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Abstract— We introduce an effective fusion-based technique
to enhance both day-time and night-time hazy scenes. When
inverting the Koschmieder light transmission model, and by
contrast with the common implementation of the popular dark-
channel [1], we estimate the airlight on image patches and not on
the entire image. Local airlight estimation is adopted because,
under night-time conditions, the lighting generally arises from
multiple localized artificial sources, and is thus intrinsically non-
uniform. Selecting the sizes of the patches is, however, non-trivial.
Small patches are desirable to achieve fine spatial adaptation to
the atmospheric light, but large patches help improve the airlight
estimation accuracy by increasing the possibility of capturing
pixels with airlight appearance (due to severe haze). For this
reason, multiple patch sizes are considered to generate several
images, that are then merged together. The discrete Laplacian of
the original image is provided as an additional input to the fusion
process to reduce the glowing effect and to emphasize the finest
image details. Similarly, for day-time scenes we apply the same
principle but use a larger patch size. For each input, a set of
weight maps are derived so as to assign higher weights to regions
of high contrast, high saliency and small saturation. Finally the
derived inputs and the normalized weight maps are blended in
a multi-scale fashion using a Laplacian pyramid decomposition.
Extensive experimental results demonstrate the effectiveness of
our approach as compared with recent techniques, both in terms
of computational efficiency and the quality of the outputs.

Index Terms—Local airlight, haze, dehazing, night-time,
fusion.

I. INTRODUCTION

UTDOOR images often suffer from poor visibility intro-
duced by weather conditions, such as haze or fog. Haze
is a common atmospheric phenomena produced by small
floating particles that absorb and scatter the light from its
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conditions and recent single-image dehazing techniques [2]-[5] suffer from
important limitations when applied to such images.

Night-time scene capture is a challenging task under difficult weather

propagation direction. Due to attenuation and scattering, hazy
scenes are characterized by poor contrast of distant objects,
color shifting, and additional noise. Outdoor applications such
as video surveillance and automatic driving assistance require
good restoration of such distorted images.

The process of removing haze effects from images (dehaz-
ing) is an ill-posed problem. First attempts tackled it by
using additional information such as rough depth [6] of
the scene or multiple images [7]. More recently, several
techniques [1]-[3], [8]-[16], have introduced solutions that do
not require any additional information than the single input
hazy image. While the effectiveness of these techniques has
been extensively demonstrated on daylight hazy scenes, they
suffer from important limitations on night-time hazy scenes.

Obviously, the problem of dehazing of night-time scenes
is more challenging. This is mainly due to the multiple light
sources that cause a strongly non-uniform illumination of the
scene. As a result, the night-time dehazing problem has been
addressed only by a limited number of researchers [17]-[19],
who introduced methods specific to night-time conditions.
As may be seen in Fig. 1 and also in the experimental section,
state-of-the-art dehazing techniques designed in general for
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day-time dehazing perform poorly for the task of night-time
dehazing.

In this paper, we introduce an effective fusion-based tech-
nique to enhance the visibility of hazy scenes both in day or
night conditions. The technique presented here builds on our
preliminary version, which was specific to night dehazing [20].
In this extended version we generalize our solution to work
effectively both on day and night-time hazy scenes. To the best
of our knowledge, this is the first algorithm that demonstrates
competitive results simultaneously on the most representative
day-time and night-time dehazing datasets.

Therefore, we introduce a novel and general way to compute
the airlight component required to invert the Koschmieder’s
light transmission model [21]. Specifically, to account for
non-uniform illumination, we propose to compute this value
locally, on patches of varying sizes. This is especially relevant
in night-time conditions, when the lighting results from mul-
tiple artificial sources, and is thus intrinsically non-uniform.
In practice, the same approach as the one recommended by
the dark channel prior is adopted to estimate the airlight on
each patch, based on the color of most hazy pixels, identified
as brightest ones [1]. A critical issue, however, lies in the
patch size selection. Small patches are desirable to achieve
fine spatial adaptation, but small patches might also lead to
inaccurate airlight estimates due to the unavailability of pixels
affected by strong haze when the patch becomes too small. For
this reason, we deploy multiple patch sizes, each generating a
single input to a subsequent multi-scale fusion process.

Our fusion approach is accomplished in three main steps.
First, based on our local airlight estimation method using
different patch sizes, we derive the first two inputs of the
fusion approach. To reduce the glowing effect and emphasize
the finest details of the scene, the third input is defined to
be the Laplacian of the original image. In the second step,
the important features of these derived inputs are filtered
based on several quality weight maps (local contrast, saturation
and saliency). Finally the derived inputs and the normalized
weight maps are blended in a multi-scale fashion, using a
Laplacian pyramid decomposition of the inputs and a Gaussian
pyramid of the normalized weights. In addition to being
effective in night-time conditions, our approach appears to
naturally generalize to day-time scenes, by increasing the size
of the patches in response to increased contrast and a wider
distribution of color in the original image.

