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Pose-Based View Synthesis for Vehicles:
A Perspective Aware Method
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Abstract— In this paper, we focus on the problem of novel view
synthesis for vehicles. Some previous works solve the problem of
novel view synthesis in a controlled 3D environment by exploiting
additional 3D details (i.e., camera viewpoints and underlying 3D
models). However, in real scenarios, the 3D details are difficult
to obtain. In this case, we find that introducing vehicle pose
to represent the views of vehicles is an alternative paradigm to
solve the lack of 3D details. In novel view synthesis, preserving
local details is one of the most challenging problems. To address
this problem, we propose a perspective-aware generative model
(PAGM). We are motivated by the prior that vehicles are made
of quadrilateral planes. Preserving these rigid planes during
image generation ensures that image details are kept. To this
end, a classic image transformation method is leveraged, i.e.,
perspective transformation. In our GAN-based system, the per-
spective transformation is applied to the encoder feature maps,
and the resulting maps are regarded as new conditions for
the decoder. This strategy preserves the quadrilateral planes
all the way through the network, thus shuttling the texture
details from the input image to the generated image. In the
experiments, we show that PAGM can generate high-quality
vehicle images with fine details. Quantitatively, our method
is superior to several competing approaches employing either
GAN or the perspective transformation. Code is available at:
https://github.com/ilvkai/view-synthesis-for-vehicles

Index Terms—Novel view synthesis, generative adversarial
nets, perspective transformation, generative model, vehicle pose.
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I. INTRODUCTION

N THIS work, we study the problem of novel view

synthesis for vehicles in real scenarios. Given an input
vehicle image, we aim to synthesize new images of the
same vehicle from another view. Synthesizing novel views for
vehicles has a variety of practical applications in computer
vision and virtual reality. Vehicle novel view synthesis can be
regarded as a data augmentation method and contribute to the
vehicle re-identification task [1], [2]. On the one hand, vehicle
generation can be applied as a data augmentation method.
The generated images have been successfully exploited for
training deep learning frameworks for relevant recognition
and re-identification tasks [3]-[5]. On the other hand, vehicle
generation can help improve the discriminative capability
and robustness of the RelD models [6]. Meanwhile, gener-
ating vehicles from different viewpoints is also significant to
some practical applications, i.e., virtual reality. For example,
it enables photo editing programs to manipulate objects in 3D
rather than 2D. Also, it could help create full virtual reality
environments based on the objects with desired viewpoints or
poses [7].

To address the view synthesis task, much effort has been
made in 3D-based methods, which use the underlying 3D
models and camera viewpoints.) Some geometry-based meth-
ods [9]-[11] model the underlying 3D geometry and benefit
from implicit or explicit geometric reasoning. These methods
depend on the input view and might fail under occlusion.
Other methods take advantage of appearance flow [12]-[14]
to move the pixels from the input image to novel views.
Appearance flow is represented by a set of 2D coordinate
vectors specifying which pixels in the input view could be
used to reconstruct the target view. However, the 3D details,
such as the underlying 3D models or camera viewpoints,
are usually not available in the real-world scenarios. This
obstacle compromises the application scope of the 3D-based
methods.

In this paper, we investigate vehicle pose to address the lack
of 3D information in real scenarios. Following the Stacked
Hourglass Networks [15], we extract the vehicle pose from an
image containing a vehicle. The vehicle pose is represented
by a set of 2D keypoints. In this work, we define vehicle view
synthesis as follows: given a vehicle image and a specific pose,
we propose to automatically generate an image containing
the same vehicle with the specified pose. Note that due to
the introduction of vehicle pose, the novel view synthesis for
vehicles can be regarded as vehicle pose transfer. The main
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Fig. 1. Examples of vehicle images generated by different meth-
ods. Column 1: source images. Column 2: specified pose / orientation.
Column 3 - 5: images generated by perspective transformation, Conditional
GAN [8] and our method, respectively. Incorporating both perspective trans-
formation and GAN, our method can generate images that 1) are realistic and
2) have preserved texture details (e.g., the license plate and logo).

reason is that vehicles are rigid objects, with different poses
implying different views.

The main challenge of vehicle view synthesis lies in gen-
erating images that maintain the integrity of vehicles while
also preserving texture details, such as the texture of rigid
license plates and logos. Two basic techniques can be used
to solve the problem, i.e., perspective transformation and
generative models. The former is based on pure geometry [16].
It assumes a 3D model of a vehicle and projects each plane
from one perspective in the input image to another in the target
image. Note that 3D information is not used in our method.
Due to its geometric nature, the projected planes preserve
the texture details very well. The generative model, on the
other hand, is based on the generative adversarial network
(GAN) [17]. The generated vehicle images should follow the
same distribution as the real images.

From two aspects, the prior art motivates us to design
this work. First, perspective transformation is advantageous
in preserving image texture details, but fails to “imagine”
the non-existing parts, so the generated images look fake.
In Column 3 of Fig. 1, sample images synthesized by the
perspective transformation are shown. Because the source
image patches are directly shuttled to the target location,
we observe very clear details. However, the inevitable conse-
quence is that the vehicles are incomplete, i.e., some invisible
source parts remain invisible in the target image. Moreover,
the background is not attended to, either. Therefore, in spite
of its ability to preserve details, merely using the perspective
transformation is not effective in generating realistic vehicle
images.

