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Fast Depth Estimation for Light Field Cameras
Kazu Mishiba , Member, IEEE

Abstract— Fast depth estimation for light field images is an
important task for multiple applications such as image-based
rendering and refocusing. Most previous approaches to light field
depth estimation involve high computational costs. Therefore,
in this study, we propose a fast depth estimation method based
on multi-view stereo matching for light field images. Similar to
other conventional methods, our method consists of initial depth
estimation and refinement. For the initial estimation, we use a
one-bit feature for each pixel and calculate matching costs by
summing all combinations of viewpoints with a fast algorithm.
To reduce computational time, we introduce an offline viewpoint
selection strategy and cost volume interpolation. Our refinement
process solves the minimization problem in which the objective
function consists of �1 data and smoothness terms. Although
this problem can be solved via a graph cuts algorithm, it is
computationally expensive; therefore, we propose an approximate
solver based on a fast-weighted median filter. Experiments on
synthetic and real-world data show that our method achieves
competitive accuracy with the shortest computational time of all
methods.

Index Terms— Light fields, depth estimation, multi-view stereo
matching, approximate solver.

I. INTRODUCTION

ALIGHT field camera records both spatial and angular
light information in a single shot; therefore, it has various

applications such as image-based rendering [1], refocusing [2],
and 3D reconstruction. As most of these applications use
depth information, depth estimation from a light field image
is an important topic for light field image processing
research.

Lenslet-based light field cameras, known as plenoptic cam-
eras, are hand-held and commercially available. They place a
microlens array between the main lens and the image sensor,
enabling a single light field image to be decoded as multi-
ple stereo images, often referred to as sub-aperture images.
Because the baselines are extremely small, traditional depth
estimation methods for multiple large-baseline stereo images
cannot produce satisfactory results for lenslet-based light field
cameras. Thus, various approaches have been proposed for
estimating depth in lenslet-based light field images based
on multi-view stereo matching (MVSM) or epipolar-plane
image (EPI) analysis [3].
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Similar to depth estimation methods for traditional
multi-view stereo images, most of these methods consist of
two stages: an initial depth estimation stage and a refinement
stage. However, these methods involve high computational
costs due to the many redundant viewpoints during initial esti-
mation and as a result of solving optimization problems during
depth refinement. This is limiting for light field applications
such as image-based rendering and refocusing, which perform
depth estimation during preprocessing and therefore require
rapid depth estimation.

Shin et al. [4] proposed a deep learning-based approach that
achieves state-of-the-art results in terms of both accuracy and
fast computation. Compared with other conventional methods,
their method is relatively fast because it directly infers depth
maps using trained networks without a refinement step. How-
ever, a disadvantage of their method is that it takes a long time
to train the networks and different networks are required to
ensure high accuracy in different environments; e.g., different
noise levels and different numbers of sub-aperture images.

In this paper, we propose an MVSM-based depth estimation
method for light field cameras that boasts fast performance
and high accuracy without requiring learning. The key ways
we ensure fast computation are by reducing redundancy in the
initial depth estimation stage and introducing an approximate
solver for optimization during the refinement stage.

Our initial depth map estimation consists of the following
three steps: pixel feature calculation, calculation of matching
cost to construct a cost volume, and application of a winner-
takes-all (WTA) scheme to the cost volume. Our method
represents a pixel feature using only one bit and limits the
number of viewpoints used for estimation. Although matching
cost calculation using more pixel features on more viewpoints
may achieve high accuracy, exceeding a certain amount of
pixel features results in less accuracy improvement but higher
computational cost. In other words, using fewer features
can achieve sufficient accuracy. To ensure stable estimation
with few pixel features, the matching cost is calculated by
summing all combinations of viewpoints used then applying a
cost aggregation method. A typical matching cost calculation
for all combinations has poor computational efficiency due
to the massive number of combinations; however, we show
that the calculation of the matching cost can be accelerated
using the proposed algorithm (discussed in later section).
Subsequently, we employ a cost volume interpolation scheme
that interpolates the cost volume in the depth direction to
reduce the computational time.

Our refinement step uses an approximate solver to solve
the optimization problem to remove outliers. This reduces the
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computational costs compared to the traditional approach of
using a graph cuts algorithm.

The main contributions of this research are as follows:
1) We propose a computationally efficient initial depth

estimation method using one-bit feature calculation, fast
matching cost calculation, a view selection strategy, and
cost volume interpolation.

2) We propose a rapid approximate solver for refinement
of the initial depth map.

The proposed method performs significantly faster than con-
ventional methods whilst achieving competitive accuracy with-
out the need for a training process.

II. RELATED LITERATURE

Existing depth estimation methods can be categorized into
four groups: MVSM-based, EPI-based, focal stack symmetry,
and learning-based approaches.

A. MVSM-Based Approach

Tao et al. [5] estimated two initial depth maps using
correspondences and defocus cues, respectively. Their refine-
ment step combines the maps into a Markov Random
Field (MRF) optimization process. Based on Tao’s method [5],
Wang et al. [6] proposed a depth estimation method that mod-
els occlusions and utilizes them for the initial depth estimation
and refinement steps. Jeon et al. [7] shifted sub-aperture
images using the phase shift theorem to accurately deter-
mine the sub-pixel shift. Multi-label optimization was then
performed using graph cuts to enhance the initial estimation.
Tomioka et al. [8] calculated the matching cost based on cen-
sus transform to withstand degradation caused by sensor noise
and vignetting. Their refinement step minimizes an objective
function that consists of a data term and an edge-preserving
smoothness term. Huang [9] formulated a depth estimation
problem as an optimization problem using MRFs. Without
initial estimation, photo-consistency is directly considered in
the MRF model.