The experimental section validates our technique on a
diverse set of day-time and night-time hazy scenes. It demon-
strates the value of our approach as compared to recent
techniques, both in terms of computational efficiency, and
enhanced image quality.

II. BACKGROUND THEORY AND RELATED WORK

A. Observation Model

As in previous dehazing methods [1], [8], [16], [22]-[24]
light propagation is expressed by Koschmieder’s model [21],
which has been shown to provide a reasonable approximation
of atmospheric effects on light reaching the camera.
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In short, it states that the light intensity Z at each image
coordinate x is the result of two main additive components -
direct transmission D(x) and airlight A(x) :

I(x) =Dx) + Ax) =T (x) T (x) + Ao [1 =T (x)] (1)

where J(x) is the scene radiance or haze-free pixel color,
T (x) is the transmitivity along the cone of vision, and A
is the atmospheric intensity, resulting from the environmental
illumination.

The airlight A(x) is the main cause of color shifting and
is expressed as:

Ax) = Ao [1 = T ()] )

The transmission 7 (x) represents the amount of light that has
been transmitted between observed surface and the camera.
Assuming a homogeneous medium, 7 (x) is approximated:

T (x) =e#dW A3)

where f is the medium attenuation coefficient due to scat-
tering, and d(x) represents the distance between the camera
and the physical point associated with pixel coordinate x.
Practically, the dehazing problem consists in estimating the
latent image J only from the hazy input image Z. It is a
mathematically ill-posed problem, since, in addition to 7, the
transmission 7 and the atmospheric intensity Ao, are also
unknown.

B. Related Work

As previously discussed, most dehazing methods have
focused on day-time scenes. Early dehazing techniques employ
additional information. For instance [25], [26], [7] consider an
atmospheric scattering model to derive geometric constraints
on scene color changes caused by varying atmospheric condi-
tions. They then exploit those constraints to recover the true
scene colors from multiple images taken under different, but
unknown, weather conditions.

Other strategies use information about the 3D scene geome-
try. Narasimhan and Nayer [7] employ an approximated depth-
map specified interactively by the users while the more recent
Deep Photo [6] system uses existing georeferenced digital
terrain and urban models to restore such spoiled images.
Polarization methods [27], [28], take advantage of the fact
that the path radiance (airlight) is partially polarized. They
typically process multiple images of the same scene acquired
with different states of a mounted polarizer [29], [30]. The
difference between different polarized inputs enables the esti-
mation of the haze light component. In general, all these
dehazing strategies that employ additional information are
usually impractical to deploy.

Therefore, a number of studies have attempted to restore
hazy scenes using only the information from a single hazy
input image. Various single image-based strategies [1], [8]—
[10], [16], [22]-[24], [31], [32] have been introduced in the
recent years. A first category among these is represented by
those methods that restore visibility without employing any
physical model. Tan [9] introduces a method that maximizes
the local contrast while constraining the image intensity to be
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smaller than the global atmospheric light value. The contrast-
based enhancing approach of Tarel and Hautiere [10] is a
computationally effective technique, but requires the depth-
map to be smooth except along edges. In [13], hazy regions are
filtered by a simple per-pixel operation to estimate the airlight
and the transmission map. Ancuti and Ancuti [3] introduced a
simple but effective multi-scale fusion strategy that combines
multiple images derived from the original input, with the aim
of recovering the visibility of each region of the scene in
at least one of the multiple images. This strategy has been
recently extended by Choi et al. [33]. Those methods make use
of measurable deviations from statistical regularities observed
in natural foggy and fog-free images, to predict a local fog
density index for the entire image. This fog density index
is then used to improve the contrast in the images. More
recently several methods [34]-[36] employed Retinex theory
to enhance hazy images.

A second category includes physically-based techniques.
The method introduced by Fattal [8] interprets the image
through a formation model that accounts for surface shading
in addition to the scene transmission, and assumes that image
shading and scene transmission are locally uncorrelated. The
technique of Nishino er al. [11], [31], is a Bayesian proba-
bilistic method that models the image with a factorial Markov
random field, in which the scene albedo and depth are two
statistically independent latent layers that are estimated jointly.
He et al. [1] introduce a simple but powerful Dark Channel
Prior (DCP) (the work has been extended in [37]). DCP makes
it possible to roughly estimate the depth map of outdoor hazy
scenes. To obtain a refined transmission map, the values of
the estimate are extrapolated into the unknown regions, by
a relatively computationally expensive matting strategy [38].
This prior is quite robust. As a consequence, many recent
dehazing approaches [16], [22]-[24], [32], [39]-[41] have
been built on the DCP. Meng et al. [22] introduce a patch-
wise transmission estimation method derived by combining
the DCP with a boundary constraint map. Tang er al. [16]
demonstrate that, within their learning framework, the DCP
is the most informative feature while other features contribute
complementary information. Li et al. [41] employ DCP and
other depth cues from stereo matching to yield superior results
than conventional stereo or dehazing algorithms. A different
way of local airlight estimation has been employed by Berman
et al. [5], but only for day-time dehazing. However, as can be
seen in Fig 1, the method of Berman et al. [5] performs poorly
on night time dehazing. In recent years, neural networks have
been trained to dehaze images [4], [42]-[47] by leveraging on
the recent dehazing datasets [33], [48]-[50]. Their usage is,
however restricted in general to day-time cases, as represented
by the training set.

