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Color Matching Images With Unknown
Non-Linear Encodings

Raquel Gil Rodríguez , Javier Vazquez-Corral , and Marcelo Bertalmío

Abstract— We present a color matching method that deals with
different non-linear encodings. In particular, given two different
views of the same scene taken by two cameras with unknown
settings and internal parameters, and encoded with unknown
non-linear curves, our method is able to correct the colors of
one of the images making it look as if it was captured under
the other camera’s settings. Our method is based on treating the
in-camera color processing pipeline as a concatenation of a matrix
multiplication on the linear image followed by a non-linearity.
This allows us to model a color stabilization transformation
among the two shots by estimating a single matrix -that will
contain information from both of the original images- and an
extra parameter that complies with the non-linearity. The method
is fast and the results have no spurious colors. It outperforms the
state-of-the-art both visually and according to several metrics,
and can handle HDR encodings and very challenging real-life
examples.

Index Terms— Color stabilization, color matching, logarithmic
encoded images, gamma-corrected images, HDR encoding, PQ,
HLG.

I. INTRODUCTION

COLOR matching techniques aim to map the colors of one
image, defined as source, to those of a second image,

defined as reference. A particular case is color stabilization,
where the two pictures are taken from the same scene and
differ in terms of color. These differences in color may be
caused either by the use of different camera models, which
follow different internal procedures tailored by the manufac-
turer or by the use of the same camera but under different
settings like white balance, exposure time, etc.

Digital cameras perform a number of image processing
steps, including demosaicing, white balance, color correction
(from RGB camera sensor to device independent color space),
and encoding standard. Bianco et al. [1] proposed a generic
model of the color processing pipeline of digital cameras

Iout = (A · Ilin )1/γ , (1)
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Fig. 1. Linear response (dashed) versus gamma-corrected (circle) and
logarithmic response (continuous). The gamma correction was defined as
γ = 2.2, and the logarithmic curve is an instance of an ARRI Log C curve.

where Ilin is the linear image read by the camera sensor
after demosaicing, Iout is the output image, A is a 3 × 3
matrix which carries color information and white balance and
the value γ defines a power law function (usually known
as gamma correction). This is a simplified version of the
pipeline, since other processing techniques, like denoising,
contrast enhancement, etc. are also applied. Nonetheless, this
approximation is quite accurate for those pixels not laying
close to the boundary of the color gamut.

Although gamma correction has been the most used encod-
ing technique, it fails when working with high dynamic
range (HDR) imaging, mostly due to quantization issues.
Current professional cinema cameras are able to capture a
wide range of light intensities, and therefore, a compression
of this range is needed for storage, while preserving all
the details and appearance. For this reason, cinema cameras
replace gamma correction with a logarithmic function whose
general form (common to the most popular log-encoding
approaches [2], [3]) can be expressed as:

Iout = c log10 (a · A · Ilin + b) + d, (2)

where Iout and Ilin are defined as above, and the parameters
a, b, c, and d are constant real values (varying for different
camera manufacturers and camera settings). Figure 1 shows
the plot of linear (dashed), gamma-corrected (circle) and
logarithmic (continuous) responses to linear values. Notice that
gamma correction and logarithmic curve assign respectively
50% and 80% of the output range to the first 20% of the
linear intensity values.

More recently, other non-linear encoding curves devised
for HDR content have appeared. The most well-known of
these curves are Perceptual Quantizer (PQ) [4] and Hybrid
Log-Gamma (HLG) [5]. They were designed to reduce
quantization errors in the storage and coding of HDR
scenes. Both PQ and HLG are mathematically well-defined.
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For more details on the curves definition, we refer the reader
to [4] and [5].

In the industry, solutions for bringing consistency across
image shots usually involve very skilled manual work, done by
colorists during color grading in movie post-production and by
technicians using camera control units (CCU) [6] in live TV
broadcasts. They may also require a proper characterization
of the cameras used and their settings like with the ACES
framework [7], or the presence of color-charts in the shots.

In image processing and computer vision research, it is
an open problem to color match a pair of pictures. We can
differentiate between two different cases: i) the image pair
does not necessarily share any content (color transfer), or ii)
the image pair is acquired from the same scene (color stabi-
lization). The latter can be understood as a constrained color
transfer problem.