Second, GAN-based methods can generate realistic images,
but some texture details of the generated images may change
significantly. In Column 4 of Fig. 1 and Row 3 of Fig. 2,
we show images generated by the conditional generative
adversarial network (CGAN) [8]. Because GAN is optimized
on some training set, the generated images are, to some
extent, biased towards the training data. For example, the GAN
generated images usually have a visible license plate, because
the license plates of most training images are visible. In this
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Fig. 2. A closer look at the vehicle details. Row 1 and Row 2: input
images and target ground truths, respectively. Row 3 and Row 4: generated
images by CGAN [8] and our method, respectively. On the two side columns,
enlarged views of license plates and logos are shown. Comparing with CGAN,
our method is closer to the ground truth and better at preserving local
details.

case, when the source image has a masked license plate,
the generated one may deviate much from it. From these
examples, we also observe that the generated logo and the
overall car shape can be very different from the source image.
This problem severely limits the application of GAN in rigid
object generation.

This paper aims to generate vehicle images that 1) are
realistic, and 2) have preserved texture details. Considering
the complementary properties of the perspective transforma-
tion and GAN, a natural idea is to leverage their respective
strengths. We thus propose the perspective-aware generative
model (PAGM). In its structure, PAGM takes advantage of
both the perspective transformation and GAN. On the one
hand, it contains a generator and a discriminator for realistic
image generation. More precisely, the generator consists of
an encoder and a decoder. On the other hand, we design
several perspective transformation modules attached to the
convolutional layers of the encoder. These modules perform
perspective transformation on the encoder feature maps, and
the vehicle planes are shuttled to their corresponding spa-
tial positions without information loss. The resulting feature
maps are concatenated to the decoder feature maps, serving
as conditions to preserve texture details in the generated
images. In summary, this paper makes the following main
points.

o« We are among the first to render pose-specified vehicles
in real scenarios, providing insight into rigid object view
synthesis.

« PAGM not only generates realistic vehicles, but impor-
tantly, preserves the texture details, i.e., we can generate
vehicles that look realistic and preserve source texture
information.

o We provide insightful analyses of the components, i.e.,
conditional GAN, skip connections, Perspective Trans-
formed Connections (PTC) and perceptual loss.

o Experiment confirms the effectiveness of PAGM qualita-
tively and quantitatively.
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II. RELATED WORK

A. Generic Image Generation

Generative adversarial nets (GAN) [17] have achieved
impressive success in image generation in recent years and
there exist many image generation applications [12], [18]-[22].
GAN is a min-max two-player game containing a generator
G and a discriminator D. G tries to produce fake images that
the D cannot figure out whether these images are real or fake.
However, the images generated by GAN [17] are determined
by a random vector and the results cannot be controlled. To
overcome this problem, a conditional version named con-
ditional adversarial nets (CGAN) [8] is proposed. CGAN
conditions not only the generator but also the discriminator by
introducing external cues. In this paper, the proposed method
mainly adopts the CGAN framework. Moreover, image-to-
image translation translates an image from the source domain
to the target domain [18], [23]. Zhu et al. [24] propose the
CycleGAN, which has a cycle consistent loss to learns a
forward mapping and an inverse mapping. Sung et al. [25]
propose to generate images from scene graphs. This method
enables explicitly reasoning about objects and their relation-
ships. Using the given conditions, Gauthier [26] are able to
train models to generate faces with specific attributes.

B. Novel View Synthesis

The methods in novel view synthesis [12], [14], [22],
[27]-[32] mainly fall into two categories: geometry-based
approaches and appearance flow approaches. Geometry-based
approaches benefit from geometric reasoning in solving the
view synthesis problems. Furukawa et al. [28] propose to use
multiple images when explicitly reconstructing the 3D scene,
which is then used to synthesize novel views. Garg et al. [29]
first predict a depth map and then propose to transform each
reconstructed 3D point in the depth map when synthesizing
novel view images. Optical flow [33] can be utilized in
the view synthesis task by providing dense pixel-to-pixel
correspondence between two images. Zhou and Shao [12]
propose to use appearance flow to solve the task of novel
view synthesis. In [12], the authors map the pixels in the
source view to the target view. Based on appearance flow,
Park et al. [14] add an image completion network to deal
with occlusion and disocclusion. Sun et al. [13] propose an
end-to-end trainable framework based on images of multiple
viewpoints. In [13], the model does not require 3D supervision,
but the camera pose is needed to predict a dense flow field.
Recently, Palazzi et al. [34] generate novel views of objects
in a semi-parametric setting: relying on both 3D CAD models
and an image completion network. These previous methods
can be utilized to solve vehicle view synthesis in a controlled
3D environment and require underlying 3D models or camera
viewpoints. However, our method does not utilize the 3D
models/camera viewpoints and merely takes the pose extracted
from images as inputs. In this sense, our method would be
more advantageous in the real world, because poses can be
conveniently obtained using off-the-shelf pose extractors.
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C. Person Pose Transfer

Some recent works discuss person pose transfer, which
takes person pose as input. For example, Zheng et al. [3]
use GAN [17] to generate unlabeled person samples to reg-
ularize the person re-identification fine-tuning. By combining
VAE [35] and GAN [17] together, Lassner et al. [36] present
a model to generate images of a person with different clothes.
Zhao et al. [37] generate multi-view cloth images from a
single view cloth image by adopting a coarse to fine method.
Ma et al. propose to synthesize person images into a target
pose. The input is an image of the same person and the
target pose [38]. Ma et al. later propose a two-stage recon-
struction pipeline that learns a disentangled representation of
the aforementioned image factors and generates novel person
images at the same time [39]. Generally, we follow the setting
of [38]-[40]. we aim to generate pose-specified objects using
a generative model. The closest work to ours is [40]. In [40],
the affine transformation is used to shuttle rectangle patches
from the source to the target image. The difference between
this work and [40] comes from our focus which is on rigid
objects, i.e., vehicles. For a human body, most existing works
attempt to generate images with well-preserved texture details,
i.e., texture of non-rigid clothes and faces. Different from
persons, vehicles are rigid objects and have different types
of texture, i.e., texture of rigid license plates and logos. More-
over, vehicles can be decomposed into irregular quadrilateral
planes, instead of regular rectangles, allowing us to explore
a much more elaborated way (perspective transformation)
to project these planes. In experiment, we show that our
method is significantly superior to the affine transformation
method [40].

