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Fast and Robust Symmetric Image Registration
Based on Distances Combining Intensity

and Spatial Information
Johan Öfverstedt , Joakim Lindblad , Member, IEEE, and Nataša Sladoje , Member, IEEE

Abstract— Intensity-based image registration approaches rely
on similarity measures to guide the search for geometric
correspondences with the high affinity between images. The
properties of the used measures are vital for the robustness
and accuracy of the registration. In this paper, a symmetric,
intensity interpolation-free, affine registration framework based
on a combination of intensity and spatial information is proposed.
The excellent performance of the framework is demonstrated on a
combination of synthetic tests, recovering known transformations
in the presence of noise, and real applications in biomedical
and medical image registration, for both 2D and 3D images.
The method exhibits greater robustness and higher accuracy
than similarity measures in common use, when inserted into
a standard gradient-based registration framework available as
part of the open source Insight Segmentation and Registration
Toolkit. The method is also empirically shown to have a low
computational cost, making it practical for real applications. The
source code is available.

Index Terms— Image registration, set distance, gradient meth-
ods, optimization, cost function, iterative algorithms, fuzzy sets,
magnetic resonance imaging, transmission electron microscopy.

I. INTRODUCTION

IMAGE registration [1]–[4] is the process of establishing
correspondences between images and a reference space,

such that the contents of the images have a high degree of
affinity in the reference space. An example of such corre-
spondence is a mapping of an image (often referred to as
floating image) of a brain to a reference space of another image
(often referred to as reference image) of a brain where their
important structures are well co-localized. There are two main
categories of approaches for image registration: feature-based
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methods extract a set of feature points between which a corre-
spondence is found, whereas intensity-based methods use the
voxel-values directly, and evaluate candidate mappings based
on a similarity measure (affinity). There are also two main
categories of transformation models: linear (which include,
as special cases, rigid, similarity, and affine transformations),
and non-linear (deformable). The combination of differentiable
transformation models and differentiable similarity measures
enables the use of gradient-based local optimization methods.

Medical and biomedical image registration, [4]–[6], is an
important branch of general image registration and a lot
of effort has been invested over the last decades to refine
the tools and techniques [2]. Although a majority of the
recent research has been devoted to non-linear registration
techniques, the most prevalent registration method used in the
clinic is still linear registration. In a number of situations,
the deformations allowed by non-linear registration can be
difficult to evaluate and may affect reliability of diagnosis [2];
hence, physicians may prefer a more constrained rigid or affine
alignment. Considering their wide usage as fundamental tools,
improvement of rigid and affine registration in terms of
performance and reliability is highly relevant in practice.

Feature-based image registration is dependent on the ability
of the feature extraction method to locate distinct points
of interest appearing in both (all) images. Feature-extractors
(e.g. SIFT [7]) typically presuppose the existence and rele-
vance of specific local characteristics such as edges, corners
and other salient features; if no, or too few, such distinct
points are found, the registration will fail. This is often
the case in medical and biomedical applications [8], [9],
where intensity-based registration, therefore, tends to be the
method of choice. Figure 1 shows an illustrative example of
a biomedical application where a feature-based method fails,
whereas an intensity-based method can be successful.

Intensity-based registration is, in general, formulated as a
non-convex optimization problem. The similarity measures
commonly used as optimization criteria typically exhibit a
high number of local optima [10], [11]; a count which tends
to rapidly increase under noisy conditions. A small region
of attraction of a global optimum imposes that the starting
position has to be set very close to the optimal solution for it
to be found by an optimizer. This leads to reliability challenges
for automated solutions.

In this study we develop a registration framework based on
a family of symmetric distance measures, proposed in [11],
which combine intensity and spatial information in a single
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Fig. 1. Illustrative example of a biomedical registration task where a widely used feature-based (FB) method (SIFT, as implemented in FIJI-plugin Linear
Stack Alignment1) fails, while the proposed intensity-based (IB) method (Sec. V-F.1) performs well. Green points in (a) and (b) are incorrectly detected as
having a match, and red points do not have a match. The feature-extractor fails to detect points corresponding to the relevant structures (one approximately
correct match, indicated with arrows, can be found manually), and both the central rings and the outer rings are misaligned. (a) Reference Image. (b) Floating
Image. (c) FB Rigid (Fail). (d) FB Affine (Fail). (e) IB, Rigid+Affine.