The aim of color transfer methods is to transfer the colors
presented in the reference image to the source image. A semi-
nal work in color transfer was proposed by Reinhard et al. [8],
where the pair of RGB images are first converted to a
decorrelated color space and then the mean and variance from
the reference are transferred to the source. Pitié et al. [9], [10]
defined the images as probability density functions, and then
match them through an iterative non linear process. It is
worth mentioning color transfer as an application of optimal
transport, which minimizes the cost of transferring probability
density distributions of the source image into the reference
one, as in Rabin et al. [11] and Ferradans et al. [12] works.
Pouli and Reinhard [13] performed histogram matching along
different scales given images of different dynamic ranges. The
method presented by Kotera [14] proposed to compute the
principal components of the 3D color distributions, in order to
match the principal axes of the source to the reference image
by a matrix multiplication (rotation and scaling). Xiao and
Ma [15] worked with color statistics, and in [16] they proposed
a gradient preserving color transfer technique, and an eval-
uation metric for color transfer methods. Nguyen et al. [17]
presented a color transfer method that first applies color
constancy to the input images, then it performs luminance
matching, and finally the color gamuts are aligned by a linear
transformation. Hwang et al. [18] suggested to use moving
least squares for color transfer, by also incorporating a proba-
bilistic measure to ensure robustness against noise and outliers.
Gong et al. [19], [20] proposed a color transfer method based
on a projective transformation and a mean intensity mapping.
All the above mentioned methods are global, although some
local approaches also exist. The work of Tai et al. [21]
segmented images into regions, and then it used Gaussian
Mixture Models (GMM) to represent color distributions before
the matching is performed. Xiang et al. [22] also followed a
GMM representation of color areas, before matching them.

Color stabilization tackles the situation where some regions
or objects appear in both the reference and the source images.
HaCohen et al. [23] presented a method to compute dense
correspondences between the images, combined with a global
color mapping model. Vazquez-Corral and Bertalmío [24]
proposed a color stabilization algorithm that consists of esti-
mating a power law (γ value) for each of the images, and a
single 3 × 3 matrix, to color match the source image to the

reference. It is built on the assumption that in digital cameras
the color encoding can be expressed as a matrix multiplication
followed by a power law (gamma correction). Frigo et al. [25]
presented a method to color stabilize video sequences, based
on the estimation of a non-linearity and channel-based scaling.
To the best of the authors’ knowledge, there are only two
color stabilization works for logarithmic images. One is the
method of Vazquez-Corral and Bertalmío [26], that relies on
finding a sufficiently large number of achromatic matches
among source and reference. Let us note that the need of
detecting achromatic matches may be a challenging limitation
in some cases. The other method [27] is an earlier version of
the current work, with a different algorithm that consistently
underperforms the one we will introduce here as it is shown
in the Results section.

Color consistency refers to the situation when a set of
images from the same scene need to be color matched.
HaCohen et al. [28] extended their previous approach in color
stabilization problem [23], to the case of more than two
images. In a recent work, Park et al. [29] proposed a model in
which the parameters to be estimated are a gamma correction
and a white balance constant. Xia et al. [30] presented a
method to achieve color consistency in image stitching. On the
overlapping regions among the shots, it computes parametric
curves for each channel under color, gradient and contrast
constraints. A review of the performance of color transfer
methods is presented in Xu and Milligan [31] for image
stitching.

Our main contribution in this work is a method able to
color match pairs of images that were encoded with dif-
ferent non-linearities (gamma, logC, HLG, PQ). This work
is an extension of the one presented in [27]. In this paper,
we improve over the previous approach in different ways.
First, we allow the matrix in our model to be a projective
4 × 4 matrix. This brings more flexibility to the model which
enables allowing it to better deal with saturated pixels that
have gone through different non-linear in-camera operations
such as tone-mapping or gamut-mapping. Also, we introduce
a new term in the minimization, which minimizes errors in
the perceptual CIELab color space. Furthermore, we show
how our method can be used when images are encoded with
HLG and PQ curves, the two current standards for HDR
encodings. Lastly, in this paper we present a new dataset and
framework for the problem, and perform larger comparisons
both in terms of the methods and the metrics considered. Our
results outperform the rest of the algorithms both quantitative
and qualitatively.