D. Vehicle Image Generation

There exist some vehicle image generation methods
designed for vehicle-based applications like fine-grained
image classification [16], [41], [42] and vehicle re-
identification [43]-[46]. Zhou et al. [1] learn the features of a
vehicle captured and take the features as conditional variables
to effectively generate cross-view images to contribute to vehi-
cle re-identification. An inspiring work for ours is [16]. In [16],
Sochor et al. attempt to preprocess the vehicle images for
better alignment to improve fine-grained classification. They
use 3D vehicle bounding boxes and do patch alignment with an
affine warp to “unpack” a vehicle image. The unpacked image
does not look like a car but benefits classification, because it
localizes the vehicle parts and normalizes their positions. The
similarity between PAGM and [16] is that both exploit the 3D
layout of vehicles. The difference is that we aim to improve
vehicle generation, while [16] consider classification.

III. PROPOSED APPROACH

In Section III-A, We first describe the overall system
(Fig. 3), which is based on CGAN. We then describe vehicle
pose estimation and the definition of quadrilateral regions
in III-B. We introduce PAGM in Section III-C and provide
in-depth discussions of PAGM in Section III-D.
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Overall system workflow. Our system has two major components: the proposed perspective-aware generative model (PAGM) and a discriminator

(D). In training, a pair of real images as well as their pose maps are input to the framework. The two images consist of a source image and an image with
the target pose. Pose response maps are calculated by an off-the-shelf pose estimator [15]. The contribution of this paper is the PAGM component, which is

essentially a generator. PAGM is described in Section III-C and Fig. 5.

A. System Workflow

1) Input and Output: In training, a pair of images, a source
image Iy and a target image I;, are input to the system. The
first step is to extract the vehicle poses: Py and P;. Then,
the poses are converted to response maps Ry and R; R, which
are the input of the GAN-based model. Specially, the input
of PAGM can be defined as (R;, I, Ry). Then PAGM outputs
a fake image I which will be fed into a discriminator. Thus,
the discriminator takes (I, R;, Iy, Ry) where [ is a real image
I, or a fake one /. The discriminator finally outputs a scale
to judge whether [ is real or fake.

2) CGAN: Based on GAN [17], CGAN [8] is proposed by
feeding extra information y into both the discriminator and the
generator. For our method, the conditions y can be defined
as (R;, I, Ry). Then, the adversarial loss of CGAN can be
written as,

LcGan(D, G) = Ef~pyua(inllogD(I;]y)]
+E ~p.(llog(l — D(G(z]y)))]. (1)

Apart from Lcgan, L1 and L> loss could also be used
in PAGM. As mentioned in [18], the L, loss might result in
blurring, which is undesirable. Thus, in this work, L; loss is
adopted and defined as,

Lo, (I, 1) = 1T, — |1, )

where [ is the images generated and I; is the target image.
Inspired by [19], we also apply the perceptual loss
L perceprual to enforce image structure similarity between the
generated image and the target image. In implementation,
we utilize the VGG19 [47] model pretrained on ImageNet to

extract the multi-level feature maps. ¢;(I) means the feature
at the jth layer of the VGG19 network for the image /. The
perceptual 108 Lpercepruar is defined as,

1 “
= ———|lg; (1) — ; I)I3,

L I,1,)=
perceptual( t) Cj Hj Wj

(3)
where ¢;(I) is the activations of the jth layer of the network
¢ when processing the image /. The shape of the feature map
¢j(I)is C; x Hj x W;.

3) Overall Objective Function: We combine L1, L perceprual
and Lcgan (D, G) to obtain the final objective function,

“)

where A1 and A control the relative importance of the losses.

L= j-1»CL1 + /IZ»Cperceptual + ECGANs

B. Vehicle Pose Estimation and Region Definition

1) Pose Estimation: To generate a pose-specified object,
the first and foremost step is to define and extract poses.
It is also performed in pose-based person generation [25],
[38], [39]. In a similar spirit to human pose, p 20
keypoints [45] are annotated for the VeRi-776 dataset [43],
[44] to depict the skeleton of vehicle. Vehicle keypoints
are defined at some discriminative locations. In this paper,
given an image I € R3*"*® we use the Stacked Hourglass
Networks [15] to predict the vehicle keypoints P (/). The
keypoints are 2D coordinates and are denoted as P(/) =
{Gx1, 1), (x2,32), -+, (xp, yp)}. In pose estimation, the key-
points P(I) are converted to a set of Gaussian response maps
R(P(I)), which are the input of PAGM and the discriminator.
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Fig. 4. The quadrilateral planes and keypoints of a vehicle. The orientation
of the four vehicles is front, back, left and right. Note that the regions are
usually irregular quadrilaterals. (1) roof, (2) front windshield, (3) front logo
area, (4) back windshield, (5) left windows, (6) left body, (7) right windows
and (8) right body.