B. EPI-Based Approach

This approach estimates the slopes of the lines in the EPI,
which correspond to depth. Wanner and Goldluecke [10] used
a structure tensor to compute the vertical and horizontal slopes
and obtain estimation reliability for each pixel. An optimized
depth is obtained by minimizing the objective function, which
consists of estimated depths from these slopes and the estima-
tion reliability. This approach tends to assign high reliability to
incorrect estimations in areas where the depth is discontinuous.
Li et al. [11] refined the estimation reliability so that incor-
rect estimations are assigned low reliability. To remove the
influence of occlusion, Zhang et al. [12] proposed a spinning
parallelogram operator to determine the slopes. While their
refinement step applies a guided filter to the cost volume
instead of an optimization method to avoid high computational
costs for synthetic images, their method requires a further
optimization process to reduce noise in real data.

C. Focal Stack Symmetry Approach

This approach uses the property of the light field focal
stack that pixel values are symmetric along the depth dimen-
sion centered at the correct depth, which holds only for
non-occlusion pixels. Lin et al. [13] proposed the prop-
erty and data consistency measure based on analysis-by-
synthesis. Depth is computed by the iterative optimization
framework which incorporates them. Strecke et al. [14] pro-
posed occlusion-free partial focal stacks. Their method jointly
estimates consistent depth and normal maps by using iterative
optimization.

D. Learning-Based Approach

Johannsen et al. [15] constructed a light field dictionary
using EPI patches and corresponding depths then estimated
depth based on a sparse coding approach that solves the
optimization problem. The depth estimation process of all
approaches discussed in this section includes solving an
optimization problem, which generally involves long com-
putational times. Jeon et al. [16] predicted the initial depth
using a random forest-based depth label prediction then
applied a weighted median filter to the initial estimation,
which reduces the computational time compared with solv-
ing an optimization problem. Although prediction using fea-
ture vectors is fast, calculating the feature vectors involves
high computational costs. Shin et al. [4] used an end-to-
end deep neural network approach, which boasted relatively
fast performance. To overcome the lack of training data,
they introduced light-field image-specific data augmentation.
While learning-based approaches achieve high accuracy when
training and prediction are performed in the same conditions,
many outliers can occur when they are performed in different
conditions, as shown in Section VI.

In conventional methods, a refinement step, typically based
on optimization, is required to remove outliers and achieve
high accuracy. However, while this requires high computa-
tional costs in conventional methods, our proposed method
finds an approximate solution with low computational costs.

III. DEPTH ESTIMATION FRAMEWORK

A. Problem Setting

Let s = (u, v) ∈ S be the view coordinates, where o =
(0, 0) ∈ S is the central viewpoint. Our purpose is to estimate
the depth at the central viewpoint from multiple sub-aperture
images Is . In our method, we use grayscale images as input
viewpoint images. The problem of recovering depth from
multiple images is as follows: Given a point (x, y) on the
central viewpoint, find the corresponding point (Xs , Ys) from
another viewpoint s. Because each viewpoint is on the regular
grid (coordinate) and its interior camera parameters can be
considered equal, the corresponding point can be formulated as

(Xs , Ys) = (pu + x, pv + y), (1)

where p is the disparity between adjacent views.
In this study, we estimate discrete depth parameters
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Fig. 1. Example of estimation results derived from the proposed method.
(a) Center view. (b) One-bit feature map of center view. (c) Initial depth map.
(d) Estimation confidence. (e) Final depth map.

α ∈ A = {1, 2, . . . , αmax }, where αmax is the depth resolution.
The relationship between α and p is defined as

p(α) = pmin + pmax − pmin

αmax − 1
(α − 1), (2)

where pmin and pmax are the minimum and maximum dispar-
ities between adjacent views, respectively, and can either be
approximately estimated from a scene or be set experimentally.

B. Initial Depth Estimation

Our proposed method estimates the initial depth map as
follows: First, we calculate pixel features in each pixel on all
sub-aperture images. Next, we calculate matching costs for
all depth parameters. Then, cost aggregation is performed to
construct a cost volume. Finally, the WTA scheme is applied
to the cost volume.

Our method uses the following pixel feature at pixel i on
sub-aperture image Is for parameter α:

f α
s,i =

{
1 (eα

s,i ≥ 0)

0 (otherwise),
(3)

where

eα
s,i = ∇x [Is,i ]αs + ∇y[Is,i ]αs (4)

is the sum of the pixel difference in horizontal and vertical
directions. Here, [Is,i ]αs is a remap operator that maps pixel
i = (x, y) onto (p(α)u + x, p(α)v + y) and Is,i is a pixel
value at i on Is . The concept of the pixel feature is similar
to the census transform. While census transform outputs a
binary vector, our transform outputs only one binary for each
pixel. Therefore, our transform requires less computation cost
and memory to store the transformed results than the census
transform. Figure 1 (b) shows a feature map of our method.

Ideally, pixel features of corresponding pixels on all view-
points are the same for the correct α in the case of no
occlusion. Our matching cost of pixel i for parameter α is

defined as the sum of the absolute differences between pixel
features for all combinations of viewpoints:

hα
i = 1

2

∑
s∈S

∑
t∈S\{s}

| f α
s,i − f α

t,i |. (5)

After cost calculation, the cost slice Cα is calculated to
construct a cost volume C by aggregation of the matching cost
using box filtering with a window size of W1 × W1. Finally,
we apply the winner-takes-all (WTA) scheme to C for each
pixel to obtain the initial depth at pixel i as

ᾱi = arg min
α∈A

Cα
i , (6)

where Cα
i is the matching cost at pixel i for parameter α.