II. METHODOLOGY

In this paper, we present a color stabilization method that
takes as input an image pair encoded with unknown non-linear
curves. For simplicity we explain the method for the case of
gamma correction and logarithmic encoding. Later on, we will
show how to handle as well PQ and HLG encodings. The main
steps of our method can be outlined as follows:

1) If source or reference are log-encoded, we transform
them into gamma-corrected.

2) We color-stabilize the images by estimating a 4 × 4
matrix and two power law values.
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Fig. 2. Flowchart of the proposed color stabilization method. Given two non-linear encoded images, reference (Ir ) and source (Is ), we apply the transformations
Tr and Ts to the image pair. These transformations are defined as the power 10 function 10×, in case of a given log-encoded image; and as the identity �,
in case of gamma corrected input. Then, we compute a set of correspondences ptsr and ptss , using standard feature descriptor (e.g. in this article SIFT [32]).
From this set of corresponding pixel locations, we estimate the parameters {γr , γs , Hs} in the pixel values correspondences. The computed values are applied
to the Ts (Is ) image. Finally, T −1

s function is applied to the color matched image.

3) Finally, we undo the correction made in the first step
if necessary (in case the original reference image is
log-encoded).

We refer the reader to the flowchart of the proposed model
in Figure 2. We have made the code for our implementation
available at http://ip4ec.upf.edu/ColorMatching.

A special case is when dealing with HLG and PQ encoded
images. In this case, we proceed as if the images were log-
encoded. Please note that this is an approximation, as these
curves do not follow the definition in Equation (2). This said,
this approximation works extremely well, as it is shown in
section IV.

A. Conversion of Log-Encoding to Gamma Correction

Let us consider a log-encoded image as in Equation (2). If
we apply a power 10 function to it (denoted as T (·)), we obtain
the following expression

T (Iout ) = 10Iout = 10log10((a·A·Ilin +b)c) · 10d

= (a · A · Ilin + b)c · 10d . (3)

In logarithmic encoding curves, the value of parameter b
is usually small. As Figure 3 shows, for the three different
logarithmic curves (continuous lines), their equivalent curves
fixing b = 0 (dashed lines) lie on top. Therefore, we can
simplify Equation (3) by neglecting b,

T (Iout ) = (a · A · Ilin )c · 10d = (K · Ilin )c, (4)

where K = a · A · 10d/c is a matrix with the same size as
A. Notice how Equation 4 has the same form as Equation (1).
Therefore, by applying the power 10 function to a log-encoded
image, it can now be treated as a regular gamma-corrected
picture.

B. Color Stabilization

If Ir or Is (or both) are log-encoded, we transform them into
gamma-corrected images I �

r and I �
s , as explained in the previ-

ous Section. Then we compute a set of correspondences ptsr

Fig. 3. Graph of 3 logarithmic encoded curves Log C ARRI of EI 320
(green), Log C ARRI of EI 1280 (magenta) [2], and S-Log [3] (blue) plotted
in continuous lines. In addition, the same logarithmic curves by setting b = 0
in their definitions (dashed lines). Note that the distance between the dashed
and continuous lines from the same color is negligible.

and ptss ; we use SIFT [32] for this purpose, although it can be
replaced by any other method. It is important to note that we
compute the correspondences between I �

r ↔ I �
s , and I �

s ↔ I �
r ,

and select those that appear in both directions. This allows us
to discard some potentially incorrect correspondences. Let us
now define the pixel values in the corresponding locations of
I �
r and I �

s as

{(R�
r , G�

r , B �
r )

t }i , and {(R�
s , G�

s, B �
s)

t }i , (5)

where i = 1, . . . , N denotes the number of correspondences.
We follow the idea from the color stabilization model proposed
in [24],