The Gaussian maps consist of p channels and each channel
can be written as,

R(l;) = exp (

_||l_li(1)||)’ )

o2
where /; is the location of i-th keypoint and ¢ = 6 pixels.

2) Quadrilateral Regions: Given the keypoints, we manu-
ally cut a vehicle into » = 8 quadrilaterals (see Fig. 4). Each
region is defined by 4 keypoints. The quadrilaterals contain
most of the local details of vehicles like logo, lamp, and plate.
Note that these regions are irregular quadrilaterals rather than
parallelograms.

C. Adversarial Perspective Vehicle Generation

1) Perspective Transformed Connections: In order to gen-
erate detail-preserving vehicle planes, this paper proposes a
perspective transformation module, named perspective trans-
formed connections (PTC). It works on the encoder feature
maps, and the resulting feature maps are used as the conditions
for the decoder.

Before describing PTC, we first review the perspective
transformation (also called the projective transformation) and
the affine transformation. The perspective transformation is a
geometric operation that projects the planes in one perspective
a) ap b1
asz az by

cr 2 1
(Z; gﬁ) is a rotation matrix. This matrix defines the transforma-
tion that an image will be undertaken: scaling, rotation, etc.
In this matrix, (Z;) is the translation vector, and (1 2) is
the projection vector. The affine transformation is a particular
case of the perspective transformation and its matrix A can be
ay az by
az az by )’

In [48], the affine transformation is used to process the
feature maps. In this paper, we use the perspective transfor-
mation instead. The reason is that affine transformation can
only deal with parallelograms: it projects parallelograms into
parallelograms. In comparison, the perspective transformation
can project an irregular quadrilateral into another quadrilateral.
Because each vehicle is divided into irregular quadrilaterals,
only perspective transformation can be applied. This is a
fundamental difference between this work and [40]. The
perspective transformation is defined as,

to another by multiplying a matrix 7' = , where

written as A =

x/
xT=1\|y1], (6)
1

—_t =
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where (x, y) and (x’, y’) denote a pixel in the source image
and the target image, respectively.

Then, we describe PTC, which is based on perspective trans-
formation. PTC takes the feature maps of encoder as input and
output perspective transformed feature maps. As the vehicles
are decomposed into r regions, r perspective transformations
are required to shuttle the source to the target. For the i-th
region, a perspective transformation matrix 7; and a mask M;
is required. In order to get 7;, two quadrilaterals are required
to compute the translation from source to target. The mask M;
has the same size with target vehicle image and the locations
in i-th region are labeled with 1. Note that as a vehicle is a
rigid object, it is impossible to view all the r vehicle planes.
If the i-th region is occluded, the corresponding mask is a
matrix 0. The i-th perspective transformed connections F; then
is defined as,

Fi=Ti(F,) OM, (N

where F; is the feature map fetched from encoder and ©
means a point-wise multiplication. As the r regions do not
have overlaps, the feature maps of each region can be added
directly. Then the final perspective transformed feature maps
F can be defined as,

F=>F. ®)
i=1

Similar to the images generated by perspective transformation
(Fig. 1), PTC also has some zero areas. Note that PTC only
handles the planes which have appeared in source image and
target image. Finally, the transformed feature maps are sent to
the decoder layers and concatenated with the feature maps of
decoder.

2) Two-Way Skip Connections: The two-way skip connec-
tions locate between the two encoders and the decoder. Given
the specific perspective transformed feature maps from source
vehicle encoder, the decoder also has connections from the
target pose encoder. As described above, the R or R; has
p-channel response maps that have the same size with the
input image. We introduce two encoders to extract two vectors
as the conditions of the decoder. More specially, the input
image I; and source pose R, are concatenated together and
pass through an encoder network. Meanwhile, the R; is fed
into the other encoder. Note that the two nets have the same
structure but do not share weights.

D. Discussions

1) What Is the Relationship Between View Synthesis and
Pose Transfer? : On the one hand, human pose transfer does
not mean view synthesis. Human pose refers to the positions
of human joints and is represented by a set of coordinates.
As a human body is a non-rigid object, different poses always
imply that the relative positions of the joints are not consistent.
Meanwhile, different views refer that the view of the observer
has changed and the relative positions of joints should keep
the same. Thus, we argue that human pose transfer is different
from the novel view synthesis task. On the other hand, vehicle
pose transfer can be regarded as view synthesis for vehicles.
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Fig. 5. Proposed perspective-aware generative model (PAGM). We have three inputs (in green boxes): a source image, its pose and a target pose. The output
(in red box) is a generated vehicle image. There are two encoders to provide conditions and one decoder for image generation. The first encoder takes source
image (bottom left) and its pose (top left) as input. The second encoder only takes target pose (bottom left) as input. Two-way skip connections (black arrows)
shuttle details from encoder layers to decoder layers. Four perspective transformation modules (blue oval) are used to process feature maps from the first

encoder and produce perspective transformed feature maps (blue rectangle).

Unlike a human body, a vehicle is a rigid object, whose
different poses are the same with different views.

2) Why Doesn’t Conditional GAN Preserve Local Details?:
In CGAN, the image details are somewhat lost during encod-
ing. The output of the encoder is a vector, whose dimension
is too low to maintain all the details of the input image. Then,
the vector is input to the decoder as conditions that largely
express some global features (e.g., the color). Meanwhile, note
that the pose condition is preserved well. The main reason
may be that the pose of a vehicle can be represented by p
keypoints and the conditional vector is sufficient to include
the pose clues.