measure. These measures have been shown to be characterized
by smooth distance surfaces with significantly fewer local
minima than the commonly used intensity-based measures,
when studied in the context of template matching and object
recognition. In this work we demonstrate that slightly modified
versions of these distance measures can be successfully used
for fast and robust affine image registration. By differentiating
the distance measure we are able to use efficient gradient-
based optimization. The proposed method outperforms the
commonly used similarity measures in both synthetic and real
scenarios of medical and biomedical registration tasks, which
we confirm by (i) landmark-based evaluation on transmission
electron microscopy (TEM) images of cilia [12], with the
aim of improving multi-image super-resolution reconstruction,
as well as (ii) evaluation on the task of atlas-based segmen-
tation of magnetic resonance (MR) images of brain, on the
LPBA40-dataset [13].

Intensity interpolation is typically a required tool in the con-
text of intensity-based registration performed with commonly
used similarity measures since the sought transformation (and
intermediate candidates) is likely to map points to regions
outside of the regular grid. Treating the reference and floating
images differently in terms of the interpolation introduces
a significant source of asymmetry [14] and may lead to
success or failure of a registration task depending on which
image is selected as reference and which is floating. Our
proposed approach requires no off-grid intensity values, and
is interpolation-free in terms of intensities; empirical tests
confirm that it is highly symmetric in practice.

Noting that intensity-based image registration can be com-
putationally demanding, we also include a study of execution
time of (i) isolated distance and gradient computations through
micro-benchmarks, and (ii) entire image registration tasks.
We observe that the proposed measure is fast to compute
in comparison with the implementations of the measures
existing in the ITK-framework [14]. The proposed registra-
tion framework is implemented in C++/ITK, as well as in
Python/NumPy/SciPy, and its source code is available.2

II. PRELIMINARIES AND PREVIOUS WORK

A. Images as Fuzzy Sets

First we recall a few basic concepts related to fuzzy
sets [15], a theoretical framework where gray-scale images
are conveniently represented.

1imagej.net/Linear_Stack_Alignment_with_SIFT
2Source code available from www.github.com/MIDA-group

A fuzzy set S on a reference set XS is a set of ordered
pairs, S = {(x, μS (x)) : x ∈ XS }, where μS : XS → [0, 1] is
the membership function of S . Where there is no risk for
confusion, we equate the set and its membership function and
let S(x) be equivalent to μS (x).

A gray-scale image can directly be interpreted as a spatial
fuzzy set by rescaling the valid intensity range to [0, 1].
We assume, w.l.o.g., that the images to be registered have an
intensity range [0, 1] and we directly interpret them as fuzzy
sets defined on a reference set which is the image domain, and
is in most cases a subset of Zn . We use the terms image and
fuzzy set interchangeably in this text.

A crisp set C ⊆ XC (a binary image) is a special case
of a fuzzy set, with its characteristic function as membership
function

μC(x) =
�

1, for x ∈ C
0, for x /∈ C .

(1)

The height of a fuzzy set S ⊆ XS is h(S) = max
x∈XS

μS(x). The

complement S of a fuzzy set S is S = {(x, 1 − μS (x)) : x ∈
XS }. An α-cut of a fuzzy set S is a crisp set defined as
αS = {x ∈ XS : μS (x) ≥ α}, i.e., a thresholded image.

Let p be an element of the reference set XS . A fuzzy point
p (also called a fuzzy singleton) defined at p ∈ XS with
height h(p), is defined by a membership function

μp(x) =
�

h(p), for x = p
0, for x �= p .

(2)

B. Intensity-Based Registration and Point-Wise Distances

Intensity-based registration is a general approach to image
registration defined as a minimization process, where a dis-
tance measure between the intensities of overlapping points
(or regions) is used as optimization criterion. Given a distance
measure d and a set of valid transformations �, intensity-based
registration of two images A (floating) and B (reference) can
be formulated as the optimization problem,

T̂ = arg min
T ∈�

d(T (A), B), (3)

where T (A) denotes a valid transform of image A into the
reference space of image B .

