. MOTA↑ (multiple
object tracking accuracy) is a main overall indicator that
combines FP, FN and IDS. Another overall evaluation is
IDF1↑ [56]. It is the ratio of correctly identified detections
over the average number of ground truth and computed
detections. MOTA mainly concerns with targets are tracked
or not, while IDF1 evaluates whether a target is labeled with
a unique ID. The indicator ↑ means the higher the better and
↓ means the lower the better.

B. Tracklet Generation Analysis

The length of tracklet has an important influence on its
accuracy and should be carefully considered. On one hand,
tracklet should be controlled within a certain length to avoid
internal identity switch. On the other hand, tracklet should be
long enough to contain more spatial-temporal features to make
it more convincing than discrete detections.

The tracklets in our method are generated iteratively based
on a sliding window, so the window size, that is, the maximum
length of tracklet, affects the total number of tracklets and
the time consumption for generation. There is a negative
correlation between the total number of tracklets and the
computational time. As the window increases, the maximum
length of tracklets increases, thus the number of detections
contained in each tracklet increases, resulting in a decrease in
the total number of tracklets. However, as the window size
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Fig. 7. Time consumption (blue) and the number of tracklets (red) with
different window size from 3 to 10.

TABLE I

TRACKLET ACCURACY AND TIME CONSUMPTION

increases, the number of frames contained in each window
increases and the number of detections increases, which leads
to an increase in the complexity of the solving Eq.4, eventually
resulting in an increase in time consumption.

We set window size lmax from 3 to 10 to compare the
difference among tracklets. Experimental results on MOT
2017 training are shown in Fig.7 and Tab.I. There are totally
15,948 frames in the training set. As the window size increases
from 3 to 10, the runtime increases exponentially from about
265 to nearly 2900 seconds and the number of tracklets
gradually reduces to about 23,000, nearly one third of the
maximum number 65,780. In Tab.I, we find that although the
number of tracklets various dramatically, the rate of internal
identity switches (ID Sw.) always has a high level at about
99% and does not change a lot as the window size changes.

Different from methods that only use the similarity between
detections in adjacent frames, our tracklet generation method
is based on clustering detections that considers similarity
between any two detections. In this way, we can effectively
deal with the drift problem, thus avoiding internal identity
switches.

Larger window size is beneficial to reduce the number
of tracklets that improves the tracking efficiency. However,
it costs much more time to generate tracklets instead. Another
point that should be noted is that as the window size increases,
the length of the tracklet does not always increases to match
the allowed maximum length. Because our iterative cluster-
ing tracklet generation method requires the high similarity
between any two detections, the similarity between detections
in two frames with a long distance can not meet the threshold
requirement. Since our batch-by-batch tracking algorithm does
not associate tracklets of the first frame in the same batch,

we need to avoid multiple tracklets of the same target in the
same batch. To sum up, considering the above reasons, and
in order not to excessively adjust the parameters, we choose
window size lmax = 5 for tracking all sequences in this paper.

C. Tracklet Association Comparison

Another innovation of this paper is the deep association
method for tracklets. TLMHT [25] is a similar tracklet-based
tracker and uses MHT framework as well. We take it as the
baseline method to compare the performance of our deep
association method.

We design four groups of comparative experiments, includ-
ing baseline, baseline with tracklet generation method pro-
posed in this paper (denoted as baseline & T), baseline with
deep association (denoted as baseline & M + A), and the
complete tracking method including tracklet generation and
deep association (denoted as T + M + A). Experimental
results are listed in Tab.II, and the best results are shown in
bold.

In Tab.II, the first group is the result of the baseline method.
Although it has the lowest FP, there are more FN, and the
sum of FP and FN is also the highest. In addition, the identity
switches problem of baseline is significantly higher serious
than other groups. This shows that the baseline method has
the worst performance in ensuring the unity of targets’ identity
among four groups.

In the second group, we replace the tracklet generation
method in baseline with the method proposed in this paper.
Although FP has increased by about 3000, FN has decreased
by about 4000 and IDS has also decreased significantly, about
one third. MOTA and IDF1, two comprehensive indicator, also
improve slightly.

In the third group, we change the hypothesis branch eval-
uation method in baseline to the deep association method
in this paper. Baseline uses the mean value of appearance
features of tracklet to measure similarity by cosine distance.
In contrast, our deep association method uses LSTM networks
to extract deep features including motion and appearance, and
has learned longer term features of tracklet. As can be seen
from the table, compared with the first two groups, MOTA
and IDF1 have both improved significantly. Compared with
baseline, the rise of FP is controlled at about 4000, but FN is
reduced by about 12000.