3) Why Don’t U-Net Skip Connections Work?: U-net [49]
is first introduced to solve the image segmentation problem,
where images of source and target domain are pixel-to-pixel
aligned. The feature maps of the encoder, which have the
same spatial distribution with the ones of the decoder, are
strong constraints while the misaligned ones are not qualified
for strong constraints. However, in our problem, as the input
and target images have different poses, the feature maps would
be misaligned. Thus, directly applying U-net skip connections
only provides the decoder with misaligned feature maps and
contributes little to this work.

4) Why Does PTC Work?: On the one hand, instead of
delivering the decoder misaligned feature maps, PTC takes the
misaligned feature maps as input and aligns the maps by using
perspective transformation. The processed feature are then sent
to the decoder and have the same spatially distribution with
the feature maps of the decoder in terms of the details. By
adopting PTC, the pixel-to-pixel misaligned task (input and
target have different poses) is converted to the pixel-to-pixel
aligned task to some extent. On the other hand, the PTC
also filters out the background by the region masks. As the

background is useless, filtering out the background makes the
decoder more focus on generating details.

IV. EXPERIMENT
A. Dataset and Evaluation Protocol

There exist several datasets related to vehicle-based appli-
cations, e.g, VeRi-776 [43], [44], VehicleID [50], Box-
Cars21k [16], and CompCars [41]. In this paper, we conduct
the experiment on VeRi-776 and VehicleID, which are mainly
used for vehicle re-identification. By given an input image,
the task is to generate a vehicle image that has a different
pose and keeps the same identity. Thus, it is necessary to make
image pairs. Specifically, for each pair of images, the images
are of the same vehicle. In the training stage, one image of
this pair is input to the generative model and the other image
is used for loss calculation. In the test stage, one image is
input to the model and the other image is used for performance
evaluation. Thus, only the datasets for vehicle re-identification,
where each vehicle has several images, are suitable for our
task.

1) VeRi-776 : [43], [44] contains many categories with
diverse poses. It is a dataset for vehicle re-identification and
is collected from real-world surveillance scenarios. It contains
over 50,000 images of 776 vehicles and the images are
captured by cameras covering 1 km? of ground in 24 hours.

2) VehiclelD: [50] contains images captured by multiple
real-world surveillance cameras distributed in a small city
during daytime. In the dataset, there are 26,267 vehicles and
221,763 images in total.

3) Vehicle Keypoint Annotation: We use the public pose
labels collected by Wang et al. [45] on the VeRi-776 dataset.
In this dataset, 20 vehicle keypoints and 8 orientations are
annotated. Because this is the only vehicle pose dataset we
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TABLE I

QUANTITATIVE METHOD COMPARISONS ON VERI-776 [43], [44] AND VEHICLEID [50]. FOR THE EVALUATION METRICS OTHER THAN FID, A HIGHER
SCORE IS BETTER. PERSP. TRANS. REFERS TO ONLY USING THE PERSPECTIVE TRANSFORMATION. CGAN IS THE BASELINE OF THIS PAPER.
PAGM Is OUR FULL METHOD, INCLUDING TWO-WAY SKIP CONNECTIONS, PTC AND PERCEPTUAL LOSS. BASELINE+4SKIP ONLY
APPLIES TWO-WAY SKIP CONNECTIONS. THE DIFFERENCE BETWEEN BASELINE+4SKIP AND BASELINE+4SKIP+PERCEPTUAL
Is THAT BASELINE+SKIP+PERCEPTUAL APPLIES PERCEPTUAL LOSS FUNCTION. BASELINE+SKIP+PTC APPLIES PTC
BASED ON TwWO-WAY SKIP CONNECTIONS. NOTE THAT WE CANNOT ONLY REMOVE THE TwWO-WAY SKIP CON-
NECTIONS, BECAUSE THEY ARE THE NECESSARY BASIS OF PTC. THE DIFFERENCE BETWEEN PAGM AND
BASELINE+SKIP+PTC Is THAT PAGM APPLIES PERCEPTUAL LOSS, WHILE
BASELINE+4SKIP+PTC DOES NOT
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VeRi-776 VehicleID
Method SSIM IS mask-SSIM  mask-IS DS FID | SSIM IS mask-SSIM  mask-IS DS FID
Persp. Trans. 0.059 2.087 0.062 2.301 0.285 5984 | 0.048 1.031 0.048 1.256 0357 521.6
CGAN (Baseline) [8] 0.468 2.246 0.615 3.040 0.975 339.2 | 0447 1.822 0.622 2218 0997 3255
PG2 [38] 0.465 2.451 0.611 2958 0976 3357 | 0426 1.821 0.611 2232 0995 3304
DSC [40] 0.456 2.521 0.610 2.976 0.970 305.7 | 0425 1.864 0.621 2.241 0.995 320.7
Baseline+Skip 0.444 2.374 0.595 3.079 0.968 3264 | 0455 1.831 0.631 2.261 0.994 315.7
Baseline+Skip+perceptual | 0.484 2.386 0.625 2.997 0.960 2784 | 0410 1.900 0.629 2430 0993 3125
Baseline+Skip+PTC 0.474  2.662 0.621 3.611 0.960 316.0 | 0.410 1.772 0.625 2.358 0993 3225
PAGM 0.492  2.662 0.630 3.612 0.963 245.3 | 0.444 1.902 0.629 2431 0993 310.5
ground truth 1.000 2.852 1.000 3.732 0.929 0.0 1.000 1.992 1.000 2.435 0982 0.0
TABLE II

could find, we use these annotations to train pose estimation
models. We directly use the pose estimation model trained on
VeRi-776 to estimate keypoints on VehicleID [50].