C. Depth Refinement

As shown in Fig. 1, the initial depth maps contain outliers;
thus, we refine the initial depth maps with global optimization.

Our refinement strategy is designed to minimize the
following objective function:

E(α) = λ
∑

i

ci |αi − ᾱi | +
∑

i

∑
j∈N(i)

wi, j |αi − α j |, (7)

where λ controls the balance between the first and second
terms, ci is the estimation confidence on pixel i , wi, j is
the weight between pixel i and j , and N(i) is a set of
neighborhood pixels around pixel i . In this study, we refer
to pixels inside the W2 × W2 window centered around i but
excluding i as the neighborhood pixels of i . The first term is
a data term, which is weighted by the estimation confidence
for each pixel. Several methods for measuring the confidence
have been proposed [17]. Here, we calculate the estimation
confidence using the entire cost as follows:

ci = 1 − minα∈A Cα
i

aveα∈ACα
i

, (8)

where ave calculates the average of Ci . The proposed measure,
which is similar to the Probabilistic Measure described in [17],
has relatively low computational cost and achieves good
performance. The second term is a smoothness term, which
is weighted by the affinity between pixels i and j . We use the
following affinity function:

wi, j = exp

(−|Io,i − Io, j |2
2σ 2

)
, (9)

where σ 2 is an affinity control parameter and Io,i is the inten-
sity of pixel i on the central viewpoint. The proposed objective
function uses �1 norm both in the data and smoothness terms,
which efficiently removes outliers [18].

IV. ACCELERATION FOR INITIAL DEPTH ESTIMATION

In this section, we describe three algorithms employed
for faster computation: fast cost calculation, cost volume
interpolation, and view selection.
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A. Fast Cost Calculation

A straightforward implementation of the matching cost
calculation (4) and (5) results in poor computational efficiency;
however, it can be improved by transforming the equations as
follows.

Equation (4) can be written as

eα
s,i = [∇x Is,i + ∇y Is,i ]αs . (10)

This transformation is possible if we use a space-invariant
scheme for remapping, such as bilinear and bicubic inter-
polations. Using (10) reduces the number of additions,
differentiations, and remapping operations.

In (5), calculating the differences between pixel features
for all combinations of viewpoints is time-consuming because
of the massive number of combinations. Fortunately, (5) can
be efficiently calculated as follows. Let Fα

i (k) = #Sk

where # indicates the number of elements of a set and
Sk = {s|s ∈ S, f α

s,i = k}. Because S0 ∪ S1 = S, S0 ∩ S1 = ∅,
| f α

s∈S j ,i
− f α

t∈Sk,i
| = 0 for j = k and | f α

s∈S j ,i
− f α

t∈Sk,i
| = 1

for j �= k, (5) is rewritten as

hα
i = 1

2
{
∑
s∈S0

∑
t∈S

| f α
s,i − f α

t,i | +
∑
s∈S1

∑
t∈S

| f α
s,i − f α

t,i |}

=
∑
s∈S0

∑
t∈S1

1 (11)

= Fα
i (0)Fα

i (1), (12)

where

Fα
i (0) =

∑
s∈S0

f α
s,i = #S − Fα

i (1), (13)

Fα
i (1) =

∑
s∈S1

f α
s,i =

∑
s∈S

f α
s,i . (14)

As a result, the matching cost for parameter α can be
calculated as follows. First, pixel features of all viewpoints
are summed to calculate Fα

i (1) as shown in (14). Then,
Fα

i (0) is calculated by subtracting Fα
i (1) from the number

of viewpoints, as shown in (13). Finally, Fα
i (0) and Fα

i (1)
are multiplied, as shown in (12).

B. Cost Volume Interpolation

We also introduce cost volume interpolation for faster com-
putation. In the initial depth estimation step, cost calculation
in each cost slice is the main task, which occupies most of
the processing time. The cost calculation for each slice repeats
αmax times. Although using smaller αmax reduces the number
of computations, it also decreases the estimation accuracy due
to insufficient depth resolution. Because aggregated matching
costs change smoothly according to the change of α, as shown
in Fig. 2, the matching cost can be predicted by interpolation
along the α direction. Instead of interpolating matching costs
for all decimated slices, we only interpolate the matching
cost around the parameter that has the minimum cost among
sampled slices for computational efficiency. This approach is
similar to subpixel displacement estimation [19].

Fig. 2. Matching costs after aggregation.

We first construct a cost volume with sampled parameters
α ∈ Â ⊆ A then apply the WTA scheme, described as

α̂i = arg min
α∈ Â

Cα
i . (15)

In this study, A is sampled at a regular interval, t; i.e., Â =
{1, 1 + t, . . . , αmax − t, αmax}. Next, we interpolate parameter
α as follows:

ᾱi =
{

α̂i (α̂i = 1, αmax)

α̂i + round(δα
i ) (otherwise),

(16)

where δα
i is a fitting function. Equiangular line fitting and

parabola fitting are commonly used for subpixel estimation.
Through experiments, we found that equiangular line fitting is
more suitable for our cost interpolation than parabola fitting.
Using equiangular line fitting, δα

i is formulated as

δα
i =

⎧⎪⎪⎨
⎪⎪⎩

1

2

C α̂i +t − C α̂i −t

C α̂i − C α̂i −t
(C α̂i +t < C α̂i−t )

1

2

C α̂i +t − C α̂i +t

C α̂i − C α̂i −t
(otherwise).

