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Color Channel Compensation (3C): A Fundamental
Pre-Processing Step for Image Enhancement

Codruta O. Ancuti

Abstract— This article introduces a novel solution to improve
image enhancement in terms of color appearance. Our approach,
called Color Channel Compensation (3C), overcomes artifacts
resulting from the severely non-uniform color spectrum dis-
tribution encountered in images captured under hazy night-
time conditions, underwater, or under non-uniform artificial
illumination. Our solution is founded on the observation that,
under such adverse conditions, the information contained in
at least one color channel is close to completely lost, making
the traditional enhancing techniques subject to noise and color
shifting. In those cases, our pre-processing method proposes to
reconstruct the lost channel based on the opponent color channel.
Our algorithm subtracts a local mean from each opponent color
pixel. Thereby, it partly recovers the lost color from the two colors
(red-green or blue-yellow) involved in the opponent color channel.
The proposed approach, whilst simple, is shown to consistently
improve the outcome of conventional restoration methods. To
prove the utility of our 3C operator, we provide an extensive
qualitative and quantitative evaluation for white balancing, image
dehazing, and underwater enhancement applications.

Index Terms—Image enhancement, dehazing, color-constancy.

I. INTRODUCTION
OWADAYS, due to the large-scale availability of dig-
ital cameras, images are captured in a wide range of
uncontrolled environments, resulting in heterogeneous acqui-
sition quality. To mitigate this problem, numerous solutions,
named image dehazing methods, have been developed to cope
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Fig. 1. Top row shows three examples of challenging images with one color
channel highly attenuated (2nd row). Employing the traditional Shades of Gray
color constancy method [1] or the well known DCP dehazing method [2]
does not solve the problem (3rd row). In contrast, even if the extreme
attenuation in the initial image does not allow one to recover a visually
pleasant image, simply applying our 3C operator as a pre-processing step
to the same techniques, results in more satisfying results in terms of color
balance, thereby revealing the potential of our method. Please refer to Fig. 2
for additional comparative results.

with the degradation caused by the atmosphere. However,
as illustrated in Fig.1 and Fig. 2, for the challenging cases
associated to selective spectral distribution of the illuminant,
to low illumination, or to medium attenuation (e.g. caused
by bad weather conditions), the existing dehazing techniques
introduce unpleasing color artifacts and distortions. The con-
tribution of our paper is twofold. First, it observes from a
statistical analysis that poor visibility conditions and severe
image degradation generally correspond to a strong attenuation
of one of the color channels, and explains why this strong
attenuation dramatically affects most existing dehazing tech-
niques. Second, it proposes an original and effective solution
to mitigate this strong color attenuation, by providing a color-
compensated image that is better suited to be processed by
existing dehazing solutions.

Our simple yet powerful, Color Channel Compensation
(3C) approach builds on the observation that the vanishing of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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Arfificial illumination Gray World Max RGB Grey Edge Shades of Grey 3C+ Shades of Grey
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Fig. 2. Top row considers real extreme artificial illumination scenes. The traditional color constancy techniques (Gray-World [3], Max RGB [4], Grey Edge [5],
and Shades of Grey [1]) perform poorly for this challenging scene. While our operator (3C) removes the color cast partially, Shades of Gray [1] pre-processed
with our operator (3C) yields better results. Middle row shows a hazy night-time scene. Both global [2], [6] and local [7] dehazing approaches produce
imperceptible improvements. Our operator applied as a pre-processing step to the same DCP dehazing technique [2] yields comparable results to those of
the specialized night-time dehazing approach of Li et al. [8]. Bottom row shows an underwater scene. While the dehazing techniques of He et al. [2]
and Meng et al. [9] but also specialized underwater methods of Drews-Jr et. al [10] and Berman et al. [11] perform poorly, our operator employed as a
pre-processing step to the DCP [2] yields convincing results.

Underwater

He et al. (DCP)

Underwater image

a channel tends to move (one of) the opponent color(s) away Ancuti et al.
from the origin. Therefore, 3C consists in compensating for
the missing channel by bringing each opponent color back
towards the origin.

Our approach is motivated by a similar assumption to
the one adopted by the Gray world [3], which consists in
considering that the spatial average of colors in a natural scene
is neutral gray. Specifically, 3C assumes that the average of
each opponent color on a reasonable spatial support is close to
zero. Instead of tuning R, G, and B independently, 3C works
in the opponent color space, and brings back each opponent
color towards zero.

When compared to previous art, our approach has been
partially inspired by the recent work of [12], which demon-
strates that red color channel compensation is important to
restore visibility in underwater conditions. However, 3C is
more general, showing robustness in a larger number of

Fig. 3.

The color channel correction proposed in Ancuti et al. [12] is not

challenging cases, including underwater scenes (see Fig. 3)
but also extreme visibility, as encountered in the presence of
artificial sources and night-time dehazing.