Hs · I �γs

s
∼ I �γr

r
, (6)

where Hs was a 3 × 3 matrix that transforms colors from
the source to match the ones of the reference, and γr , γs

are inverse gamma correction values. In this work, we extend
the matrix Hs as a projective transformation with size 4 × 4
(inspired by color homography [19], [20]). By doing this,
the model can deal not only with pixels in the core of the
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Fig. 4. Evaluation framework. On the left, data acquisition is described. Pictures are taken from the same scene, and from two different points of view
Perspective1 and Perspective2. From the first one, the reference image is taken, and from the second, the source and the ground truth. Images are stored in
RAW and JPEG format, and we chose different camera settings P1, for reference and ground truth, and P2 parameters for the source. On the middle, data is
created by linearizing the JPEG image, i.e undoing the gamma correction I . Once linearized, a random non-linearity is applied, and the new image and the
non-linearity are stored {I, nonlin}. Finally, the reference Ref and source Src become the input images for the color matching methods, and the corresponding
output is evaluated against the GT.

color gamut, but also with those values that appear on the
border, which are the most affected by gamut mapping and
tone mapping. Then, from the set of correspondences, we can
build a system of equations considering matrix size 4 × 4 and
homogeneous coordinates,

Hs ·

⎡
⎢⎢⎣

R�
s

G�
s

B �
s

1

⎤
⎥⎥⎦

γs

−

⎡
⎢⎢⎣

R�
r

G�
r

B �
r

1

⎤
⎥⎥⎦

γr

= 0,

Hr ·

⎡
⎢⎢⎣

R�
r

G�
r

B �
r

1

⎤
⎥⎥⎦

γr

−

⎡
⎢⎢⎣

R�
s

G�
s

B �
s

1

⎤
⎥⎥⎦

γs

= 0, (7)

where {γs, γr , Hs, Hr} are the unknowns. We perform a single
optimization process, where the only constraint is Hr · Hs ∼ �

(the identity). This constraint assures that the transformation
Hs has an inverse, and that is represented by Hr (which
corresponds to the matrix that would transfer the colors of the
source into the reference). The objective function considers the
3 × 1 non-homogeneous coordinates. This function considers
the differences on (R,G,B) points, plus the differences on
CIELab color space. In this way, we bring the corresponding
point clouds (color matched and reference) as close as possi-
ble, both in terms of the display RGB color space, and also
regarding perceptual color differences in the CIELab space.

E (V) = ERG B (V) + ELab (V) , (8)

where V = {γr , γs , Hr , Hs} is the set of unknowns, and ERG B

and ELab are the errors in the RGB and CIELab color spaces,
respectively. These terms are defined as

ERG B (V) =
�

RG Bs
RG Br

		RG Br − g1
V (RG Bs)

		
2

+ 		RG Bs − g2
V (RG Br )

		
2 , (9)

ELab (V) =
�

RG Bs
RG Br

		Lab (RG Br ) − Lab


g1
V (RG Bs)

�		
2

+ 		Lab (RG Bs) − Lab


g2
V (RG Br )

�		
2 , (10)

where RG Bs , RG Br are the (R, G, B) values of correspond-
ing points ptss and ptsr , Lab(·) corresponds to the color trans-
formation from RGB to Lab, and finally the functions g1

V (·)
and g2

V (·) are defined as

g1
V (RG Bs) =

�
Hs · RG B

γs

s


1/γr
and (11)

g2
V (RG Br ) =

�
Hr · RG B

γr

r


1/γs
. (12)

Finally, the matrices and non-linearities are applied to the
entire images as in Equation (6), and we obtain the color
matched image:

I ��
s =

�
Hs · I �γs

s


1/γr
. (13)

C. Conversion Back to Log-Encoded Images

If Is was log-encoded, we apply a log10 function, denoted
as T −1(·), to the result of the previous step so as to undo the
power 10 transform we applied at the beginning.

III. EXPERIMENTS WITH GAMMA AND LOGARITHMIC

ENCODING NON-LINEARITIES

This section is divided into 3 different parts. First,
we describe how we have created an image dataset for evalu-
ation. Second, we compare our approach with seven popular
color matching methods. Third, we evaluate the performance
of the rest of methods when the proposed power 10 is applied
in the case of log-encoded images.