More recently, several techniques have been introduced to
dehaze images captured in night-time conditions. Pei and
Lee [17] estimate the airlight and the haze thickness by
applying a color transfer function, before applying the dark
channel prior [1], refined iteratively by bilateral filtering as a
post-processing step. The method of Zhang er al. [18] esti-
mates non-uniform incident illumination and performs color
correction before using the dark channel prior. Santra and
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Chanda [51] have proposed to extend the color-line prior
introduced in [2] to deal both with day and night-time. Zhang
et al. [52] introduce a prior that is specific to night-time.
The paper builds on a night-time hazy imaging model, which
includes a local ambient illumination item. Then, it introduces
a simple image prior, called the maximum reflectance prior,
called the estimate the varying ambient illumination. In short,
the prior assumes that, during night-time, the local maximum
intensities of the color channels are mainly contributed by
the ambient illumination. Li et al. [19] employ an optical
light transmission model augmented with an atmospheric point
spread function to model the glowing effect. A spatially
varying atmospheric light map is also used to estimate the
transmission map, based on the dark channel prior. We show
in our experimental section (Fig. 8 and 9) that, whilst being
among the best prior art methods, this method results in images
that are too dark when the lightning is very poor.

By contrast, we introduce a dehazing technique that is able
to improve visibility in both day and night-time hazy scenes.
Our method is a fusion-based approach, deploying a well-
studied branch of computational imaging that has found many
useful applications, such as interactive photomontage [53],
image editing [54], image compositing [55], HDR imag-
ing [56], [57] and underwater imaging [58]. The main idea is
to combine several images into a single one, retaining only
the most significant parts of each image. In the dehazing
context, multi-scale fusion was first considered only for day-
time [3] and in the presence of a near-infrared (NIR) image
of the same scene [59]. Compared with [3], our proposed
approach, whose preliminary version was introduced in [20],
derives different input images based on a local estimation of
the airlight component. Moreover, as will be demonstrated
in the experimental results, our technique is more robust
than [3], which appears to offer limited performance in night-
time conditions (please see Fig 1).

III. LOCAL AIRLIGHT ESTIMATION

Section III-A briefly presents the Dark Channel Prior (DCP)
while section III-B introduces two original contributions.

A. Transmission Estimation

In Koschmieder’s model, the transmission map 7 (x) is
directly related to the distance between the observer and the
considered surface (see Eq. 3).

Following [1], and adopting the well-known dark channel
prior (DCP), T (x) can however be computed without resorting
to depth estimation. The DCP assumes that natural objects
have a weak reflectance in one of the color channels (the direct
radiance is small, or dark, in at least one of the R, G, B color
channels [60]), while the atmospheric intensity conveys all
colors (the haze looks grey or white, i.e. all components in A
are significant). Hence, assuming that A, is known (we dis-
cuss estimation of it later), then 7' (x) can be directly estimated
from the weakest color (relative to atmospheric color) over a
neighborhood of x. Formally, the DCP assumption states that,
in most image patches, at least one color channel has some
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Our Patch-based Local Estimate

T

Importance of local airlight estimation in night-time scenes. Designed for day-time dehazing, the well-known dark channel [37] has important

limitations on night scenes because it assumes a spatially constant airlight. As may be observed in the last column, our patch-based local estimate (also not
refined) of the airlight is more appropriate for night-time hazy scenes. In particular, color and details that are close to light sources are better enhanced.

pixels whose intensity are close to zero. It can be written as:
min min J/Ax ) =0 “4)
yeQ(x) \cerg.,b

with AS ) denoting the component of the atmospheric light

associated with color ¢, and Q(x) represents a local patch

centered at x. Under this assumption, the transmission can be
estimated as:

T(x)=1— min ( min IC/AOOC) (5)

yeQ(x) \cerg,b

B. Atmospheric Intensity Estimation

Early methods used to estimate the atmospheric intensity as
the pixel color vector corresponding to the highest intensity
in the image [9]. This choice was motivated by the white
appearance of haze in day-time scenes. Such approach could
fail, typically when a white object is selected instead of a
hazy pixel. To circumvent this problem, the authors of [1]
proposed to estimate the atmospheric intensity using the most
haze-opaque pixels. These are defined as the ones having the
brightest dark channel, i.e as the ones maximizing:

Ipc(x) = min ( min Z°(y)) (6)
yeQ(x) cer,g,b
where r, g, b denote the R,G,B color channels.

This estimator works well on day-time scenes, but suf-
fers from two weaknesses when applied to night scenes
(see Fig. 2). First, it estimates the atmospheric intensity
globally over the entire picture, whereas night scenes are
characterized by localized and spatially non-uniform artificial
illumination. Second, by maximizing the minimum over the
set of color channels, it promotes those locations taking large
values in all channels. It thus implicitly assumes that the
atmospheric intensity is reasonably white, which is the case
in day-time scenes, but is not necessarily true for night-
scenes which are often characterized by strongly colored
lighting.