To summarize, the main contributions of this paper are:

o The statistically proven observation, that, under poor
illumination, or in the presence of strong and non-uniform
spectral attenuation, the color information from at least
one color channel might be lost for the whole scene. This
complete extinction strongly penalizes existing enhance-
ment and color-constancy solutions, which assume that all
colors are preserved, while modulated by the illuminant
and attenuation.

o An algorithm, named Color Channel Compensation
(3C), that partly restores the lost color channel from other
channels, by bringing back the opponent colors towards
zero-mean.

o An extensive demonstration of the consistent benefit
brought by of 3C when applied as a pre-processing step
to various image enhancement solutions for day-time

able to deal with noise when the image is both highly attenuated and noisy.
On the other hand, 3C reduces the noise considerably. We observe that the
banding effect that is present in the original image has disappeared in the
image provide by Ancuti et al. [12]. This is because [12] includes a multiscale
image enhancement step that is not present in 3C.

and night-time image dehazing,
enhancement and color constancy.

underwater image

II. RELATED WORK

Most image dehazing solutions resort to the optical model
of Koschmieder [13]. This model states that the light intensity
Z(x) at each image coordinate x results from two main additive
components - direct transmission D(x) and airlight A(x):

I(x) =Dx) + Ax) =T () T (x) + Ao [1 =T (x)] (1)

where J(x) is the scene radiance, T (x) is the transmission
along the cone of vision (decreasing exponentially with the
depth of the scene), and A, is the atmospheric intensity,
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a color vector resulting from environmental illumination. To
estimate the transmission, many of the existing dehazing
solutions build on the dark channel prior (DCP) [2]. Initially
proposed for outdoor dehazing, DCP was introduced based on
the statistical observation that all regions in a natural scenes
contain some pixels that have very low intensities in at least
one color channel. It consequently defines regions of small
transmission as the ones with large minimal values of colors.

Day-time single image dehazing techniques [14]-[17]
build upon the simplified Koschmieder light transmission
model [13] and on some prior knowledge, such as Dark
Channel Prior (DCP) [2], saturation and intensity, [6] and color
channels distribution (e.g., color-lines [16] and haze-line [7]).
In contrast, image dehazing based on fusion strategies [18]
have the advantage of not requiring explicit estimation of
the transmission [19], [20] and offer more robustness to the
airlight changes induced by artificial lighting [21]. Recently,
several learning-based methods [22]-[24] have also demon-
strated their effectiveness for haze removal. As attested by our
experimental section, all methods however suffer in presence
of severe attenuation.

Night-time dehazing deals with scenes that include
multiple light sources, which tend to generate glowing
artifacts. Several dedicated night-time dehazing methods [8],
[21], [25], [26] have been introduced to account for spatially
non-uniform illumination. Recently, a few more solutions
have been proposed to deal with haze under night-time
conditions [8], [21], [26]. While our 3C operator is not an
image dehazing approach, we prove that it constitutes a
valuable pre-processing step to enhance both those daytime
and night-time dehazing methods.

Underwater image enhancement. Most recent underwater
enhancing solutions [10], [27]-[31] have been inspired by
outdoor dehazing strategies, assuming that the light propaga-
tion is reasonably well approximated by the Koschmieder’s
model [13]. Dark Channel Prior (DCP) [2] is the foundation
for many underwater strategies [10], [32], as well as for
outdoor dehazing. In the presence of extreme attenuation of the
red channel, Ancuti et al. [12] compensate for the vanishing
of red based on the green channel. Our 3C operator can be
seen as a generalization of [12] that is able to deal with the
vanishing of an arbitrary color channel (in turbid water the
blue channel is more attenuated than the red one, see Fig. 3),
independently of whether this vanishing is due to attenuation
during transmission (underwater or severe haze) or to a miss-
ing spectral components in the illuminant (night-time artificial
lighting).

Color constancy or white balance techniques aim at
making imaged colors invariant to the scene’s illumination,
but assume that all channels are present (whilst differently
affected by lighting) in the captured image. Therefore,
color constancy infers and compensates for the undesirable
color casts induced by the illuminant. Being mathematically
ill-posed, it remains a challenging problem. The existing
methods [33] make various assumptions regarding some
regularity in the colors distribution of natural objects under
neutral illumination conditions. Early approaches [1], [3]-[5]
assume that colors are equally represented at the scene level.
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For instance in the Gray World [3] the illuminant color
is identified by simply estimating the mean of each color
channel in the initial image. Hence, it considers that the
average reflectance of a scene is in general achromatic. The
Shades-of-Grey color constancy method was introduced by
Finlayson and Trezzi [1] and builds on the observation that the
Max-RGB [4] and Gray-World methods are two instantiations
of the Minkowski p-norm applied to the native pixels,
respectively with p = +inf and p = 1. Shades-of-Grey
extends the process to arbitrary p values. The best results are
obtained for p = 6. As stated above, our 3C operator relies on
a similar assumption, but implements it in the opponent color
space to compensate for the vanishing of a full color band.

Another class of color constancy techniques uses vari-
ous strategies to learn the color distribution of a training
data set [34]-[37]. More recently, color constancy meth-
ods have been proposed to deal with multiple illumination
sources [38]-[40].

In contrast, our 3C operator focuses on the recovery of
the missing information and compensates for the loss of one
particular color channel, e.g., due to a selective illumination
spectrum or strong attenuation of a subset of wavelengths.
Such cases are frequent in scenes with high selective atten-
uation such as underwater, where the perception of certain
colors is influenced by the red channel attenuation (in water
red disappears first, then orange, yellow, and so on). Similarly,
in yellowish muddy turbid waters, the blue channel is highly
attenuated. The loss of a color channel is also common
when artificial illumination introduces a high degree of color
distortion due to a selective lighting spectrum. Basically, our
3C operator does not provide an alternative to existing
color constancy techniques, but rather complement them to
perform better on various extreme cases (see Fig. 10). Like
most color constancy approaches, our 3C operator neglects
the colorimetric mapping errors induced by the sensor-specific
color space transform [41] and focuses on the prominent color
degradation caused by a severely biased illumination or a
strong wavelength-specific transmission attenuation.