(17)

C. View Selection

For faster computation, we limit the number of viewpoints
used for depth estimation instead of using all viewpoints. Sub-
aperture images taken by a lenslet-based light field camera
have high redundancy because of the short baseline between
images. It is desirable to reduce the number of viewpoints
because using overly redundant viewpoints increase the com-
putational time without improving the estimation accuracy.
Our strategy is to first determine the order of viewpoints
then use a certain number of viewpoints for the estimation
according to this order. The number of viewpoints to be used
is determined experimentally. Here, we focus on determining
the order of viewpoints, which is known as view selection.

View selection has been employed for multi-view stereo
images [20] and for estimating the depth from light
fields [21]. Conventional view selection methods select the
next view that optimizes a certain objective function based
on already-selected viewpoints. Such online selection requires
additional time to calculate the next view in the depth esti-
mation procedure; therefore, we propose an offline selection
strategy.
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Fig. 3. Visualization of view selection. Each square corresponds to a
viewpoint and the number in the square indicates the order of selection.

Our strategy uses a symmetric viewpoints selection to be
independent of orientation. Let Q be a set of symmetric
viewpoints q where

q =
{

{(i, j), (−i,− j), (i,− j), (−i, j)} (i �=0∧ j �=0)

{(i, 0), (−i, 0), (0, i), (0,−i)} (otherwise).
(18)

Our view selection method first selects the central viewpoint
then sequentially determines the optimal next symmetric view-
points q∗ by solving the following minimization problem

q∗ = arg min
q∈Q\Q̄

V (q), (19)

where Q̄ is a set of selected symmetric viewpoints and

V (q) =
∑
s∈q

⎛
⎝γ ‖s‖1 − 1

# S̄

∑
s̄∈S̄

‖s − s̄‖1

⎞
⎠ , (20)

where γ is a parameter and ‖ · ‖1 is the �1 norm. The first
term in the bracket in (20) seeks to select a view close to
the center view to avoid occlusions. The second term in the
bracket in (20) seeks to use a view far from already-selected
viewpoints to avoid redundancy in view positions. When
multiple solutions for (19) exist, one of them is randomly
selected. Figure 3 illustrates an order of view selection in 9×9
viewpoints.

V. FAST APPROXIMATE SOLVER FOR REFINEMENT

Although a global minimizer for (7) can be found via graph
cuts [22] if α is restricted to discrete values, the computational
time is high. A possible solution is to obtain an approximate
solution by stopping the iteration in an iterative optimization
process. Although gradient-based methods, e.g., the steepest
descent method, can be used as iterative optimization meth-
ods, their rate of convergence is slow. Thus, we propose an
approximate solver for (7), which, despite not guaranteeing
convergence, can experimentally find approximate solutions
in fewer iterations.

We introduce an auxiliary variable β and reformulate the
objective function for refinement into

E(α, β) = λ

2

∑
i

ci |ᾱi −βi |+λ

2

∑
i

ci |ᾱi −αi |

+
∑

i

∑
j∈N(i)

wi, j |αi − β j |+μ
∑

i

|αi −βi |, (21)

where μ > 0 is a parameter for controlling the similarity
between α and β. Parameter α which minimizes (7) and (21)
becomes identical with μ → ∞. We alternately solve the
following problems with increasing μ:

α(k+1) = arg min
α

E(α, β(k)), (22)

β(k+1) = arg min
β

E(α(k+1), β). (23)

The above problems can be solved for each pixel. The
objective function of these problems can be written as the
same formulation:
F(x p, y)= λ

2
cp|x p − ᾱp|+

∑
q∈N(p)

wp,q |x p−yq |+μ|x p−yp|.

(24)

Here, using x p = αp, y = β(k), and x p = βp, y = α(k+1) cor-
responds to the objective function for each pixel in Eqs. (22)
and (23), respectively. Consequently, our refinement algorithm
iteratively solves the following minimization problem:

α(k+1)
p = arg min

αp

F(αp, α(k)). (25)

We begin with μ = μ0 and α(0) = ᾱ. In each iteration, μ is
increased by multiplying κ > 1. The convergence properties
of the proposed algorithm are not analyzed in this research.
The solution of (25) is a weighted median [23]; we propose a
method for solving (25) based on the faster weighted median
filter (WMF) [24].

A formulation of the WMF is as follows. Let X̃ =(
x̃1, x̃2, . . . , x̃NI

)
be the sequence of all possible pixel values

in an ascending order. The WMF then finds x̃r where

r =min k s.t.
k∑

i=1

∑
q∈Qi

wp,q −
NI∑

i=k+1

∑
q∈Qi

wp,q ≥ 0, (26)

where Qi = {q ∈ R(p)|xq = x̃i } and R(p) is a set of pixels in
a local window. wp,q is a weight calculated from the affinity
between pixels p and q , which can be written as wp,q =
g(fp, fq) where fp and fq are pixel features at p and q , and g
is an affinity function, such as (9).