To address those two limitations, we propose (i) to estimate
the atmospheric intensity locally, within spatial neighborhoods
W (x) around each coordinate x, and (ii) to independently
compute each component of the atmospheric light. Formally,
we define the local atmospheric intensity of color ¢, A§ (x),
to be:

AS _(x) = max | min (Z€
Loo(r) yew)[zeszm( (

Z))i| = ylen‘g(’;) [IX,”N(y)] (7

To motivate this formulation, we again resort to the sim-
plified version of the Koschmieder’s optical model, in which
we approximate the scene radiance [J¢(y) by the product
p€(y)-Af . (¥), between the normalized reflectance coefficient
p€(y) [61] (Chapter 25) and the local illumination AS (),
both values being associated to color c¢. Under this simplified
model, we have:

T~ AL p ) - T+ AL I =T (8)

Since both p€(y) and T'(y) lie in [0, 1], this equation reveals
that Z¢(y) underestimates the airlight A{ (). However,
when p€(y) tends to 1, or when 7'(y) tends to 0, we have
Z¢(y) ~ A (). Interestingly, both p¢(y) — 1 or T(y) —
0 also induce an increase of Z¢(y). Hence, assuming that
Af (v) & A7 (x) due to the spatial proximity between x
and y, maximizing Z¢(y) over ¥ (x) is equivalent to finding
the coordinate y in the neighborhood of x for which Z¢(y)
best approximates A§  (x). In practice, in Equation 7, the
maximization applies to Iy, (), the minimum of Z¢ over a
neighborhood of y. This is to only account for color intensities
that are sufficiently representative, in the sense that these
intensities (or larger ones) are observed in a sufficiently large
spatial area.

The size of the neighborhood ¥ (x) considered by the max-
imization step results from a trade-off: a large size increases
the probability of including a location y where I}, (y) ~
Af (v), but increases the risk that A (y) # A} (x), i.e.
does not allow for fine spatial adaptation. Our experiments
have revealed that a smaller ¥ patch size is generally desired
in night-time conditions, as compared to day time. In practice,
we recommend for night-time scenes, that the patches ¥ to
be twice the size of Q, while for day-time scenes, the size of
patches ¥ be four time larger than the size of Q. The size of
Q is typically set to 20 pixels.

Figure 3 compares the atmospheric intensity estimated by
global and local strategies. Local estimation appears to capture
the major changes arising from environmental illumination,
while the global approach does not. More importantly, the
bottom, rightmost pictures reveal the benefit of computing
each atmospheric intensity component independently, as com-
pared to searching for the location in W (x) maximizing the
minimum over the 3 color channels, as a straightforward
locally adaptive extension of [1] would do. We also observe
that the image reconstructed estimated by our local method
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Our local Ax (eq. 3) Our estimate

local A~ based on Ibc Estimate based on local A~ of Ioc

_ -

Local airlight estimation. A global estimate of the Ao based on dark channel results in a white airlight (the brightest region of the dark channel is

depicted here by green rectangle). As a consequence, the dark channel might become very small (see blue rectangle in second image of bottom row), which
means 1 — 7(x) =~ 0 in Equation3 and no airlight influence in Equation 1. In contrast, our local airlight estimate on the same blue rectangle results in a
colored atmospheric light, which in turns results in a non-unity transmission and a non-zero atmospheric light influence. Please refer to Table I that lists the
concepts used in our local estimation of the Axo.

Tviy =mg(n(l°)

Hazy Image (I) Dark Channel (Ioc)

—

max (Ivin)

Fig. 4. Airlight estimation. The global version of our local airlight estimate Ai 00’
to be quite similar to the atmospheric intensity estimated by He et al. [1], from the brightest region of the dark channel (depicted by green rectangles). The red
rectangles show that, in daytime scenes, the two approaches equally reject the high image intensity locations that are not relevant regarding airlight estimation.
He et al. [1] method rejects them because the prior is dark in those regions, while our strategy rejects them because /y;7y gets darker than the initial image in
those regions that are not subject to intense airlight illumination. Since /77y does not make any implicit assumption about the whiteness of the atmospheric
illumination, it is more general than [1], especially in presence of artificial colored lighting.

derived by maximizing minyeq (x) (Z€(y)) over the entire image, appears

of the atmospheric intensity is of better appearance (both in
color and details) than those resulting from local estimation
obtained based on joint processing of the color channels.
Finally, it is worth noting that, when ¥ (x) is defined to cover
the entire image, our method reduces to a global estimator.
Interestingly, in this case, Fig. 4 reveals that the global estimate
of A7 derived by maximizing minycq(x) (Z¢(y)) over the
entire image is quite similar to the one proposed in [1] for day-
time scenes. Hence, our proposed estimator may be regarded

as a night-friendly generalization of the concepts introduced
in [1].