Opponent color spaces have been introduced to reflect
the fact that the human visual system interprets informa-
tion about color by processing signals from photoreceptor
cells antagonistically. An opponent color space builds on
the assumption that the visual system manipulates differ-
ences between the responses of the three types of cones
(Blue/Green/Red wavelengths), rather than each type of cone’s
individual response. The opponent color theory considers that
there are two chromatic opponent channels (red versus green,
blue versus yellow) and one achromatic channel (black versus
white). It accounts for perceptual dependencies between color
bands, so as to model color perception phenomena that cannot
be explained by processing the RGB channels independently,
such as the fact that humans do not perceive reddish-greens
and bluish-yellows. Our paper reveals that an opponent color
space allows to naturally reconstruct a missing channel when
necessary. Specifically, it shows that subtracting (a fraction
of) local means to opponent colors helps in compensating the
missing green, blue or red color with respect to their opponent
counterpart
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Fig. 4. We present the statistics of the attenuated color channel of a set of 42000 real images before and after applying 3C. The images have been captured in
challenging conditions (underwater, night-time haze and artificial illumination), and the conventional DCP implementation appears to be ineffective in restoring
them. On those images, we have observed that one color channel (not always the same) is severely attenuated. From left to right are shown the histograms
of the attenuated channel in each image, the histograms of restored image channels (after pre-processing them with our operator 3C), and the histograms
of (1000+) natural landscapes images. Mean(Hist|yg) presents the mean of the histogram vectors while the Hist(Imgpeqn) presents the distribution of
the mean of each image. For a better understanding the bottom row presents the cumulative distribution functions (CDF). As can be seen after applying our
operator 3C results in statistical distributions that are closer to the one of natural images.

III. COLOR CHANNELS COMPENSATION (3C)

A. 3C Motivation: Strong Color Channel Attenuation

Our Color Channels Compensation (3C) operator is moti-
vated by the key observation that images obtained under
extreme visibility conditions (underwater, night-time haze, and
artificial illumination) present stronger losses in one channel
than in others.

To make this observation, we gathered a large database of
images (2000+ images) taken under challenging conditions
(underwater, night-time haze and artificial illumination). Since
most of the dehazing solutions are based on using DCP
to invert the optical model, we selected primarily images
that were not effectively enhanced by the conventional DCP
implementation [2]. After careful analysis of these images
and their color channels statistics, we observed that all of
them had a common characteristic: one color channel was
made of large areas of zero values (see the peak in the origin
in Fig. 4, where 60% of the pixels have O intensity, 90% of
the pixels have lower than 25 intensity, and 98% of the pixels
exhibit intensities below 40) or lacked scene-relevant spatial
distribution of intensity.

This loss of information is either the consequence of the
illumination characteristics (some range of wavelengths is
missing from the light spectrum) or due to the characteristics
of the medium: selective attenuation, scattering phenomena
(Rayleigh). In hazy night-time images, for instance, the yel-
lowish illuminant generates images with highly attenuated blue
channels, due to the multiplication between scene reflectance
and the illuminant. In clean water, the wavelengths are
attenuated selectively. Radiations with lower frequency
are more absorbed, which implies that the red intensity is
attenuated usually after 5-6 m, the orange after 7-8 m, yellow
after 10-15 m, and the green around 21 m. Hence, images
taken at greater depths will present a blue (blue-green)
appearance. In aerial medium, the atmospheric scattering
(Rayleight scattering) also depends on the wavelength. Shorter
wavelengths (corresponding to blue color) are more scattered

than longer ones. Rayleight scattering is easily noticeable
since it causes the blue sky during the daytime.

Now that we have observed that the most challenging cases
are characterized by the extinction of one color, due to attenu-
ation or selective lighting spectrum, we better understand why
conventional dehazing methods generally fail in those cases:
the unbalanced attenuation induces color shifting; the dark
channel prior, which associates a small minimal color value
to a good transmission, systematically fails in estimating the
transmission; and conventional enhancement methods, which
attempt to reconstruct a pleasant image by resorting to some
kind of histogram stretching (often guided by the inversion of
an approximated light transmission model) for each channel,
tend to amplify noise when the information is missing in one
channel.

To circumvent the channel extinction issue, we propose to
compensate for it. Therefore, we observe from our dataset
that the severe color attenuation affects primarily one of the
opposite colors in opponent color space. In other words,
images that are subject to severe color artifacts generally look
either blue, yellow, red, or green.

Hence, working in the CIEL*a*b* [42] opponent space
should facilitate the compensation of strong color shifts
induced by common attenuation/lighting spectral distribution.
For example, in greenish pictures, since the loss of red induces
an a* channel shift in favor of the green color, this loss
could be offset/mitigated by bringing back the a* channel
towards mean zero values or, equivalently (see Section III.B),
by adding a fraction of the green signal to the red channel,
as recommended in [12]. The same holds for the »* channel
when dealing with blueish (loss of yellow, i.e., red+green)
and yellowish (loss of blue) pictures.

In other words, because the color opponent space combines
the spectral components of color, the correlation encountered
in natural scenes between the R, G, and B components is
partly reflected in the statistical distribution of the opponent
colors, making it possible to recover one particular missing R,
G, or B channel by restoring the statistical properties expected
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Input Images

3C (Ciel*a*b*)+DCP  3C (YUV)+DCP 3C (YCrCb)+DCP

Fig. 5. Applying 3C in different color-opponent spaces, yields quite similar
results.

Night-time hazy image 3C without Mask (eq.1)

3C with Mask (eq.1)

Mask (M)

Fig. 6.
is not defined, the regions close to the illumination sources are affected by
color shifting.