Next, we review the faster WMF [24]. The WMF can be
regarded as finding the optimal cut point k satisfying bk−1 < 0
and bk ≥ 0 where the balance bk is

bk =
k∑

i=1

∑
q∈Qi

wp,q −
NI∑

i=k+1

∑
q∈Qi

wp,q . (27)

Let H be a 2D joint-histogram denoted as

H (i, f ) = #{q ∈ R(p)|Xq = X̃i , fq = f̃ f }, (28)



MISHIBA: FAST DEPTH ESTIMATION FOR LIGHT FIELD CAMERAS 4237

where f̃ f ∈ F̃ =
(

f̃1, f̃2, . . . , f̃NF

)
and F̃ is the sequence of

all possible pixel features in ascending order. For any pixel
q belonging to bin (i, f ), the weight wp,q between pixel p
and q can be computed as g(fp, f̃ f ). Using this, bk can be
rewritten as

k∑
i=1

N f∑
f =1

H (i, f )g(fp, f̃ f )−
NI∑

i=k+1

N f∑
f =1

H (i, f )g(fp, f̃ f ). (29)

For fast computation to determine the optimal cut point, a
balance counting box (BCB) is introduced as follows:

Bk( f ) =
k∑

i=1

H (i, f ) −
NI∑

i=k+1

H (i, f ). (30)

Using Bk , bk is formulated as

bk =
N f∑
f =1

Bk( f )g(fp, f̃ f ). (31)

For the initial cut, bk is calculated as in (31). If bk ≥ 0, k is
updated to k − 1, otherwise to k + 1. bk can be updated as

bk−1 = bk − 2

N f∑
f =1

H (k, f )g(fp, f̃ f ) (32)

in the case of bk ≥ 0. This step is repeated until we find k
satisfying bk−1 < 0 and bk ≥ 0. After finding the optimal cut
point for a pixel, the filter window is shifted to the next pixel
and the joint-histogram and BCB are updated. Because the
current window and subsequent window largely overlap, only
exiting and entering pixels are examined for the update of the
joint-histogram and BCB. For more details, see the description
of computational efficiency in [24].

Our optimization problem in (25) has a similar formation to
the WMF but with slight differences. The WMF is equivalent
to

arg min
x p

∑
q∈R(p)

wp,q |x p − xq |. (33)

To use an efficient algorithm to solve (25), we rewrite (24)
using R(p) = {N(p) ∪ p} into

F(x p, y) =
∑

q∈R(p)

wp,q |x p − yq | + λ

2
cp|x p − ᾱp |

+ (μ − wp,p)|x p − yp|. (34)

The minimization of (34) corresponds to finding the optimal
cut point of the following bk :

bk =
N f∑
f =1

Bk( f )g(fp, f̃ f )+δ(ᾱp, k,
λ

2
cp)+δ(yp, k, μ−wp,p),

(35)

where

δ( j, k, l) =
{

l ( j ≤ k)

−l ( j > k).
(36)

The first term on the right-hand side of (35) can be calculated
by the same procedure as described in [24]. Calculation of

the second and third terms can be easily built into the cut
point update procedure as follows. For δ( j, k, l), when k is
updated to k −1 to find the optimal cut, we substitute 2l from
bk if j = k − 1 in the same manner as (32).

In our implementation, we use a coarse-to-fine strategy to
speed up the convergence. The iteration is stopped when the
ratio of elements whose values are changed before and after
the last iteration is below a threshold τ .

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the performance of the proposed method is
evaluated using synthetic and real-world datasets. For the syn-
thetic experiments, we used the 4D light field benchmark [25],
which contains 9×9 sub-aperture images with 512×512 spatial
resolution and ground truth depth data. For the real-world
experiments, we used center 9 × 9 sub-aperture images from
light field images captured with a Lytro Illum camera and
two Lytro first generation cameras. Our method was imple-
mented in C++ and used parallel computation with CUDA
for initial estimation and OpenMP for optimization. We used
a Core i7-3770 @ 3.40 GHz CPU with a 12 GB RAM and
NVIDIA GeForce GT 640 and set the parameters as follows:
αmax = 256, γ = 0.8, λ = 15, σ = 10, W1 = 5, and
W2 = 7.

A. Algorithm Validation

In this section, we discuss the effectiveness of our proposed
view selection, cost volume interpolation, and approximate
solver using four light-field test images on the 4D light field
benchmark [25].

1) View Selection: To verify the effectiveness of our view
selection strategy, we compared the following four strategies:
best view selection, random selection, static selection, and the
proposed strategy. The best view selection strategy selects the
next view, which minimizes the mean squared error (MSE)
between the ground truth and the estimated depth. In a real
situation, we cannot adopt this strategy because the ground
truth data are unavailable. The random selection strategy
randomly selects the next views. The static selection strategy
selects central vertical, central horizontal, right diagonal, and
left diagonal viewpoints first, which are used in [4], followed
by the remaining viewpoints. Visualization of the order of the
static selection is shown in Fig. 4. In this experiment, we used
no cost volume interpolation, i.e., t = 1.

Figure 4 shows the relationship between the number of
viewpoints used and the average MSEs of the initial estima-
tion. The computation time of our initial estimation is also
shown in the figure. The figure clearly indicates that our
proposed view selection strategy achieved better performance
in MSE than the random and static selection strategies. More-
over, two key findings are clear. One is that an increase in
the number of viewpoints increases the computational time
for the initial depth estimation but does not necessarily lead
to a decrease in estimation error. The other is that using
approximately 20 viewpoints achieved satisfactory results in
our strategy.
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Fig. 4. Average MSEs of initial estimation for each viewpoint selection,
computational times for the initial depth estimation using the proposed view
selection, and the visualization of the static selection. The MSEs of the random
selection is the average of 10 trials per image.