IV. FUSION PROCESS

While the above described airlight local estimation proce-
dure significantly improves the image enhancement process,
important artifacts still arise at and around patch transitions,
where color shifting and glowing defects are visible. Moreover,
as detailed below, the choice of the patch size appears to
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Fig. 5.
different sizes and the corresponding normalized weight maps.

TABLE I

PARAMETERS AND CONCEPTS USED IN OUR LOCAL
AIRLIGHT ESTIMATION

I(x) hazy image at image coordinate = (Eq. 1)
T (z) scene radiance or haze-free color image at coordinate = (Eq. 1)
T(x) the transmission represents the fraction of light that
has been transmitted from the scene surface to the observer (Eq. 1)
Ao atmospheric intensity (a global estimate) (Eq. 1)
AS the ¢ color component of the atmospheric light (Eq. 4)
A () the ¢ color component of local atmospheric intensity within spatial neighborhoods
Loo W(z) around each coordinate = (Eq. 7)
Q(z) represents a local patch centered at = (Eq. 4)
Ipc(x) the Dark Channel estimate (Eq. 6)

be delicate, potentially leading to poor quality of the output
images owing to non-uniformity of the airlight in night-time
scenes. To circumvent this problem, we propose to adopt a
multi-scale fusion approach to merge the images obtained
with different patch-sizes, thereby allowing for effective and
seamless enhancement of hazy night-time images.

A. Inputs

Our fusion technique is a single image approach,, meaning
that it first generates multiple inputs from the original hazy
image. To do this, we consider the strategy described in
Section III, but use multiple patch size to locally estimate the
airlight values. In short, we consider multiple patch sizes for
the following reasons. The larger the patch, the more likely
it will include a pixel having (close to) zero transmission,
resulting in accurate airlight estimation. However, a large patch
size also reduces the accuracy of spatial adjustment of the
airlight, which is penalizing in the case of multiple and distinct
light sources spread over the scene.

In practice, we derive two images. The first input is
computed using a small patch size (e.g. 20 x 20 for an
image of size 800 x 600), thereby preventing estimation of
the airlight from multiple light sources. However the resulting
input is characterized by an important loss of global contrast

Overview of our approach. Multi-scale fusion of the Laplacian with images dehazed from distinct airlights, estimated on spatial neighborhoods of

and chroma. We solve this limitation by computing a second
input using larger patches (e.g. 80 x 80 for an image of
size 800 x 600). This derived input considerably improves the
global contrast. For completeness, we make three observations
about the generation of the two inputs. First, in practice,
transitions between neighboring patches are smoothed using a
simple gaussian filter. Second, as a consequence of Equation?7,
when more than one light source is included in the region of
interest, the airlight is estimated according to a winner-take-all
strategy.

Third, regarding the size of the patch, we observe that it
should typically increase proportionally with the resolution
of the image. This is because the impact of the patch size
is primarily related to the fraction of the scene covered by
the patch (a patch is considered to be small if it is likely to
include a single light source, while it is considered to be large
when it has a high probability of including pixels having zero
transmission and, consequently, with observed color equal to
airlight).

As shown in Fig. 5, glowing effects are still visible in the
derived inputs. To reduce such undesired effects, we derive a
third input which is the discrete Laplacian of the original
image. This input makes it possible to enhance the finest
details that are transferred to the fused output.

In practice, the Laplacian is approximated by a difference
of Gaussians. Specifically, we subtract from the initial image a
blurred version of the image obtained using a Gaussian filter,
with default standard deviation equal to two.

B. Weight Maps

Inspired by our previous fusion-based dehazing
approach [3], we derive three weight maps to ensure
that regions of high contrast or of high saliency will receive
greater emphasis in the fusion process.

Local contrast weight is computed by applying a Laplacian
filter to the luminance of each processed image. This indicator
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Hazy image Large patch (80x80)

A X

Small patch (20x20)

Fig. 6.
estimation to the local light source(s). However, by compensating local illumination, such a small patch also results in an important loss of global contrast
and chroma. This limitation is solved by using a larger patch (e.g. 80 x 80 for an image of size 800 x 600), which considerably improves the global contrast
by maintaining a consistent airlight estimate over the entire scene. Our work proposes to improve the performance by using both of patch size alternatives,
by merging the two images reconstructed from a small and a large patch size.

Our experiments reveal that using a small patch size (e.g. 20 x 20 on an image of size 800 x 600) gives the capability of adjusting the airlight

estimates the amount of local variation, and has been used in
applications such as tone mapping [57]. It assigns high values
to edges and texture variations.

Saturation weight map is computed as the standard devi-
ation across channels at each coordinate. This factor is
motivated by the fact that humans generally prefer images
characterized by a high level of saturation.

Saliency weight map is computed as a difference between
a Gaussian smoothed version of the input and its mean value,
similarly to Achanta et al. [62]. This factor highlights the
most conspicuous regions of an image compared with their
surroundings.

C. Multi-Scale Fusion

The main goal of the fusion process is to produce an image
that smoothly blends the inputs while preserving the input
features highlighted by the weight maps.