The influence of the mask (M) defined in Equation 2. If the mask

from the opponent colors. In particular, we have observed that,
when one of the R, G, and B component is severely attenuated,
it can be recovered by pushing the opponent colors towards a
zero local mean. We have tested other color-opponent spaces
and the results are quite similar (see Fig. 5).

B. Color Channel Compensation

Our enhancement pre-processing method assumes that the
mean of the each opponent channel is zero (neutral color)
when a sufficiently large scene is considered. Under this
assumption, which sounds like a transposition of the Gray
World [3] assumption to the opponent color space, a simple
way to mitigate the color shifts induced by severe spectral
power discrepancies induced by a biased illuminant or a
severe attenuation consists in subtracting the mean of each
opponent color channel, as averaged on the whole scene,
from the channel itself. In practice however, the level of color
attenuation (and thus color shift) may vary spatially. Therefore,
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Hazy image 3C (x=0.3,A=0.3) 3C (x=0.7,A=0.7) 3C (k=1,A=1)

_3C(x=0.3,1=0.3) + DCP 3C (x=0.7,A=0.7) + DCP  3C (x=1,=1) + DCP_

He et al. (DCP)

Fig. 7. The impact of ¥ and 1 parameters. In Equation 2 the parame-
ters x and A define the level of compensation. The compensation increases
proportionally to the value of the x and A parameters. Setting k = 4 = 0.7
generally results in the most pleasant images.

TABLE I

AVERAGE CIEDEOO VALUE FOR COMPUTED FOR 5 HAZY IMAGES OF THE
O-HAZE DATASET PROCESSED WITH 3C OPERATOR BY VARYING
THE A AND kK PARAMETERS (THE SMALLER THE
CIEDEOO THE BETTER)

H A 0 0.3 0.5 0.6 0.7 1 1.2

0 16.674 16.6745 | 16.7196 | 16.826 16.9937 | 17.2145 | 17.4913
0.3 14.9984 | 15.0134 | 15.072 15.1772 | 15.3446 | 15.5709 | 15.8677
0.5 13.5233 | 13.4668 | 13.4674 | 13.5368 | 13.6832 | 13.9109 | 14.2209
0.6 124331 | 12.2178 | 12.0826 | 12.0368 | 12.1015 | 12.2976 | 12.622
0.7 12.4727 | 12.0901 | 11.7487 | 11.4868 | 11.3656 | 11.4277 | 11.702
1 13.9044 | 13.5236 | 13.1821 | 12.893 127069 | 12.6675 | 12.8162
1.2 15.991 15.7299 | 15.5014 | 15.3202 | 15.204 15.206 15.368

Night-time haze 3C (gauss. kernel=7) 3C (gauss. kernel=20) 3C (gauss. kernel=200)

Underwater

Fig. 8. Gaussian filter size impact. When the size of the Gaussian kernel is
too small, the image losses the chromatic information. For a too-large kernel
size, the compensation is suboptimal/incomplete.

a local mean, estimated by a Gaussian filter with large spatial
support, is subtracted from each opponent channel. Formally,

the compensated opponent color channels I, and Iy, are
computed in every pixel x as:

I6,(0) = Lx(¥) = & - M(x) - Glus(x)

I§,(x) = Ip(x) = A~ M(x) - Glpi(x) @)

where 1,x, Ips are the initial color opponent channels and
G, and G I, represent their Gaussian filtered versions. The
parameters x and A adjust the level of correction for the two
opponent channels. As illustrated by Fig.7, x and A should be
chosen reasonably large to mitigate the color shift induced
by the excessively attenuated color channel. W Based on
extensive qualitative and quantitative (see Table I) testing on
hazy images (day/night/underwater), we came to the conclu-
sion that, in general, setting the ¥ and A parameters around
0.7 results in visually pleasant outputs. However, in under-
water, since the attenuation is much higher and selective
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Grey Edge

Grey Edge 3C+ Grey Edge

3C+ Grey Edge

Shades of Grey  3C+Shades of Grey
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3C+ Grey Edge

Shades of Grey

Shades of Grey
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™ e
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Fig. 9. Synthetic images. The first column shows the initial color image (from the Stanford Background Dataset) and the second column shows the synthetic
images obtained when one of the color channels (e.g., Red, Blue and Green) has been completely removed (all its values are set to 0). The next columns show
the results obtained with two traditional color constancy techniques, Gray World [1] and Max RGB, [2] and the results when our operator (3C) is applied as
a pre-processing step to those methods. The quantitative evaluation over the entire dataset (700+ images) is provided in Table II.

(in terms of wavelength), it becomes relevant to increase the
correction for the red-green channel (because red is subject to
higher attenuation in underwater medium), while keeping the
generally recommended level of compensation for the yellow-
blue channel. As a consequence, x is set to 1, while 1 is kept
to 0.7 in underwater. The mask M is a refinement that has
been introduced to maintain significant illumination in light
source locations. For a pixel location, the mask value is set to
zero when mean(r, g, b) > 0.85 and to 1 elsewhere. To avoid
artifacts (see Fig. 8), the mask is smoothed with a simple
Gaussian with a medium kernel size (default size is set to 20).