TABLE I

AVERAGE MSES AND COMPUTATIONAL TIMES FOR
DIFFERENT SAMPLING RATES (t )

2) Cost Volume Interpolation: To show the effectiveness of
cost volume interpolation, we performed an initial estimation
with different sampling rates and all viewpoints. The sampling
rates were set to t = 1, 3, 5, 15, 51, 85. Table I lists the
averages of the MSEs and computation times of the initial
estimation for each t . While the MSEs for t = 1, 3, 5 were
similar, the computational times decreased as t increased.
Thus, cost volume interpolation can reduce the computational
time for initial estimation without significantly reducing the
accuracy.

3) Optimization: To verify the effectiveness of our proposed
solver, we solved the optimization problem of (7) by the
following three methods: a graph cut algorithm, the steepest
descent algorithm, and our proposed method. An initial depth
was obtained with all viewpoints and t = 1. For a clearer
comparison, a coarse-to-fine strategy was not employed. The
parameters for our optimization were set to μ0 = 0.001 and
κ = 1.2 and the step size at each iteration on the steepest
descent algorithm was determined by the Armijo rule [26].
Our method and the steepest descent algorithm used parallel
computation with OpenMP and we used the GCoptimization
software [27]–[29] for graph cuts.

While the steepest descent algorithm and our method took
approximately 100 ms and 10 ms in each iteration, respec-
tively, the graph cut algorithm took approximately 15 min to
solve. Figure 5 represents the values of (7) over iterations
for the Cotton scene, in which the objective function value
decreased rapidly when using our proposed method.

B. Comparisons

In this section, the performance of the proposed method is
evaluated using synthetic and real-world datasets. We com-
pared our method (FDE) with the following state-of-the-art
methods: EPI1 [15], EPI2 [10], PS_RF [16], RPRF-5view [9],
SPO [12], LF [7], LF_OCC [6], and Epinet-fcn9x9 [4].

Fig. 5. Comparison of objective function variations for the Cotton scene,
in the benchmark dataset [25].

The names of these methods were derived from the benchmark
website [25].

In our proposed optimization, the coarse-to-fine strategy
starts with data downsampled by 2 then upsamples the con-
vergence result to the original resolution. We set κ = 1.2,
τ = 0.001 and μ0 = 0.001 and 0.1 for the downsampled
and original resolutions, respectively. From the experimental
results in Section VI-A, we set t = 5 and used 21 viewpoints,
which revealed promising results regarding fast computation
and high accuracy.

1) Synthetic Data: We used the 4D light field
benchmark [25] with the eight light-field test images
for the quantitative evaluation.1 The eight test images
include four photorealistic scenes and four stratified scenes,
which are designed to pose specific isolated challenges.
As quality measurements, we used the MSE and the bad
pixel ratio (BP), which represents the percentage of pixels
whose disparity error is larger than 0.07 pixels. Estimation
results, quality measurements and computational times of
the conventional methods were derived from the benchmark
website. Computational times of our proposed method exclude
the times taken for view selection because it can be computed
in advance.

The quantitative results are listed in Table II. The pro-
posed method showed competitive performance in quantitative
measurements and the best performance for computational
speed. Figure 6 shows estimation results and error maps.
As represented by the photorealistic Cotton scene, our method
estimated reasonable results. We investigate the strength and
weakness of our proposed method by using estimation results
of stratified scenes.

1It is preferable to evaluate our method by submitting estimation results of
all 12 test images to the benchmark site, including four test images whose
ground truth depth maps are not disclosed. However, no new submissions
were possible at the time of writing this manuscript due to the server
problems. Therefore, we evaluated the eight images with ground truth using
the benchmark program.
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Fig. 6. Comparison of estimation results using Cotton scenes (1st and 2nd rows), Stripes scenes (3rd and 4th rows), Dots scenes (5th and 6th rows), and
Backgammon scenes (7th and 8th rows) from the [25] dataset. The odd rows are the estimated depth and even rows are the error maps for MSEs. (a) Ground
truth depth map and center view image. (b) EPI1 [15]. (c) EPI2 [10]. (d) PS_RF [16]. (e) RPRF-5view [9]. (f) SPO [12]. (g) LF [7]. (h) LF_OCC [6].
(i) Epinet-fcn9x9 [4]. (j) FDE (proposed method).

TABLE II

AVERAGED EVALUATION METRICS AND RANKING FOR EIGHT

SYNTHETIC SCENES OF THE [25] DATASET. OUR METHOD
ACHIEVES COMPETITIVE RESULTS FOR THE MEAN

SQUARED ERROR (MSE) AND BAD PIXEL RATIO (BP)
WITH THE SHORTEST COMPUTATIONAL TIME

The strength of our method is that it is not signifi-
cantly affected by the amount of contrast and texture due
to the proposed one-bit feature calculation, which can be

seen from the Stripes scene. This scene consists of high
and low contrast stripes with texture whose amount varies
spatially. As can be seen from the low scores of the Stripes
scene shown in Fig. 7 and the estimation result shown
in Fig. 6, our proposed method shows decent performance
on all areas, i.e., low texture, low contrast, and high contrast
areas.