A. Dataset
Our data is composed of different scenes, where each of

them contains a reference image Ref, a source image Src and a
ground truth image GT. In order to acquire our data, we work
in camera manual mode to have full control over exposure
time, white balance, ISO value, and aperture. We stored RAW
and JPEG formats for each image. In that way, we have
the linear information read by the camera sensor (RAW),
as well as the final compressed image (JPEG). Images were
taken using two camera models, Nikon D3100 (12-bits) and
Canon EOS80D (14-bits). Let us explain the steps we follow
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from acquisition to the final triplet Ref, Src, and GT images
for each scene:

• Set the parameters of the camera P1 (exposure time, white
balance, ISO value, and aperture), the camera position
Perspective1, and acquire the Reference (Ref) set RAW
and JPEG.

• Use the same camera parameters (P1) as in the Ref set,
and change the camera position to Perspective2, then we
acquire the Ground-Truth (GT) set RAW and JPEG.

• From the last camera position Perspective2, vary the
camera settings to a different configuration P2 to acquire
the Source (Src) set.

• For each pair (RAW, JPEG) obtain {I, nonlin}:
1) Preprocess the RAW input to obtain an RGB lin-

ear image using DCRAW [33] open source code,
we refer to this image as R AWrgb .

2) Estimate the γ correction curve, between the pre-
processed R AWrgb and the JPEG using [24].

3) Undo γ from the JPEG image in order to obtain
a linear image called I with the camera color
processing still in.

4) Apply a random generated non-linearity to I . In case
of gamma correction, we set values to be selected
in the range [1.7, 2.7], and for logarithmic curves,
we select the definitions from Log C ARRI (a
total of 11 curves) [2], and S-Log from Sony [3].
We name the applied non-linearity nonlin.

5) In case of GT, the same nonlin as the one selected
for the reference is applied.

B. Results and Comparisons

We evaluate our approach against seven state-of-the-
art methods for color transfer, stabilization and consis-
tency: Reinhard et al. [8] (Reinhard), Kotera [14] (Kotera),
Xiao and Ma [15] (Xiao), Pitié et al. [10] (Pitie),
Ferradans et al. [12] (Ferradans), Park et al. [29] (Park), and
Gil Rodríguez et al. [27] (Gil). We want to emphasize that for
Pitié et al. [10], we focus only on the global part of the method.
We studied all possible combinations of applied non-linearities
to the reference and source image:

1) two gamma-corrected images,
2) two log-encoded images,
3) one gamma-corrected as reference and one log-encoded

as source,
4) one log-encoded as reference and one gamma-corrected

as source.
In the quantitative evaluation we select the following color
metrics:

• PSNR of luminance channel (PSNR L),
• color PSNR defined as CPSNR is the mean of the PSNR

among the three color channels,
• root mean squared error (RMSE),
• �E∗

00 [34] accounts for ‘perceptually uniform’ differ-
ences in the CIELab color space,

• CID [35] is the color extension of SSIM [36], and it is
therefore supposed to capture errors more perceptually
than PSNR.

For each metric we show the mean (μ) and the median (μ̂).
Notice that in order to compare the color-stabilized and the GT
in case of log-encoded images, we first undo the ground-truth
non-linearity (since it is known) from the result and GT, and
then we apply a gamma-correction of value 1/2.2. We use the
data computed as described in Section III-A, which consists
of 35 image pairs. In all the Tables for the quantitative
comparisons we show in green the best results, and then in blue
and orange, the second and third, respectively. In Figures 5
and 6, the log-encoded images are shown in sRGB for dis-
play purposes (as before, we first discount the ground-truth
non-linearity, and then we apply the sRGB gamma).

1) Gamma-Corrected Inputs: The first block in Table I
presents the results of pairs encoded using gamma correction.
In most of the metrics our method outperforms the rest of
algorithms, except for median values of �E∗

00 and PSNR L,
in which Park et al. [29] obtains better results.

In the first row of Figure 5, we show the results for one
scene. The first column shows the reference, the second the
source, and the third the GT. In this example, we compare our
algorithm (last column) against the method of Ferradans et al.
[12] (fourth column). We can see that this method loses color
saturation in general, and introduces gray colors in the output
of the floor.

2) Log-Encoded Inputs: In the second block of Table I, it is
shown that our method outperforms the rest of algorithms in
all the metrics.