Interestingly, Equation 2 appears to be an extension, but
also an elegant formulation, of the red channel compensation
introduced by Ancuti et al. in [12], where the compensated
red channel /S at every pixel location (x) has been defined
as:

[Ex)=L&x)+o-(Ig—1) (1 -Lx) Lx) (3

with I, I, being the red and green color channels of the
initial image 7, each channel being in the range [0, 1], after
normalization by the upper limits of their dynamic ranges;
and I, and I_g denoting the average of those channels over
the whole image. o is a constant parameter. Despite its
effectiveness for underwater scenes, Equation 3 has two main
limitations: first, if the red channel is entirely attenuated, then,
based on Equation 3, the green channel values are transferred

entirely to the red channel and will give the restored scene
unwanted yellowish appearance. Secondly, this solution has
been tailored for underwater scenes and is not applicable to
any color attenuation than the red. In contrast, our solution is
general and can be used to solve severe attenuation conditions
for turbid water or night-time scenes, where the blue channel
may be significantly attenuated due to absorption by organic
matter or the spectral power distribution of the artificial light
spectrum.

To reveal the link between Equation 3 and our method in
Equation 2, we consider the red component to be severely
attenuated (I, ~ 0), which is the use case of interest in [12],
in Equation 2. In that case, Equation 3 can be approximated
as:

Li(x)=1(x) +a- I - T(x) (4)
By approximating the opponent color channel I,% by
7 -(Ig— 1), the first line of Equation 2 becomes, with mask M
set to 1:

I{() = IF () = L (x) = I (x) = y G {I;(x) = (1)} (5)

with y o - I_g. Given Ig(x) Io(x) in [12] and
I, < I (since I, ~ 0), Equation 5 appears to be identical
to Equation 4, up to the Gaussian filtering applied to

I, (G {Ig(x)}) in Equation 5. Hence, we conclude that
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Grey Edge Weighted Grey Edge Bayesian

3C+Grey Edge 3C+W. Grey Edge 3C+Bayesian

Grey Edge Weighted Grey Edge Bayesian

3C+W. Grey Edge 3C+Bayesian

Weighted Grey Edge

3C+Grey Edge

Grey Edge Bayesian

3C+Shades of Grey

Fig. 10. Enhancing artificially illuminated (real) scenes. We present three examples of real images captured in presence of artificial illumination. For each
scene, the top (bottom) row shows the results produced by several traditional color constancy methods, without (with) our 3C pre-processing operator. Color
constancy methods include: max RGB [4], Gray Word (3], Shades of Grey [1], Gray Edge [5], Weighted Gray Edge, [44] and Bayesian Color Constancy [34].
It is easy to see that our operator, 3C, applied as a pre-processing step to the color constancy methods, yields better results. For more results the reader is

referred to the supplementary material.

Equation 2 is equivalent to Equation 3 in the use case
recommended by [12] (red attenuation).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. 3C for Color Constancy

Although color constancy has been ignored by many image
dehazing and underwater image enhancement methods, [19]
and [12] observed that, due to the airlight estimation ambi-
guity, image dehazing algorithms generate images that are
visually more pleasant when they are applied to inputs that
have been pre-processed with a color constancy method.

Traditional color constancy, however, appears to be unable
to deal with extreme cases (see Fig. 10). This is because color
constancy adjusts the contrast independently for each color
channel. Hence, when a channel is missing, this operation is
prone to introduce artifacts or have no influence at all, thereby
preserving a prominent color shifting.

To demonstrate the utility of 3C for such cases (images
with one color channel highly attenuated), we first considered
a dataset of outdoor natural images, including the Stanford
Background Dataset [43], and emulate strong attenuation

conditions by zeroing one color channel at a time, as in
the example shown in Fig. 9. We applied several traditional
color constancy techniques to the set of artificially attenuated
images, namely, : the white-patch, max RGB algorithm [4],
the Gray World [3], Shades of Grey, [1] and Gray Edge [5].

Table II relies on the CIEde00 metric [45] to compare the
results of these color constancy techniques when applied with
and without 3C pre-processing. CIEde00 generates values in
the range [0,100], with smaller values indicating small color
difference to the ground truth. For completeness, in Table II
we also provide the PSNR results for the entire synthetically
generated Stanford Background Dataset.

As a second component of our validation, Fig. 10 shows
three examples of artificially illuminated real scenes. For each
scene, the top row shows the results produced by several
traditional color constancy methods: max RGB [4], Gray
Word [3], Shades of Grey [1], Gray Edge [S], Weighted Gray
Edge, [44] and Bayesian Color Constancy [34]. It can be
observed in the second row that applying our 3C operator as
a pre-processing step to the same color constancy methods,
yields better results. For more visual results the reader is
referred to the supplementary material.
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TABLE II

QUANTITATIVE EVALUATION: INPUT IMAGES ARE OBTAINED BY SETTING TO ZERO A WHOLE CHANNEL IN IMAGES OF THE STANFORD BACKGROUND
DATASET [43] (700+ IMAGES). PSNR AND CIEDEOO QUALITY OF IMAGES RECONSTRUCTED BY A NUMBER OF CONVENTIONAL METHODS,
WITH AND WITHOUT 3C PRE-PROCESSING. A NATURAL IMAGE AND ITS SYNTHETIC VERSIONS ARE SHOWN IN FIG. 9. MORE
EXAMPLES ARE PROVIDED ON THE PROJECT PAGE HTTPS://SITES.UCLOUVAIN.BE/ISPGROUP/RESEARCH/3C