4) Evaluation Metrics: The evaluation metrics used in this
paper include Structural Similarity (SSIM) [51], Inception
Score (IS) [52] and Fréchet Inception Distance (FID) [53].
IS is computed by using a classifier pre-trained on Ima-
geNet [54]. FID improves IS by comparing the statistics
of generated images to real ones. Meanwhile, to alleviate
the influence of background in evaluation, we use a vehicle
mask to calculate mask-IS and mask-SSIM, which have been
adopted in [38]. In addition, we use the detection score (DS)
generated by the SSD detector [55] to provide another view
whether the generated image is realistic or not. For these
evaluation metrics other than FID, a higher score indicates that
the generated image is more realistic / similar to the ground
truth.

B. Implementation Details

1) Vehicle Pose Estimation: Using the annotated vehicle
keypoints [45] on VeRi-776, we train a stacked hourglass
network (SHN) [15] to predict the 20 vehicle keypoints. The
input images are resized to 256 x 256. We set the batch size to
4 and the learning rate to 0.00025. Weight decay applied to the
learning rate is set to 0.96. The other learning settings of SHN
follow [15]. We use the manually-annotated points to train
the pose estimation model and PAGM. In the testing stage,
the pose estimation model generates keypoints for PAGM.

2) Pose Estimation Results: We evaluate the pose estimation
performance on VeRi-776 and VehicleID. Following [45],
a valid pose detection is defined when it is located within
a circle of three pixels from the ground truth position on
the final response map. In addition, invisible keypoints are
ignored in the evaluation step. Since the VehicleID dataset
does not have pose labels, we randomly choose 1,000 vehicle
images and carefully label the keypoints as ground truth.
On VeRi-776, our pose estimator obtains an 87.1% accuracy.
Meanwhile, on VehicleID, the pose estimation accuracy is
80.0%. It indicates that the trained pose estimation model is

ABLATION STUDY ABOUT THREE LOSSES (LcGAN > £perceptual
AND L) ON VERI-776 [43], [44]

Method SSIM IS DS  FID
Lccan 0403 2.654 0.968 3264
Lcgan +Lr, 0474 2.662 0960 316.0
LEGAN + Lperceptual 0.468 2.660 0.960 296.0
LoGAN + L1y + Lperceptual | 0492 2.662 0963 2453
ground truth 1.000 2852 0929 00

capable to offer decent vehicle points on the VeRi-776 dataset.
Since the pose estimation model is only trained on the VeRi-
776 dataset, its performance is worse on VehicleID, mainly
due to domain bias.

3) Generator and Discriminator: The images and pose
response maps are fixed to 256 x 256. We adopt the instance
normalization [56] after each convolution. For the hyperpa-
rameters in Eq. 4, we set 41 10 and /1, = 0.01. We use
the Adam optimizer [57] with a mini-batch size of 3. We set
f1 =0.5and fr» = 0.999. The learning rate starts from 0.0002.
We train G and D for 100k iterations.

C. Comparison With Related Art

Because vehicle generation has not been extensively studied,
in this section, we re-implement and compare with some
existing generative models which can be applied to our task.
Specifically, we compare our method with perspective transfor-
mation, CGAN [8], PG2 [38] and DSC [40] on the VeRi-776
and VehiclelD datasets. As DSC [40] use affine transformation
and can only shuttle rectangular regions, we reproduce it by cut
a vehicle into several rectangles. Similar to PAGM, DSC [40]
has r = 8 rectangles and each rectangle contains the same
4 keypoints. We also show evaluation outcomes of the ground
truths for reference. The comparison is shown in Table II. The
qualitative results are shown in Fig. 6. In addition, the testing
results with the pose from other cars are shown in Fig. 7.

1) VeRi-776: On the VeRi-776 [43], [44] dataset, the pro-
posed PAGM obtains an SSIM of 0.492, while SSIM of
the four competing methods is 0.059, 0.468, 0.465 and
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ground truth

Fig. 6. Qualitative comparison between our method and previous works:
PG2 [38] and DSC [40].

target
pose

Fig. 7. Visual results from our model, showing different poses of the same
input image. Note that the target pose is extracted from other vehicles.

0.456, respectively. For fair comparison, we also compare
mask-SSIM. On this metric, PAGM outperforms the per-
spective transformation, CGAN [8], PG2 [38] and DSC [40]
by +0.568, +0.015, +0.019 and +0.020 in terms of mask-
SSIM, respectively. The comparison of SSIM and mask-SSIM
indicates that our method can render images that are more
similar to the input images. In terms of IS and mask-IS,
the proposed method yields an IS of 2.662 and an mask-IS
of 3.612 on the testing set. They are higher than results of the
competing methods. The FID score of PAGM is 245.3, which
is the smallest value among the methods. This indicates that
PAGM can generate more realistic vehicle images.

PAGM is superior to DSC, because PAGM can adapt to
the characteristics of vehicles. The perspective transformation
adopted in PAGM projects quadrilaterals from one perspective
to another and can precisely align feature maps. In comparison,
DSC [40] can only utilize the affine transformation to shuttle
rectangular regions. This is not accurate for vehicles made of
irregular quadrilateral planes.

We then evaluate the methods in terms of detection score
(DS). The ground truth DS is 0.929. Meanwhile, the DS
scores of PG2, CGAN and PAGM are 0.976, 0.975 and 0.960,
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No-pose MV2NV VSAF

ground truth

Fig. 8. Qualitative results of No-pose, MV2NV [13] and VSAF [12] on
VeRi-776 [43], [44].

respectively. It clearly indicates that all these methods can
produce realistic vehicle images.