The weakness of our method is that it is challenging to
reconstruct small geometries and occlusion boundaries due
to the cost aggregation and refinement step, which can be
seen from the Dots and Backgammon scenes. The Dots scene
consists of a plane and circles which suffer from Gaussian
noise whose variances varies spatially. The refinement step
reduced the influence of noise in planer areas as can be seen
from the low score of Background MSE shown in Fig. 7,
while missing small geometries as can be seen from the high
score of Missed Dots shown in Fig. 7. The Backgammon
scene consists of two parallel background planes and one
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Fig. 7. The radar chart on stratified scenes. Lower scores represent better
performance. The details of the metrics are shown in [25].

Fig. 8. Zoomed-in results of the Backgammon scene. In each result, 1st row
is the estimated depth, 2nd row is the error map for MSE, and 3rd row is the
error map for BP. Parameters (W1, W2) are (a) (1,−), (b) (5, −), (c) (1, 3),
(d) (5, 3), (e) (1, 7), and (f) (5, 7).

foreground jagged plane. As can be seen from the high score
of Backgammon Thinning shown in Fig. 7 and the estimation
result shown in Fig. 6, accurate depth estimation on occlusion
boundaries is challenging for our proposed method. For a more
detailed analysis of the cost aggregation and refinement step,
we performed our depth estimation method on the Backgam-
mon scene with different parameters, (W1, W2) = (1,−),
(1, 3), (1, 7), (5,−), (5, 3), and (5, 7), which is the default
parameters. Using W1 = 1 is equivalent to no cost aggregation.
W2 = − represents the initial depth estimation. Figure 8 shows
parts of results. Table III lists MSE, BP, Backgammon Thin-
ning, and Backgammon Fattening of the Backgammon scene.
Backgammon Thinning represents the percentage of the fore-
ground that is estimated as the background. Backgammon
Fattening represents the percentage of the background that
is estimated as the foreground. First, we focus on the initial
estimation to see the effect of the cost aggregation. As can
be seen from the comparison between Fig. 8 (a) and (b),

TABLE III

EVALUATION METRICS AND RANKING FOR DIFFERENT
PARAMETERS ON THE Backgammon SCENE

the cost aggregation reduced noisy outliers while tending to
lead to estimation error of which the background on the
occlusion boundary is estimated as the foreground. This error
is caused by the cost aggregation across occlusion boundaries.
As can be seen from the comparison between (1,−) and
(5,−) in Table III, using the cost aggregation exhibited a low
score of Backgammon Thinning, while exhibiting a high score
of Backgammon Fattening. Since the occlusion area is small
relative to the entire image, an initial estimation result with
the cost aggregation exhibited lower scores of MSE and BP
than one without the cost aggregation. Next, we focus on the
effect of the refinement step. The refinement step with larger
window size removed noisy outliers more and improved MSE
and BP more. In contrast, it worsened Backgammon Thinning
score when W1 = 5. As can be seen from the estimation results
shown in Fig. 8 (d) and (f), the refinement process expanded
estimation error of which the background on the occlusion
boundary is estimated as the foreground, which greatly wors-
ens MSE because the difference between the foreground
and background depth is large. Using an adaptive window
with occlusion prediction may help to improve estimation
accuracy.

2) Real-World Data: We also conducted experiments on
real-world scenes by comparing our method with those of
SPO [12], LF [7], LF_OCC [6], and Epinet-fcn9x9 [4].
We used the codes provided by the authors and ran the algo-
rithms with their default settings except for the minimum and
maximum disparities on each scene, which we set manually.
Real images were captured with a Lytro Illum camera by [30]
and with Lytro first generation cameras by [5] and in this
study.

Figure 9 compares the qualitative results. The top three
images were captured with a Lytro Illum camera and the
others were captured with Lytro first generation cameras.
All methods except LF [7] produced reasonable results for
Lytro Illum data, whereas the results of LF [7] tended to
be oversmoothed. Depth estimation for Lytro first generation
cameras is challenging because captured images suffer from
lower resolution, more calibration error, and more severe
image noise than Lytro Illum cameras. Our method produced
reasonable results by removing outliers in the refinement step,
as shown in Fig. 10. Although Epinet-fcn9x9 [4] exhibited
robustness against noise, as the scores of Dots in Fig. 7 indi-
cated, the results for images captured by Lytro first generation
cameras included many outliers. This is because the trained
network of Epinet-fcn9x9 was unsuitable for the images.
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Fig. 9. Depth estimation results for selected real-world images. The top three images were captured with a Lytro Illum camera by [30] and other images
were captured with Lytro first generation cameras. The fourth and fifth images are from [5] and the last two images are from this study. (a) Center view.
(b) SPO [12]. (c) LF [7]. (d) LF_OCC [6]. (e) Epinet-fcn9x9 [4]. (f) FDE (proposed method).

The training data of Epinet-fcn9x9 in all the experiments only
comprised synthetic data and did not include real-world data.
Moreover, adapting to various conditions requires a large-scale
data set that includes real-world data. However, it is difficult

owing to the unavailability of the ground truth depth of
real-world data.

As can be seen from the experimental results of synthetic
and real data, the advantage of our proposed method is that
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Fig. 10. Zoomed-in results of the last row image in Fig. 9.
(a) Epinet-fcn9x9 [4]. (b) Initial estimation of our method. (c) After
refinement of our method.

it achieves fast performance and reasonable estimation under
various conditions without requiring learning.

VII. CONCLUSION

In this study, we proposed and verified a fast and accurate
depth estimation method for light field cameras. In the initial
depth estimation step, our method uses one-bit feature calcu-
lation, fast matching cost calculation, view selection, and cost
volume interpolation to achieve fast initial estimation. In the
refinement step, our method uses a rapid approximate solver to
minimize the objective function, which consists of �1 data and
smoothness terms. Experiments on synthetic data showed that
our method achieved competitive accuracy with the shortest
computational time when compared to other methods. The
proposed method also produced plausible results in real-world
scenes thanks to our refinement step.