Initial imgages Gray World max RGB Grey Edge Shades of Grey
PSNR | CIEde00 | PSNR | CIEde00 | PSNR | CIEde00 | PSNR | CIEde00 | PSNR | CIEde00
Imgs (Red ch. removed) 15.976 20.936 12.743 23.197 12.858 22.518 12.987 22.561 12.931 22.831
3C on Imgs (Red ch. removed) 23.872 11.541 23.845 11.548 24.040 13.099 24.503 18.636 23.851 12.000
Imgs (Green ch. removed) 9.972 33.624 8.938 36.578 8.940 36.014 8.966 35.944 8.969 36.169
3C on Imgs (Green ch. removed) | 11.396 25.520 11.474 25.110 12.418 24.178 13.233 24.758 11.815 24.276
Imgs (Blue ch. removed) 24.322 23.999 16.619 24.163 16.653 23.977 16.719 24.013 16.617 24.077
3C on Imgs (Blue ch. removed) 32.465 11.755 31.843 11.697 29.200 13.756 27.534 23.181 29.812 12.356
TABLE III

QUANTITATIVE RESULTS FOR THE GEHLER-SHI COLOR CONSTANCY DATASET. SUMMARIZING ANGULAR ERRORS OF THE TRADITIONAL COLOR
CONSTANCY METHODS OF GRAY WORD (GW) [3], MAX RGB WHITE PATCH (WP) [4], GRAY EDGE (GE) [5] AND SHADES OF GRAY (S0G) [1].
APPLYING 3C AS A PRE-PROCESSING STEP TO THESE TRADITIONAL METHODS IMPROVES THEIR ORIGINAL PERFORMANCE, LEADING TO
RESULTS THAT ARE COMPARABLE WITH THE LEARNING-BASED TECHNIQUES OF [34] (BAYESIAN), [39] (NIS) AND [35] (MLS)

GW [3] | 3C+GW | WP [4] | 3C+ WP | GE [5] | 3C+GE | SoG [1] | 3C+SoG | Bayesian [34] | NIS [39] | MLS [35]
Mean 6.34 4.94 7.53 4.81 5.17 4.87 491 4.67 4.82 4.19 4.16
Median | 6.25 4.01 5.64 3.77 4.43 3.9 4.02 3.38 3.46 3.13 3.3

Hazy image Meng et al.

3C + Meng et al.

Ground truth

Berman et al.

He et al. (DCP) 3C + DCP
g Bt o

Fattal

3C + Fattal

3C+ Berman et al.

Fig. 11. Day-time dehazing. Three images of the O-Haze [46] dataset are processed by four specialized single-image dehazing techniques, namely He et al. [2],

Meng et al. [9], Fattal [16], and Berman et al. [7]. As demonstrated also quantitatively in Table IV, applying 3C as a pre-processing step to those dehazing
methods, yields better results. The last column shows the ground-truth images.

Table III provides quantitative results also for the
well-known Gehler-Shi color constancy dataset [34].
It demonstrates that 3C improves traditional color constancy
techniques significantly, yielding results that are competitive
with learning-based color constancy methods.

B. 3C for Image Enhancement

This sub-section shows the utility of our 3C operator in the
context of image enhancement. It considers several challenging
applications, such as day-time and night-time image dehazing

and underwater image enhancement.
Image dehazing generally resorts to the inversion of the

optical model of Koschmieder [13], which requires transmis-
sion and airlight estimation. The estimation of transmission
is most often performed based on the dark channel prior
(DCP), [2] which estimates the attenuation proportionally to
the smallest color value, and is thus severely misled when
a full channel has been lost. The airlight is estimated either
globally or locally depending on the assumptions about the

illumination sources (airlight is assumed to be uniform for
hazy day-time images and non-uniform for the hazy night-time
images or underwater images). In those methods, the airlight
estimation is tightly connected to the transmission estimation,
since airlight is estimated as observed at the point with
smallest transmission.

Regarding the validation of our 3C solution, we first con-
sider the recent outdoor dataset O-Haze, [46] which contains
45 pairs of real hazy and corresponding haze-free ground-truth
images. Fig. 11 shows three images and the results generated
by four specialized single-image dehazing techniques [2],
[71, [9], [16]. We observed that the results of the same
dehazing techniques looks better when the images are pre-
processed by our 3C operator. Table IV presents the PSNR
and CIEde00 values averaged over the entire O-Haze dataset
and confirms quantitatively our visual observation. More visual
comparisons are provided in the supplementary material.

Night-time dehazing is more challenging since it involves
artificial light sources, which tend to introduce additional



ANCUTI et al.: COLOR CHANNEL COMPENSATION (3C): A FUNDAMENTAL PRE-PROCESSING STEP 2661

TABLE IV

QUANTITATIVE EVALUATION OF DAY-TIME DEHAZING. THIS TABLE PRESENTS PSNR AND CIEDEOO AVERAGED OVER THE ENTIRE O-HAZE [46]
DATASET, WITH AND WITHOUT 3C AS A PRE-PROCESSING STEP. THREE IMAGES AND CORRESPONDING DEHAZED IMAGES OF HE ET AL.
(DCP) [2], MENG ET AL. [9], FATTAL [16] AND BERMAN ET AL. [7] ARE SHOWN IN FIG. 11

DCP [2] | 3C+ DCP | Meng [9] | 3C+ Meng | Fattal [16] | 3C+Fattal | Berman [7] | 3C+Berman
CIEde00 20.745 14.255 16.968 15.232 19.854 16.656 17.088 15.148
PSNR 16.586 17.755 17.443 17.676 15.639 16.136 16.610 16.953
Night-time hazy image  Contrast stretching Meng et al. Ancuti et al. Berman et al. 3C+Shades of Gray He et al. (DCP) 3C+DCP
-

Fig. 12. Night-time dehazing. Qualitative comparison of the results generated by the global dehazing techniques of He et al. [2] and Meng et al. [9], the
local dehazing approaches of Ancuti et al. [21] and Berman et al. [7], and the results of our operator (3C) applied as a pre-processing step to Shades of
Gray [1] color constancy method and He et al. (DCP) [2] dehazing method.