The visualizations in Fig. 6 show the effectiveness of
PAGM. Because of the introduced perspective transformation
in the GAN-based system, our method can transfer the texture
details from the input image to the generated image. We
observe that our method can generate vehicles that not only
look realistic, but also preserve the original texture details. We
also illustrate some additional visual results from our model,
showing the testing results with the pose from other cars.

As shown in Fig. 8, we also compare the proposed method
with No-pose, MV2NV [13] and VSAF [12]. In [13], the cam-
era poses are represented by one-hot vectors. In addition,
we have also added a method named No-pose. No-pose is
similar to the proposed method and uses one-hot encoding
representations as the inputs of our method instead of vehi-
cle poses. The results show that our method can generate
more realistic vehicle images and have well-preserved details.
MV2NYV and No-pose can generate a vehicle with a reasonable
overall shape but blurry details. VSAF [12] takes viewpoint
transformation as input and synthesizes the target view by
sampling pixels from source view according to the predicted
appearance flow field. The results illustrate that the details
generated by our method are more clear and true. The main
reason is that our method can accurately transfer local details
to the target location.

2) VehiclelD: On VehicleID [50], we apply the same model
structure used on the VeRi-776 dataset to train on the Vehi-
cleID dataset. When we look into the result, we have similar
observations to those on VeRi-776. However, the overall
results are lower than those in VeRi-776. Since the pose
estimator is trained on VeRi-776, pose estimation accuracy is
higher on VeRi-776 than VehicleID, which can be explained
by the domain gap. We speculate that a better pose estimator
would result in a higher quality of the generated images.

D. Component Evaluation

Two components are involved in our method, i.e., the two-
way skip connections and PTC. We remove them one at a
time to evaluate their contributions respectively. Results are
shown in Table II. 1) To evaluate the two-way skip connec-
tions, we add them to original baseline model. This method
is called “Baseline+Skip”. 2) To evaluate PTC, we com-
pare the Baseline+Skip+PTC with Baseline+Skip. Finally,
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ground truth  baseline (CGAN) Baseline+Skip Baseline+Skip+PTC

PAGM

Fig. 9.
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ground truth  baseline (CGAN)  Baseline+Skip Baseline+Skip+PTC PAGM

Sample testing results on VeRi-776 (left) and VehicleID (right). We compare three methods: baseline (CGAN) [8] (Col. 3), Baseline+Skip (Col. 4),

Baseline+4-Skip+PTC (Col. 5) and PAGM (Col. 6). We also show the input image (Col. 1), and ground truth (Col. 2).

3) to evaluate the overall promotion by the two components,
we compare Baseline+Skip+PTC with the baseline.

1) The Effectiveness of Two-Way Skip Connections: Two-
way skip connections form necessary basis for PTC, so we
cannot conduct ablation study for it. Therefore, we first eval-
uate the two-way skip connections by comparing the baseline
(Col. 3) and Baseline+Skip (Col. 4). On VeRi-776, the two-
way skip connections bring quantitative improvements in terms
of IS and mask-IS. Meanwhile, SSIM and mask-SSIM drop.
On VehiclelD, the two-way skip connections improve IS and
mask-IS by 4+0.09 and +0.43, respectively. Meanwhile, SSIM
and mask-SSIm improve +0.08 and 4-0.09, respectively. Thus,
the quantitative results show that the two-way skip connections
can generate better images on the VehicleID dataset.

Second, as shown in Fig. 9, we compare the base-
line (Col. 3) and Baseline+Skip (Col. 4) qualitatively.
In the images generated by the baseline and Baseline+Skip,
the details (e.g, plate, logo, and lamp) are inconsistent with
the input images on VeRi-776. However, on the VehicleID
dataset, the images generated by Baseline+Skip can preserve
some details while images generated by the baseline cannot.
The observations on VeRi-776 are different from those on
VehicleID. The main reason should be that the poses of the
pairs on VehiclelD are almost similar (Fig. 9). Thus, the input
and target image on VehicleID are to some extent spatially
aligned. It is the main reason why only using two-way skip
connection is able to preserve some details on the VehicleID
dataset.

Another important observation from Fig. 9 is that the color
of images generated by Baseline+Skip (Col. 4) is slightly
different from the input (Col. 1). The colors of the vehicles
seem to be a bit close to the background color. It is mainly
because that the two-way skip connections introduce local
details as well as the background. The background part leads
to a slight bias towards the color of the images generated by
Baseline+Skip.

2) The Effectiveness of PTC: We evaluate PTC quan-
titatively by comparing the results of Baseline+Skip,
Baseline+Skip+PTC, Baseline+Skip-+Perceptual and PAGM.
Note that PAGM is equal to Baseline+Skip+Perceptual+PTC.
On VeRi-776, Baseline+Skip+PTC uses PTC and improves
SSIM to 0.474 comparing with Baseline+Skip. Meanwhile,
IS and mask-IS are improved to 2.662 and 3.611, respectively.
Similarly, when using PTC, PAGM obtains an FID of 245.3,
while the FID of Baseline+Skip-+Perceptual is 278.4. The
results indicate that PTC is capable of aligning the local details
and generating more realistic images on the VeRi-776 dataset.
However, on VehicleID, PTC improves IS and mask-IS while
reduces SSIM and mask-SSIM. As mentioned above, the main
reason is probably the similar poses of the image pairs on
VehiclelD.