From Figure 5 (second and third rows), Gil Rodríguez et al.
[27] is not able to darken the green color of the grass, which it
is closer to the vivid look in the source image. In the second
scene, the output from Pitié et al. [10] cannot recover the
red color of the garage in the background, and it presents a
purplish color in one of the doors, and it makes some clouds
to appear in the sky.

3) Log-Encoded Reference and Gamma-Corrected Source:
In the third block of Table I, our proposed method outperforms
the rest of the algorithms in all the metrics.

Figure 5 shows the results from Xiao and Ma [15] (fourth
row), and Park et al. [29] (fifth row), for this case. In the
first scene, notice that Xiao and Ma enhances yellow and red
colors, and it saturates the upper right corner of the wall. The
method in Park et al. shows a color shift in the floor, and
intensifies the purple color on the right side.

4) Gamma-Corrected Reference and Log-Encoded Source:
The last block in Table I presents the results where the
reference is a gamma-corrected image, and the source is log-
encoded. For all the metrics, our method outperforms the rest
of algorithms.

Figure 5 shows the results from Reinhard et al. [8], and
Kotera [14] (last two rows), for this case. The result from the
former method shows a yellowish cast on the wall. The latter
method presents washed out colors, e.g. the chair and the wall
behind it.

C. Results With Power 10

In this subsection we analyse the performance of the rest
of methods when also applying a power 10 function to them.
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Fig. 5. Results of all the methods for the four comparisons. Each block represents: 1) gamma-corrected image pair, 2) log-encoded input images, 3) log-encoded
reference and gamma-corrected source and 4) gamma-corrected reference and log-encoded source. The first column presents the reference, the second shows
the source, the third the GT, the fourth the methods result, and the last our result. We present for 1) Ferradans et al. [12], 2) Gil Rodríguez et al. [27] and
Pitié et al. [10] methods and 3) Xiao and Ma [15] and Park et al. [29] methods, and 4) Reinhard et al. [8] and Kotera [14] methods.

More in detail, we first apply the power 10 function to the
log-encoded inputs, we then apply the selected method to the
new images, and finally we undo the power 10 if necessary.
From now on, we refer to this process as method10. The results
for all the comparisons and methods are presented in Table II.
Our results and the results of Gil Rodríguez et al. from the
previous Table are also included for comparative purposes.

1) Log-Encoded Inputs: Results show a considerable
improvement between the original methods and after apply-
ing power 10, see first block. The only exceptions are the
algorithms of Pitié et al. [10] and Ferradans et al. [12], which
have a similar performance with and without power 10.

2) Log-Encoded Reference and Gamma-Corrected Source:
Results show a considerable difference between the original
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TABLE I

RESULTS FROM THE COMPARISON AMONG 35 IMAGE PAIRS FOR: 1) TWO γ -ENCODED IMAGES, 2) TWO LOG-ENCODED IMAGES,
3) REFERENCE LOG-ENCODED AND SOURCE γ -CORRECTED, AND 4) REFERENCE γ -CORRECTED AND SOURCE LOG-ENCODED

TABLE II

RESULTS FROM THE COMPARISON AMONG 35 IMAGE PAIRS FOR: 1)) TWO LOG-ENCODED IMAGES, 2) REFERENCE LOG-ENCODED

AND SOURCE γ -CORRECTED, AND 3) REFERENCE γ -CORRECTED AND SOURCE LOG-ENCODED. IN THIS CASE, WE APPLIED

POWER 10 TO THE INPUTS (IF NECESSARY) FOR THE REST OF ALGORITHMS, EXCEPT GIL

method and after applying the power 10 preprocessing. Notice
the boosting of Park et al., which improves significantly versus
its original version. It is ranked second after our approach in

most of the metrics, and in median PSNR L and CPSNR it
gets the best results, see Table II (second block). In Figure 6,
the Park10 method presents no color shift on the floor,
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Fig. 6. Example of applying power 10 function to Park et al. [29]. The input images are a log-encoded reference and a gamma-corrected source. The first
column presents the output of the original method from [29], the second shows the output of [29] applying power 10 (Park10), the third shows the GT, and
the last column shows our result.