NT Hazy Images He et al. 3C+ He et al. Meng et al. 3C+ Meng etal. Bermnanetal. 3C+Berman etal. Liet al. 3C + Lietal

Fig. 13.

Night-time dehazing. Our operator (3C) applied as a pre-processing step significantly improves the effectiveness of day-time dehazing techniques
(He et al. [2], Meng et al. [9], Berman et al. [7]) as well for hazy night-time scenes. Interestingly, our 3C operator also improves the specialized night-time

dehazing technique of Li et al. [8] considerably.

color shifting. We consider the 1304 images of the night-
time dehazing dataset introduced by Li et al. [8] (see Fig. 2
and also the supplementary material). Since for night-time
dehazing there is no specialized quality metrics, we provide
qualitative comparative results but also a perceptual evaluation i

based on a user study. Fig. 12 presents two hazy night-time % Q 7
images. As can be seen, the results of Shades of Gray [1] and

DCP on images pre-processed by our operator are comparable '

and even better than the results yielded by the local dehazing = . = == ‘ L
techniques of Ancuti et al. [21] and Berman et al. [7)]. OEP CYDEP Meng 3CtMeng femon 3cwiemen Mo e
Moreover, as shown in Fig. 13, our 3C operator applied as
a pre-processing step makes the day-time dehazing techniques
(He et al. [2], Meng et al. [9], Berman et al. [7]) effective

a
T

s
T

s
T
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Preference scores

Fig. 14. Statistical analysis of the user study for night time dehazing.
15 users were asked to rank 8 results in decreasing order of visual quality. The
best four results have been scored to, 80%, 60%, 40% and 20%, respectively,
while the rest of them have been classified as acceptable (scored with 10%)

for hazy night-time scenes, as well. In addition, our operator
3C improves the specialized night-time dehazing technique of
Li et al. [8] considerably.

In the user study we compared the techniques of
He et al. [2], Meng et al. [9], Berman et al. [7] and Li et al. [8]
and the same techniques pre-processed by our operator 3C

or not acceptable (not scored). We interpret the results statistically using
analysis of variance (ANOVA) [47].

(see Figure 13). The group consisted of 15 volunteers
ages 20-45, with normal or corrected-to-normal visual acu-
ity and no issues related to the perception of colors.
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Berman et al. Ancuti et al. 3C+DCP

Underwater image

Contrast stretching  Chiang and Chen  Drews-Jr et al.(UDCP) 3C+Shades of Gray He et al. (DCP)

Fig. 15. Underwater image enhancement. Qualitative comparison of different specialized underwater dehazing approaches (Chiang and Chen [27],
Drews-Jr et al. [10], Berman et al. [11], Ancuti et al. [12]) and the results of Shades of Gray [1] and DCP of images pre-processed by 3C operator.

Underwater images He et al. (DCP) 3C+DCP Meng et al. 3C+Meng 3C+Fattal Drews-Jr et al.(UDCP) 3C+UuDcp Berman et al. 3C+Berman

Wﬂ-ﬂ-----ﬁﬂﬂ
--- .----- H’

Fig. 16. Underwater image enhancement. Qualitative comparison of different image dehazing [2], [9], [16] and specialized underwater dehazing approaches
(Drews-Jr et al. [10] and Berman et al. [11]) applied to images that have or have not been pre-processed with our 3C operator. The quantitative assessment

of the entire set of 10 images presented in the supplementary material, are provided in Table V.

The volunteers were asked to rank the dehazed versions, pre-
sented in a random order, based on the restoration of color and
details and taking into account the level of artifacts introduced.
We used a set of 20 images (shown in the supplementary
material and three examples are shown in Figure 13). The
testing room was kept dark and the images were displayed
using a calibrated 25 inch LED monitor (LG 25UMS58-P,
UltraWide Full HD). The participants were asked to rank the
best four dehazed results. A score of 80%, 60%, 40% and
20% was assigned to those four images while the rest of
them were classified as acceptable (scored with 10%) or not
acceptable (not scored). We interpreted the results statistically
using analysis of variance (ANOVA) [47]. It clearly appears
from the statistical analysis plotted in Figure 14 that our 3C
operator improves the perception of conventional method, with
the best results being obtained by 3C + Li ef al. [8].

Underwater image enhancement Although built on
the same simplified optical model [13], underwater image
enhancement is more challenging than outdoor image dehaz-
ing. However, as demonstrated in [12], when the most attenu-
ated color channel is properly compensated, transmission can
be reliably estimated based on the DCP, in underwater scenes
as well.

In our experiments we observed that the 3C operator not
only helped in estimating the transmission, but also in improv-
ing both global and local dehazing techniques. Fig. 17 presents
two underwater images and the results yielded by specialized

global [2], [10] and local [11] back-scattering techniques.
Applying our operator (3C) as a pre-processing step, improves
the level of object visibility in the restored image considerably.

We also considered the underwater image dataset of
Berman et al. [11]. Fig. 15 shows three images of this
dataset processed by different specialized underwater dehaz-
ing methods (Chiang and Chen [27], Drews-Jr et al. [10],
Berman et al. [11], Ancuti et al. [12]). As can be seen, Shades
of Gray [1] and DCP applied to images pre-processed by our
operator (3C) yield very competitive results.