Intensity-based similarity/distance measures which are most
commonly used for image registration are Sum of Squared
Differences (SSD) [16], Pearson Correlation Coefficient (PCC)
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and Mutual Information (MI) [17]. These measures are point-
based, i.e. they are functions of the intensities of points
belonging to the overlapping regions of the two compared sets.
Their evaluation, therefore, typically requires interpolation of
image intensities.

For two images P and Q defined on a common reference
set X P,Q of overlapping points, these measures are defined as

SSD(P, Q) =
�

v∈X P,Q

(P(v) − Q(v))2, (4)

PCC(P, Q) =

�
v∈X P,Q

(P(v) − avg(P))(Q(v) − avg(Q))

� �
v∈X P,Q

(P(v)−avg(P))2
� �

v∈X P,Q

(Q(v)−avg(Q))2

(5)

and

MI(P, Q) = HP + HQ − HP,Q. (6)

In (5) avg(P), and avg(Q) denote means of the resp. intensity
distributions over the evaluated region. In (6) the (joint and
marginal) entropies HP , HQ and HP,Q of the image intensity
distributions P and Q are defined in terms of the estimated
probability p of a randomly selected point v having intensities
P(v), Q(v), as

HP = −
�

v∈X P,Q

p(P(v)) log(p(P(v))) , (7)

and

HP,Q = −
�

v∈X P,Q

p(P(v), Q(v)) log(p(P(v), Q(v))) . (8)

Intensity-based registration, as formulated in (3), is, in gen-
eral, a non-convex optimization problem with a large number
of local optima, especially for the commonly used point-
based measures (SSD, PCC, and MI). To try to overcome
this optimization challenge, a resolution-pyramid-scheme is
normally used [18], [19], where smoothed low resolution
images are first registered, followed by registration of images
with increasing resolution and decreasing degree of smoothing,
using the transform obtained from the previous stage as
starting position (so-called coarse-to-fine approach).

C. Distances Combining Intensity and Spatial Information

While the distances of Sec. II-B only rely on intensities
of overlapping points, the distances presented in this section
incorporate also spatial information of non-overlapping points.
For such spatial relations, we consider distances between two
points, between a point and a set, and between two sets. The
most commonly used point-to-point distance is the Euclidean
distance, denoted dE .

Given a point-to-point distance d(a, b), the common crisp
point-to-set distance between a point a and a set B is

d(a, B) = inf
b∈B

d(a, b) . (9)

Closely related to the crisp point-to-set distance is the (exter-
nal) distance transform of a crisp set B ⊆ X B (with point-to-
point distance d) which is defined as

DT[B](x) = min
y∈B

{d(x, y)} . (10)

Taking into the consideration the intensity, or equivalently,
the height of a fuzzy point, the fuzzy point-to-set inwards
distance dα, based on integration over α-cuts [11], between a
fuzzy point p and a fuzzy set S , is defined as

dα(p, S) =
� h(p)

0
d(p, αS) dα , (11)

where d is a point-to-set distance defined on crisp sets. The
complement distance [20] of a fuzzy point-to-set distance d is

d(p, S) = d(p, S) . (12)

The fuzzy point-to-set bidirectional distance d̄α is

d̄α(p, S) = dα(p, S) + dα(p, S) . (13)

For an arbitrary point-to-set distance d , Sum of Minimal
Distances (SMD) [21] defines a set-to-set distance as

dSMD(A, B) = 1

2

� �
a∈A

d(a, B) +
�
b∈B

d(b, A)
�

. (14)

A weighted version can be defined [11], which may be
useful if a priori information about relative importance of
contributions of different points to the overall distance is
available:

dwSMD(A, B; wA, wB)

= 1

2

� �
a∈A

wA(a)d(a, B) +
�
b∈B

wB(b)d(b, A)
�

. (15)

Inserting distances (11) or (13) in (14) or (15) provides
extensions of the SMD family of distances to fuzzy sets [11].
We refer to them as dα

SMD, d̄α
SMD, dα

wSMD and d̄α
wSMD.

It has been observed for fuzzy set distances [22] in general,
and for distances based on (11) and (13) in particular, that dis-
tances between sets with empty α-cuts may give infinite or ill-
defined distances. We follow a previous study and introduce
a parameter dMAX ∈ R≥0, [23], to limit the underlying crisp
point-to-set distance. This has a double benefit of (i) reducing
the effect of outliers and (ii) making the distances well defined
also for images with empty α-cuts.