Fig. 7. Examples with PQ and HLG. From left to right, source, reference, GT and our result. Each row represents a different comparison and scenario.
The GTs and our results are tone mapped using [37]. Images from ARRI [38]. In the case of PQ curve, we set up the absolute luminance of the display to
1000 cd/m2.

although it cannot completely recover the yellow color of the
truck.

3) Gamma-Corrected Reference and Log-Encoded Source:
In this case, although Park et al. improves their previous
results, it is not as noticeable as in the previous comparison.
The method of Pitie10 outperforms Park10 as opposed to the
previous case; Pitie10 in this context shows a more consistent
performance in both cases.

The results of our experiments show that the proposed
framework (applying a power 10 function to log-encoded
images) boosts the performance of the majority of the methods
we compare with. This is true both in terms of quantitative
metrics and image quality. The exceptions are the algorithms
of Pitié et al. [10] and Ferradans et al. [12]. These two methods
define the input images as probability density functions in
order to match them. This fact allows these methods to better
adapt for modifications present in the range of the input
images.

IV. EXPERIMENTS WITH HDR ENCODINGS

In this section, we color match a pair of images encoded
using different transfer functions: PQ, HLG and Log C ARRI
curves.

A. Dataset

The dataset we use for experiments is the one provided by
ARRI. This data contains HDR videos. The linear RAW data
is obtain by using ARRIRAW Converter [39]. We select three
different scenes, and for each scene we set a reference image
encoded with one of the 3 different options {PQ, HLG, Log C }
(a random Log C ARRI curve). Then, we build the data by
selecting all the possible combination pairs for each image
reference (total of 9 pairs). We add an extra pair comparing
two different Log C ARRI curves. Therefore, we have a total
of 10 image pairs.

B. Results and Comparisons

We compare our method, described in Section II, with
the algorithms presented in the previous experiments in sub-
section III-B: Reinhard et al. [8] (Reinhard), Kotera [14]
(Kotera), Xiao and Ma [15] (Xiao), Pitié et al. [10] (Pitie),
Ferradans et al. [12] (Ferradans), Park et al. [29] (Park), and
Gil Rodríguez et al. [27] (Gil). The last method also considers
the inputs as log-encoded images. In order to compute the
quantitative results, we undo the non-linearity (since it is
known) of the resulting color matched image and the GT, and
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TABLE III

RESULTS SHOW MEAN (μ) AND MEDIAN (μ̂) AVERAGES OVER 10 PAIRS,
WHERE REFERENCE AND SOURCE IMAGES ARE ENCODED

USING HLG, PQ AND LOGARITHMIC CURVES. IN THE

CASE OF PQ CURVE, WE SET UP THE ABSOLUTE

LUMINANCE OF THE DISPLAY TO 1000 cd/m2

then apply a γ correction of 1/2.2, as done in the previous
experiments. From the data in Table III, it is apparent that our
method is accurate when working with real data and common
situations.

Figure 7 presents the image results, where we show the
GTs and our results after applying the tone mapping oper-
ator (TMO) from [37]. The reference and the source are
presented without tone mapping. After applying a TMO to
the HDR images, we will not be able to appreciate the
main differences on the different encodings anymore. For this
reason, we decided to present the inputs without TMO, since it
gives a general understanding of the encoded images. As it can
be seen in the last column in Figure 7, our method recovers
the colors and appearance of the reference image, in different
input situations. We show for 3 different scenes (rows), and
for each scene: the reference (first column), the source (second
column), the GT (third column) and our result (last column).
Notice that on the last row, where the reference is PQ-encoded
and the source HLG-encoded, our result (last column) is not
able to completely recover the blue on the t-shirt on the left
upper corner. In our output, the blue appears brighter than
in the GT. This is due to the fact that no correspondences
are available in this particular hue, thus the recovery is not
perfect.

V. CONCLUSION

In this paper we have presented a method for the color
matching of different image views encoded with unknown
non-linear curves. The method is based on the modifica-
tion of logarithmic-encoded images so that they behave as
gamma-corrected ones. In this way, we can color stabilize the
images by estimating a 4 × 4 matrix and a power law value.
Our results show that our method outperforms state-of-the-art
algorithms quantitatively and qualitatively. In a future work,
we would like to explore the more general case, when no
content is shared among the input images.
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