Additionally we performed a qualitative evaluation using the
set of 10 underwater images used in the previous underwater
studies [12], [28]. Fig. 16 shows five of those images and
compares the results of He et al. (DCP) [2], Meng et al. [9],
Fattal [16], Drews-Jr et al. (UDCP) [10], Berman et al. [11]
with and without 3C pre-processing. The values of the
PCQI [48] and UCIQE [49] metrics averaged over the entire
set of images are shown in Table V. Again, 3C pre-processing
helps to improve the image perception significantly. The
absence of a ground-truth image (e.g., based on the inclusion
of a color checker in the scene), however, prevents us from
drawing definitive conclusions about color recovery.

C. Implementation and Limitations

Our technique is straightforward to implement. Its com-
putational time is dominated by the (Gausian) filtering and
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TABLE V

QUANTITATIVE EVALUATION OF UNDERWATER. PCQI [48] AND UCIQE [49] ARE AVERAGED OVER 10 IMAGES THAT ARE COMMONLY USED TO
ASSESS UNDERWATER DEHAZING IN THE PREVIOUS UNDERWATER STUDIES [12], [28]. IMAGE DEHAZING HAS BEEN CONSIDERED WITH
AND WITHOUT 3C PRE-PROCESSING. TESTED DEHAZING METHODS INCLUDE HE ET AL. (DCP) [2], MENG ET AL. [9], FATTAL [16],
UDCP [10] AND BERMAN ET AL. [11]. FIVE IMAGES SAMPLES ARE SHOWN IN FIG. 16. THE READER IS REFERRED TO THE
SUPPLEMENTARY MATERIAL FOR THE COMPLETE SET OF IMAGES AND COMPARATIVE RESULTS

3C DCP [2] 3C+DCP Meng [9] 3C+Meng Fattal [16] 3C+Fattal UDCP [10] 3C+UDCP Berman [11] 3C+Berman
PCQI 0.927 0.945 1.177 1.011 1.035 1.065 1.092 1.031 1.047 0.931 0.945
UCIQE 0.485 0.562 0.622 0.544 0.577 0.646 0.658 0.603 0.633 0.696 0.689
Underwater image He et al. (DCP) Drews-Jr et al. (UDCP) Berman et al. Initial image 3C+Shades of Grey

3C+ Berman et al.

Ll

Underwater image He et al. (DCP) Drews-Jr et al. (UDCP) Berman et al.

3C+ Berman et al.

(3C + UDCP)

(UDCP)

D

Fig. 17. Underwater image enhancement. Applying 3C as a pre-processing
step for both global [2], [10] and local [11] back-scattering techniques largely
improves the images. Interestingly, the bottom row demonstrates that even if
transmission is relatively well estimated, this may not always help the methods
of Berman et al. [11] and Drews-Jr et al. (UDCP) [10] to restore the visibility
of underwater scenes.

TABLE VI

EXECUTION TIME OF OUR NON-OPTIMISED IMPLEMENTATION
AS A FUNCTION OF THE IMAGE SI1ZE

[ Img.

‘ 480x720 ‘ 960x1440 ‘ 1440x2160 ‘ 1920x2880 ‘ 2400x3600 ‘ 2880x4320 ‘ 3360x5040 ‘
| Exec. Time (s)

[04535 | 08316 | 17748 | 30578 | 48372 | 69017 | 93639 |

the color space conversion (from RGB to CIELAB and vice-
versa). TableVI provides the execution time of this non-
optimized implementation' as a function of the image size,
on a Intel Core i7, 16GB RAM.

While our approach exhibits impressive robustness, we have
found that the main limitation of 3C appears in cases where the
captured scenes contain regions for which two color channels
are highly attenuated. For instance, in the image example
shown in Fig. 18, only the red channel contains important

IThe code of the 3C operator is released on the project page
https://sites.uclouvain.be/ispgroup/Research/3C

Fig. 18. Limitations. When the captured scenes contain regions with two
color channels entirely attenuated, 3C performs poorly to restore the entire
color spectrum.

Berman + 3C

X

3C + Berman
b

Berman et al.

¥ i

Hazy image

Fig. 19. Applying 3C as pre-processing vs. post-processing. Our operator
3C is more effective as a pre-processing than a post-processing operator.

information. While some of the color cast is removed by 3C,
part of the color spectrum is lost and cannot be restored.

Moreover, applying our 3C operator as a pre-processing
step on the captured image is more beneficial in general
than applying it as a post-processing operator (please refer
to Fig. 19).

V. CONCLUSION

We introduced a novel operator (3C) to overcome artifacts
resulting from the wavelength-specific scenes color attenuation
encountered under night-time hazy conditions, in underwater
images, or under artificial illumination. Our operator builds
on the observation that opponent colors average to zero on
large spatial neighborhoods, and has shown high robustness
to enhance challenging scenes in which one color channel has
been highly attenuated. Unlike to color constancy techniques,
our 3C operator, focuses on compensating for the loss of one
particular color channel (e.g., due to a selective illumination
spectrum or strong attenuation of a subset of wavelengths).
The lost color channel information is partly recovered by push-
ing the opponent colors towards a zero local mean. Despite its
simplicity, 3C employed as a pre-processing step, consistently
improves the outcome of conventional restoration processes.
To prove the utility of 3C, we have provided an extensive
qualitative and quantitative evaluation of several challenging
enhancement applications, including color constancy, day-time
and night-time image dehazing, and underwater enhancement.
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