The simplest way (known as naive fusion, or NF) is to
directly combine the inputs and weight maps as Ryr(x) =
D WK (x)Zi (x) with T being the k' input and W* denoting
the normalized weight maps. The weight maps are normalized
pixel-wise, i.e. on a pixel-per-pixel basis, by dividing the
weight of each pixel in each map by the sum of the weights
of the same pixel over all maps.

In practice, however, this naive fusion strategy has been
shown to cause annoying halo artifacts, mostly at locations
with strong transitions in the weight maps. Such unpleasing
artifacts can be overcame by using a multi-scale Laplacian
decomposition [63].

As done for other single-image dehazing approaches [3],
[33], in this multiscale approach, each input Zj is decomposed
into a Laplacian pyramid while the normalized weight maps
Wk are decomposed using a Gaussian pyramid. Using the
same number of levels, the Gaussian and Laplacian pyramids,
are independently fused at each level:

Ri(x) = > G W @)} L @) ©)
k

where [ represents the number of the pyramid levels, L {7}
denotes the Laplacian of the input Z, and G {W} is the
Gaussian-smoothed normalized weight map W.

The fused result R is processed by summing the contribu-
tions from all the computed levels of the pyramid:

R(x) =D Rix) 1 (10)
1

where 1¢ is the upsampling operator with factor d = 2/~1.

V. RESULTS AND DISCUSSION
A. Day-Time Dehazing Evaluaion

In our comprehensive evaluation we first consider day-time
hazy scenes. In order to perform qualitative and quantitative
evaluation we test our approach on the recent O-HAZE dehaz-
ing dataset [50]. O-HAZE is a realistic datasets that consists
of 45 outdoor haze-free images and their corresponding hazy
version, captured in the presence of real haze, generated by
professional haze machines. Fig. 7 shows several image pairs
randomly selected from the O-HAZE dataset. We compare
these with the specialized day-time dehazing techniques of
He et al. [1], Meng et al. [22], Cai et al. [4], Ren et al. [42],
Berman et al. [5] and PMS — Net [64]. Among them
Cai et al. [4],Ren et al. [42] and PM S— Net [64] are learning-
based techniques. Additionally, we compare with the night-
time dehazing techniques of Li ef al. [19], Ancuti et al. [20]
and Zhang et al. [52].

On closer inspection, when comparing the dehazed images
with the ground truth ones (shown in the last column), it may
be observed that the DCP-based techniques of He ez al. [1] and
Meng et al. [22] decently restore the image structure, but intro-
duce unpleasing color shifting, mostly in the lighter/whiter
regions, where the dark channel prior generally fails. The
technique of Berman et al. [5] is less prone to such artifacts,
and leads to images with sharp edges, mostly due to its strategy
to locally estimate the airlight and the transmission. Regarding
the learning-based approaches, we observe that the methods
of Ren ef al. [42] and PMS — Net [64] generate visually
more compelling results than the deep learning approach of
Cai et al. [4]. As expected, the specialized night-time dehazing
approaches of Li er al. [19] and Zhang et al. [52] shown
important limitations both in recovering the structures but
also the color tones. By contrast, our technique handles color
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He etal. Meng et al. Caietal. Ancuti et al.

Hazy images

Lietal.

Fig. 7.
results of He et al. [1], Meng et al. [22], Li et al. [19], Cai er al. [4], Ancuti et al. [20], Ren er al. [42], Zhang ef al. [52], Berman et al. [S], PMS — Net [64]
and our results using the day-time setting.

differently than other methods, leading to higher contrast and
more intense colors. It also appears to improve the initial
version of our method, presented in [20] and devoted to night-
time, by avoiding yellow/red color shifts.

Quantitatively, Table II and III consider three well-known
metrics: PSNR, SSIM [66] and CIEDE2000 [67], [68].
Higher values indicate better quality for PSNR and SSIM,
while CIEDE2000 computes the color difference between two
images and generates values in the range [0,100], with smaller
values indicating better color preservation. Table II presents
the quantitative evaluation metrics for the image pairs shown
in Fig. 7, while Table III provides the average values computed
over the entire O-HAZE dataset (45 set of images).Beyond
the techniques shown in Fig. 7, Table III considers as well the
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Ren et al. Zhang et al. Berman et al. PMS-Net Our results (day time) Ground fruth

Comparative results. The first row shows the hazy images and the last row shows the ground truth. The other rows from left to right show the

recent CNN-based dehazing technique PPDN [43], which
was the winner of the CVPR NTIRE 2018 dehazing chal-
lenge [65]. As observed qualitatively, the group of methods
including He et al. [1], Meng et al. [22], Cai et al. [4],
Berman et al. [5] but also the night time dehazing techniques
of Li et al. [19] and Zhang et al. [52] cannot compete with our
approach as well as with CNN-based techniques, both in terms
of structure and color restoration. Our day-time dehazing solu-
tion, together with the learning approaches of Ren et al. [42],
PPDN [43] and PMS — Net [64] appear to be the most
accurate for O-HAZE quantitative evaluation. Our approach
has the advantage of having a lower complexity compared with
CNN-based solutions. While we can rely on the metrics and
pictures provided in [43] and [64] to evaluate how CNN-based
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TABLE 1I
QUANTITATIVE EVALUATION. WE COMPUTE THE SSIM, PSNR AND CIEDE2000 INDICES BETWEEN THE GROUND TRUTH IMAGES AND THE
DEHAZED IMAGES PRODUCED BY THE EVALUATED TECHNIQUES FOR SEVERAL SETS OF IMAGES OF THE O-HAZE DATASET.