As the proposed method is a simple MVSM approach, it has
the capacity for additional processes; therefore, future work
will aim to improve the estimation accuracy of the proposed
method by also considering occlusions.

REFERENCES

[1] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. 23rd Annu.
Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), New York, NY,
USA, 1996, pp. 31–42.

[2] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameter-
ized light fields,” in Proc. 27th Annu. Conf. Comput. Graph. Interact.
Techn. (SIGGRAPH), New York, NY, USA, 2000, pp. 297–306.

[3] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane
image analysis: An approach to determining structure from motion,”
Int. J. Comput. Vis., vol. 1, no. 1, pp. 7–55, 1987.

[4] C. Shin, H.-G. Jeon, Y. Yoon, I. S. Kweon, and S. J. Kim, “EPINET:
A fully-convolutional neural network using epipolar geometry for depth
from light field images,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4748–4757.

[5] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi, “Depth from
combining defocus and correspondence using light-field cameras,” in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 673–680.

[6] T.-C. Wang, A. A. Efros, and R. Ramamoorthi, “Occlusion-aware depth
estimation using light-field cameras,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2015, pp. 3487–3495.

[7] H.-G. Jeon et al., “Accurate depth map estimation from a lenslet light
field camera,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 1547–1555.

[8] T. Tomioka, K. Mishiba, Y. Oyamada, and K. Kondo, “Depth map
estimation using census transform for light field cameras,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., Mar. 2016, pp. 1641–1645.

[9] C.-T. Huang, “Robust pseudo random fields for light-field stereo match-
ing,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 11–19.

[10] S. Wanner and B. Goldluecke, “Globally consistent depth labeling of
4D light fields,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 41–48.

[11] J. Li, M. Lu, and Z.-N. Li, “Continuous depth map reconstruction
from light fields,” IEEE Trans. Image Process., vol. 24, no. 11,
pp. 3257–3265, Nov. 2015.

[12] S. Zhang, H. Sheng, C. Li, J. Zhang, and Z. Xiong, “Robust depth
estimation for light field via spinning parallelogram operator,” Comput.
Vis. Image Understand., vol. 145, pp. 148–159, Apr. 2016.

[13] H. Lin, C. Chen, S. B. Kang, and J. Yu, “Depth recovery from light
field using focal stack symmetry,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2015, pp. 3451–3459.

[14] M. Strecke, A. Alperovich, and B. Goldluecke, “Accurate depth and
normal maps from occlusion-aware focal stack symmetry,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 2529–2537.

[15] O. Johannsen, A. Sulc, and B. Goldluecke, “What sparse light field
coding reveals about scene structure,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 3262–3270.

[16] H.-G. Jeon et al., “Depth from a light field image with learning-based
matching costs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 2,
pp. 297–310, Feb. 2019.

[17] X. Hu and P. Mordohai, “A quantitative evaluation of confidence
measures for stereo vision,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 11, pp. 2121–2133, Nov. 2012.

[18] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, “Fast and robust
multiframe super resolution,” IEEE Trans. Image Process., vol. 13,
no. 10, pp. 1327–1344, Oct. 2004.

[19] M. Shimizu and M. Okutomi, “Significance and attributes of subpixel
estimation on area-based matching,” Syst. Comput. Jpn., vol. 34, no. 12,
pp. 1–10, Nov. 2003.

[20] A. Hornung, B. Zeng, and L. Kobbelt, “Image selection for improved
multi-view stereo,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[21] C. Kim, K. Subr, K. Mitchell, A. Sorkine-Hornung, and M. Gross,
“Online view sampling for estimating depth from light fields,” in Proc.
IEEE Int. Conf. Image Process., Sep. 2015, pp. 1155–1159.

[22] H. Ishikawa, “Exact optimization for Markov random fields with convex
priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10,
pp. 1333–1336, Oct. 2003.

[23] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo, “Weighted median filters:
A tutorial,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 43, no. 3,
pp. 157–192, Mar. 1996.

[24] Q. Zhang, L. Xu, and J. Jia, “100+ times faster weighted median filter
(WMF),” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 2830–2837.

[25] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke,
“A dataset and evaluation methodology for depth estimation on 4D
light fields,” in Computer Vision—ACCV (Lecture Notes in Computer
Science: Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 10113. Cham, Switzerland: Springer, 2017,
pp. 19–34.

[26] L. Armijo, “Minimization of functions having Lipschitz continuous first
partial derivatives,” Pacific J. Math., vol. 16, no. 1, pp. 1–3, Jan. 1966.

[27] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[28] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–1137, Sep. 2004.

[29] V. Kolmogorov and R. Zabih, “What energy functions can be minimized
via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2,
pp. 147–159, Feb. 2004.

[30] M. Rerabek and T. Ebrahimi, “New light field image dataset,” in Proc.
8th Int. Conf. Quality Multimedia Exper., 2016.

Kazu Mishiba (Member, IEEE) received the B.E.
and M.E. degrees from Keio University, Yokohama,
Japan, in 2004 and 2006, respectively, and the Ph.D.
degree from Keio University, in 2011. In 2006,
he joined Fujifilm Co., Ltd. He became an Assistant
Professor at Keio University in 2011. He is cur-
rently an Associate Professor with Tottori University.
His research interests are image processing and
computer vision.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