The last group is the complete tracking method proposed
in this paper. On one hand, more tracklets with high confi-
dence are gained through clustering-based tracklet generation
method; on the other hand, the tracklets are associated and
evaluated by deep association. Experimental results prove the
effectiveness of the proposed method and show the best MOTA
and IDF1, 56.5 and 67.0 respectively. The sum of FP and FN
is greatly reduced compared with the other three groups, and
IDS is controlled within 600.

In addition, we also conduct a comparison experiment to
analyze the input of MEN and AEN. In our study, tracklets
are used as the input of LSTMs instead of discrete detections
to explore more robust features of trajectories. We com-
pare the performance by using different inputs. As shown
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TABLE II

BASELINE COMPARISON ON MOT CHALLENGE 2017 TRAINING

TABLE III

MOT CHALLENGE 2017 TRAINING

Fig. 8. Sample frames of the tracking result of MOT17-10-SDP, target (ID 72) is always tracked and maintains a uniform identity throughout the entire
sequence.

Fig. 9. Sample frames of the tracking result of MOT17-11-SDP, including the first and the last frames and 4 frames that target (ID 62) is heavily occluded.

in Tab.III, whether using tracklets or detections as inputs,
the performance of our tracking method is obviously better
than the baseline. Specifically, training with tracklets has
achieved higher MOTA and IDF1 than using detections. To our
knowledge, training with detections for similarity evaluation is

still the most common way for multi-object tracking. However,
our comparison results prove that the network performance can
be improved by taking tracklets as the training basis.

In order to intuitively show the performance of our tracking
method in generating complete trajectories, we show the two
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TABLE IV

RESULTS ON MOT CHALLENGE 2017 TEST(2019.11)

samples of tracking in MOT 2017 training. In Fig.8, a pedes-
trian (ID 72, labeled with the red asterisk) always appears in
the picture from the first frame to the last frame. Through our
tracking method, we have generated her complete trajectory.
The whole video was taken with a hand-held camera, she
was also moving away from the camera. Through frames,
mutual occlusion occurs many times, but we keep her identity
unchanged.

Another example is shown in Fig.9. A man in red (ID
62, labeled with the red asterisk) never left the picture.
We generate his complete trajectory from the first frame to
the last frame. Different from the previous example, he has a
more serious occlusion problem. From frame 707 to frame
757, the detector fails to detect his position due to heavy
occlusion. Through our deep association method, we learn
its long-term features and successfully associate the tracklets
before and after occlusion. The missing position is obtained
through interpolation, and finally the continuous trajectory
is obtained. Both examples show the effectiveness of our
method in generating longer and more complete trajectories
in complex scenes.

D. Benchmark Comparison

In this section, we test our tracking method on MOT
2017 test dataset and compare it with other competitive
methods. In Tab.IV, we list the results of all tracking methods
with MOTA higher than 50 and non-anonymous submission.
Our method is denoted as TT17 in the table and the best results
are shown in bold. The entire results can be found on MOT
Challenge website.1

Compared with other MHT based tracking methods, such
as eHAF [24], MHT_DAM [22], EDMT17 [23] and TLMHT
[25], our method outperforms them obviously on both MOTA
and IDF1. Compared with other tracket-based trackers, such
as AFN17 [46], NOTA [41] and TLMHT [25], especially
IDF1 and IDS, we perform much better than their results.
These two indicators can effectively evaluate the performance
of trackers in avoiding the change of target identity which is
the main problem we aims to solve in this paper.

1https://motchallenge.net/results/MOT17/

In addition, even compared with all the methods on the list,
we get the lowest sum of FP and FN and achieve the best
performance on MOTA at 54.9, IDF1 at 63.1. In addition,
we get the highest MT rate and the lowest IDS at the
same. In terms of FM, although our method is not the best,
it ranks second to keep strong competitiveness.

VI. CONCLUSION

In this paper, we propose a clustered-based tracklet gener-
ation method to gain tracklets with high confidence. We con-
sider the similarity between any two detections in a tracklet
to avoid internal identity switch. Moreover, we discuss and
analyze the influence of the length of tracklets on tracking,
and verify the effectiveness of our tracklet generation method
through comparative experiments. In addition, we introduce
a deep association method for tracklet association. By con-
structing different LSTM networks from the aspects of motion
and appearance features, MEN and AEN, we evaluate the
hypothesis branches of the tracking tree in MHT. We explain in
detail the structure of the networks and a novel tracklet-based
training method is also introduced. By analyzing the experi-
mental results, our deep association method shows convincing
performance in associating long-term tracklets. On the latest
MOT 2017 benchmark, we achieve state-of-the-art results
compared with other previous methods.
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