THE HAZY IMAGES, GROUND TRUTH AND THE RESULTS ARE SHOWN IN FIG.7.

He et al. [1] Meng et al [22] Fattal [2] Cai et al. [4] Ancuti et al. [20 Berman et al. [5 Ren et al. [43] Ours
[ SSIM [ PSNR | CIEDE | SSIM [ PSNR [ CIEDE | SSIM [ PSNR | CIEDE | SSIM [ PSNR | CIEDE | SSIM [ PSNR [ CIEDE | SSIM [ PSNR | CIEDE | SSIM [ PSNR | CIEDE | SSIM [ PSNR [ CIEDE |
Set 1 0.82 15.64 2237 0.77 14.51 21.06 0.73 13.24 24.29 0.58 13.01 2442 0.75 17.27 20.09 0.76 14.09 20.97 0.81 16.79 18.17 0.82 16.62 16.87
Set 6 0.74 16.68 19.00 0.78 20.71 11.44 0.73 15.16 21.89 0.59 1532 16.16 0.68 15.76 15.53 0.77 17.11 12.68 0.72 17.54 13.20 0.77 2237 9.05
Set 10 | 0.78 16.22 15.22 0.76 15.98 16.63 0.75 16.42 17.49 0.71 15.02 16.17 0.73 14.49 19.21 0.72 14.48 17.77 0.80 16.57 13.70 0.80 19.94 11.85
Set 19 | 0.81 15.69 16.31 0.84 18.04 13.37 0.79 13.87 21.48 0.72 16.27 16.92 0.78 14.63 15.55 0.82 16.80 14.49 0.83 17.36 12.94 0.85 19.79 10.52
Set 20 | 0.61 16.49 2381 0.72 17.86 20.91 0.62 15.62 20.73 0.50 13.69 2371 0.78 18.01 12.67 0.72 15.89 19.40 0.63 15.05 20.98 0.80 20.07 11.69
Set 21 | 0.69 16.78 27.50 0.78 19.80 21.13 0.63 16.10 28.25 0.71 16.37 19.49 0.78 19.49 10.72 0.72 15.90 20.54 0.73 17.14 20.26 0.77 22.70 1251
Set 27 | 0.61 13.60 21.38 0.68 15.24 18.76 0.67 14.18 22.37 0.64 1521 17.16 0.77 19.02 10.94 0.70 16.09 18.41 0.71 18.11 14.16 0.76 19.24 10.26
Set 30 | 0.75 1571 18.85 0.74 14.68 18.59 0.72 14.68 18.46 0.77 18.57 12.70 0.83 21.51 11.25 0.81 17.48 14.55 0.82 19.72 12.66 0.84 19.89 10.65
Set 33 | 0.76 18.96 18.54 0.74 18.01 15.84 0.76 17.28 17.86 0.81 17.87 14.61 0.61 12.15 20.86 0.66 16.37 19.39 0.88 22.61 10.87 0.76 20.06 9.75
Set 41 | 0.77 15.42 19.54 0.72 13.37 2145 0.66 12.52 2371 0.84 20.03 1278 0.84 18.97 13.02 0.82 16.49 14.36 0.88 2091 12.34 0.85 17.43 11.24
Set 42 | 0.79 15.47 19.70 0.82 20.08 11.03 0.73 17.83 1321 0.58 16.35 15.58 0.74 14.60 15.37 0.82 17.56 11.00 0.72 16.74 12.87 0.85 23.04 8.53
TABLE III

QUANTITATIVE EVALUATION OF ALL THE 45 SET OF IMAGES OF THE O-HAZE DATASET. THIS TABLE PRESENTS THE AVERAGE VALUES OF THE SSIM,
PSNR AND CIEDE2000 INDEXES, OVER THE ENTIRE DATASET. BEYOND THE TECHNIQUES SHOWN IN FIG. 7, WE ALSO COMPARED AGAINST
THE WINNER OF THE CVPR NTIRE 2018 DEHAZING CHALLENGE [65], [69]

Meng et al.

Fig. 8.

methods deal with the O-Haze dataset, the code for those
CNN-based methods is not available and could not be tested
on night-time images. However, we might reasonably expect
that models trained on day-time images do not generalize well
to night-time scenes (see for example the issues raised when
transferring models between domains [70]). By contrast, our
method has the advantage of also being competitive also for
night-time dehazing, as shown in the following.