Then, Col. 4 and Col. 5 of Fig. 9 show qualitative results
of Baseline+Skip+PTC and Baseline+Skip. On the one hand,
on both VeRi-776 and VehiclelD, the details is better preserved
in the images generated by Baseline+Skip+PTC. It demon-
strates that the aligned feature maps processed by PTC are
effective to preserve local details. On the other hand, the color
of the image generated by Baseline+Skip+PTC is more
realistic and closer to the input image. It demonstrates that,
by filtering out the background, PTC is able to reduce color
bias.

3) Two Components vs. Baseline: Baseline+Skip+PTC
is compared with the baseline to evaluate the promotion
by applying two-way skip connections and PTC. Compared
with the baseline, IS and mask-IS of Baseline+Skip+PTC
improve +0.416 and +0.571, respectively. Meanwhile, SSIM
and mask-SSIM of Baseline+Skip+PTC also improve +0.06.
As shown in Fig. 9, compared to the baseline (Col. 4),
Baseline+Skip+PTC (Col. 6) can render more realistic images
and preserve better details. In addition, as shown in Table III,
we introduce a vehicle re-identification model to quantita-
tively evaluate the ability of preserving local textures for
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TABLE III

FEATURE DISTANCE RESULTS FOR THE PROPOSED
METHOD AND PREVIOUS METHODS [8], [38], [40]

models CGAN [8] PG2 [38] DSC [40] PAGM
distance 65.3 56.7 50.9 42.7
TABLE IV

VARIANT STUDY OF PAGM ON THE VERI-776 DATASET.
“ARCHITECTURE” SHOWS THE ARCHITECTURE SKETCH
OF THE VARIANT. BRIEFLY, ONLY THE ENCODER FOR
SOURCE IMAGE AND THE DECODER ARE DEPICTED

Variant Architecture mask-SSIM mask-IS FID
el

PAGM-0 0.599 3.079 321.3
||||||--||||||

PAGM-1 ' 0.619 3.060 309.4
=

PAGM-2 L 0.617 3.351 287.4
=

PAGM-3 i 0.623 3.541 275.2
I'lllullllll

PAGM-4 L 0.630 3.612 245.3
|

PAGM-5 : 0.621 3.531 247.2

the components. Following [58], we first train a re-
identification model on VeRi-776. We then extract features
for the ground truth image and the images generated by
CGAN [8], PG2 [38], DSC [40] and our PAGM. Note that the
extracted features are 256-dim vectors. Finally, we compute
the Euclidean distances between the ground truth and the
generated images. A lower score is better. As the results
in Table III show that PAGM yields a distance of 42.7, lower
than other methods. This indicates that our method can better
retain vehicle identities and is advantageous in preserving
texture details.

E. Loss Evaluation

We evaluate the effectiveness of the losses in this section.
In this paper, as described in Section III-A, we adopt three loss
functions: Lcgan, £1 and Lperceprual- As shown in Table IV,
only adopting Lcgan yields the largest FID of 326.4. When
introducing L1, Lccan + Lccan yields an FID of 316.0.
Meanwhile, the FID of Lcgan + Lperceprual is 296.0. The
results indicate that both £ ercepruar and L1 can help improve
the generative ability. When combine the three losses together,
the system achieves the best performance in terms of FID.

F. Variant Study

Finally, we compare six variants of PAGM, denoted as
PAGM-0, PAGM-1, ..., and PAGM-5, on VeRi-776. PAGM-n
indicates that n PTCs are applied between the encoder and the
decoder. Table IV details the results and the architecture sketch
of each variant. Briefly, we use mask-SSIM and mask-IS to
evaluate the performance.
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First, PAGM-0 has the worst performance compared with
other variants. In fact, PAGM-0 has no PTC and is equal to
PAGM w/o PTC. In our result, PAGM-0 yields a mask-SSIM
of 0.599 and a mask-IS of 3.079, which are lower than all
the variants that have the PTC module. This suggests that
employing PTC is consistently beneficial to vehicle image
generation task, regardless of the number of it. It validates
our thoughts in Section III-D.

Second, when the number of PTC modules increases from
1 to 4, the result is generally increasing. Mask-SSIM improves
from 0.619 to 0.630 and mask-IS from 3.060 to 3.612. How-
ever, when the numbers of PTC modules increases from 4 to 5,
FID rises from 245.3 to 247.2. It indicates that an appropriate
number of PTC modules is important to our system. The
reason may be two-fold. On the one hand, when the number
of PTC modules is relatively small, the PTC modules are not
able to provide sufficiently strong conditions (aligned feature
maps). On the other hand, the perspective transformation may
perform poorly on small feature maps. In the layer where the
fifth perspective transformation module is applied, the map
size is 16 x 16 and perspective transformation cannot generate
decent output.

V. CONCLUSION

Given a source vehicle image and a target pose, we present
the perspective-aware generative model (PAGM) to deal with
the vehicle view synthesis that depicts the same vehicle with
target pose. PAGM takes advantages of both conditional gener-
ative adversarial nets (CGAN) and perspective transformation.
On the one hand, it is based on a CGAN structure that enforces
the generated images to look real globally. On the other
hand, several perspective transformation modules are applied
between the encoder for source image and the decoder. These
modules make use of the quadrilateral planes of a vehicle
and provide the decoder with aligned feature maps, which
are strong constraints to preserve local details. Quantitative
and qualitative experiments on the VeRi-776 and VehicleID
datasets show that our method can produce realistic images
and shuttle carefully the local details from the source to the
target.
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