B. Night-Time Dehazing Evaluation

We also tested our approach on the dataset introduced
in [19] that contains various quality and formats of images
taken of night-time scenes. We compared our method with the

He et al. [1] | Meng et al. [22] | Li et al. [19] | Cai et al. [4] | Ancuti et al. [20] | Ren et al. [43] | Zhang et al. [53] | Berman et al. [5] | PPDN [67] | PMS-Net [65] | Ours
SSIM 0.735 0.753 0.678 0.666 0.747 0.765 0.704 0.75 0.777 0.814 0.795
PSNR 16.586 17.443 15.034 16.207 16.855 19.068 17.091 16.61 24.598 19.045 20.159
CIEDE2000 | 20.745 16.968 18.211 17.348 16.431 14.67 14.816 17.088 12.124 13.467 11.56
Hazy images Our results

Zhang et al.

Comparative results for night-time hazy scenes. We compare with the day-time dehazing techniques of He er al. [1], Meng et al. [22] but also
with the specialized night-time dehazing methods of Zhang et al. [18] and Li ef al. [19].

recent night-time dehazing techniques of Zhang et al. [18],
Li et al. [19] and Zhang et al. [52] and also with the day-
time dehazing methods of Ancuti and Ancuti [3], Fattal [2],
He et al. [1], Meng et al. [22] and Berman et al. [5] . For all
results we used the original code provided by the authors on
their webpages.

Figures 1, 8 and 9 demonstrate the limitations of the day-
time dehazing techniques of Ancuti [3], Fattal [2], He ef al. [1],
Meng et al. [22] and Berman et al. [5] when applied to night-
time hazy images. In general these techniques are not able
to restore color well, and only slightly remove the haze for
such scenes. Figures 8 and 9 directly compare our approach
with the recent specialized techniques of Li et al. [19] and
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Hazy images Berman et al.

Fig. 9.
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Comparative results for night-time hazy scenes. We compare with the day-time dehazing techniques of Meng et al. [22] and Berman et al. [5]

but also with the specialized night-time dehazing methods of Li et al. [19] and Zhang et al. [52] .

TABLE IV

EVALUATION OF THE RESULTS IN FIG. 10 BASED ON THE PSNR VALUES
COMPUTED AS AN AVERAGE ON RGB COMPONENTS FOR EACH OF THE
6 COLORS OF THE REFERENCE PALETTE

yellow | white | brown | red blue green | average
Fattal [2] 21.10 2394 | 1543 | 20.71 | 1512 | 1577 | 18.68
Ancuti [3] 17.75 1582 | 13.49 19.16 | 14.01 | 17.01 | 16.20
Zhang et al. [18] | 21.20 2321 | 21.30 | 20.10 | 1538 | 12.66 | 18.98
Li et al. [19] 19.80 2321 | 1694 | 23.38 | 17.69 | 21.09 | 20.35
Our method 27.33 30.04 | 18.58 | 23.21 | 17.59 | 17.66 | 22.40

Hazy image

Fig. 10. Comparative results on the image with color checker provided
by Zhang et al. [18]. The night-time hazy image with color palette (top-
left) is enhanced by several dehazing techniques. See Table IV for the PSNR
values.

Zhang et al. [18]. The method of Li ef al. [19] tends to darken
the original image and to over-amplify colors in some regions.
Whilst much better than day-time methods, the strategy of
Zhang et al. [52] sometimes appears to generate less contrasted
images than our approach (see in particular the dark scenes
presented in the second and fourth lines of Fig. 9).

Moreover, our approach has the advantage of simplicity and
computational efficiency. Our unoptimized Matlab implemen-
tation processes an 800 x 600 image in less than 4 seconds.
The method of Li et al. [19] computes results on a similar
image in more than 30 seconds, while the method of Zhang
et al. [18] requires a similar computation as He er al. [1]
(approx. 20 seconds per image).

We also performed a quantitative evaluation using the
pair of images provided by Zhang et al. [18]. The left
side of the top row of Fig. 10 shows the reference color
palette and the night-time hazy image containing this palette.
We processed this input image using several different dehazing
techniques [2], [3], [18], [19] and computed the PSNR values
for each of the 6 colors (shown in Table IV). As can be seen,
our approach generally performs better in terms of PSNR as
compared with the other techniques.

VI. CONCLUSIONS

In this paper we introduce an effective technique to enhance
both day-time and night-time hazy scenes. Our method
removes the haze by inverting the simplified Koschmieder’s
light transmission model. Therefore it has to estimate the
airlight. In contrast to most previous works, we estimate
the airlight on local patches (and not on the whole image),
since under night-time conditions, the lighting generally arises
from multiple artificial sources, and is thus intrinsically non-
uniform. To circumvent the patch-size selection issue, we pro-
pose to fusion multiple instances of inverted images, obtained
with distinct patch sizes. An additional input, computed
by a Laplace operator, is provided to the fusion process to
reduce the glowing effects and emphasize the finest image
details. During fusion, the derived inputs are blended in a
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multi-scale fashion using a Laplacian pyramid decomposition.
The experimental results demonstrate the superiority of our
approach compared with the recent techniques both for day
and night time hazy scenes.
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