Distances based on Optimal Mass Transport (OMT), such
as the Wasserstein distance, also combine intensity and spatial
information, and are widely studied and used in image process-
ing [24]. The OMT can be framed as a linear programming
optimization problem, which is solvable in O(N3) [25]. This
is intractable for most realistic image processing scenarios,
and approximations are typically considered [25], [26]. It is
possible to incorporate these distances in image registration
frameworks, but to the best of our knowledge, this has only
been done for non-linear (deformable) registration, and has
been shown to be very computationally demanding [27], [28].
We performed a preliminary study of OMT-based meth-
ods using the formulation in [26], and observed both very
high computational demands and noisy distance landscapes.
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In absence of a complete registration framework for linear
registration based on OMT, this family of measures is excluded
from the empirical part of this study.

D. Transformations, Interpolation, and Symmetry

Linear transformations relate points in one space to another
via application of a linear function. A transformation is rigid
if only rotations and translations are permitted, and affine if
shearing and reflections are also permitted. Affine transforma-
tion T : Rn → Rn can be expressed as matrix multiplication,

T x =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n t1
a21 a22 . . . a2n t2
...

...
. . .

...
...

an1 an2 . . . ann tn
0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

xn

1

⎤
⎥⎥⎥⎥⎥⎦
. (16)

Linear transformations can, in general, transform points
sampled on an image grid to positions outside of the grid,
hence an interpolator is required for obtaining the image
intensity at the transformed point’s location. Interpolation is a
large source of error, bias, and a significant contributing factor
of asymmetry in intensity-based registration [14]. Commonly,
interpolation is only required for one of the two images,
where sampling (for optimization) is done from the grid of
the other image space; hence, the two images are treated
asymmetrically, yielding distinct similarity surfaces (over the
transformation parameters) depending on which image is
taken as reference. This can cause a registration task to
succeed or fail, depending on the registration direction.

E. Optimization

Registration with a differentiable distance measure as objec-
tive function enables the use of gradient-based optimization
algorithms, which typically are significantly more efficient
than derivative-free algorithms for local iterative optimization.
An effective and commonly used subset of gradient-based
algorithms are the stochastic gradient descent methods [29],
which consider a random subset of the points in each optimiza-
tion iteration, incurring a two-fold benefit: utilizing random-
ness to escape shallow local optima in the implicit distance
surface, while also decreasing the computational work required
per iteration. The size of the random subset is usually given
as a fraction of the total number of points, and denoted as
the sampling fraction. Approximation of the cost function
by random subset sampling (where a new random subset of
points is chosen in every iteration) has been, in previous
studies, [17], [30], shown to perform well for intensity-based
registration.

III. PROPOSED IMAGE REGISTRATION FRAMEWORK

A. Distances

To extend the family of distance measures given by (15),
to be suitable for registration, optionally with random subsam-
pling optimization methods [30], we here define a new related
family of distance measures.

Definition 1 (Asymmetric Average Minimal Distance):
Given fuzzy set A on a reference set XA ⊂ Rn, fuzzy

set B on reference set XB ⊂ Rn, and a weight function
wA : XA → R≥0, the Asymmetric average minimal distance
from A to B , is

d−→AMD(A, B; wA) = 1�
x∈XA

wA(x)

�
x∈XA

wA(x)d(A(x), B) .

(17)

We consider point-to-set distances defined by (11) or (13).
Building on the asymmetric distance, we formulate a sym-

metric distance as follows:
Definition 2 (Average Minimal Distance): Given fuzzy set

A on reference set XA ⊂ Rn, fuzzy set B on reference set
XB ⊂ Rn, weight functions wA : XA → R≥0 and wB : XB →
R≥0, the Average minimal distance between A and B , is

dAMD(A, B; wA, wB)

= 1

2

�
d−→AMD(A, B; wA) + d−→AMD(B, A; wB)

�
. (18)

In the context of image registration, we utilize d−→AMD

to express a (weighted) distance between transformed fuzzy
points T (A(x)), and the image B , where the transformation
of a fuzzy point A(x) = {(x, μA(x))} is given by the
transformation of the reference point x :

T (A(x)) = {(T (x), μA(x))} . (19)

To reflect the bounded image domain, only the transformed
points falling on a predefined region MB ⊂ Rn are considered.
Note that, when A and B are digital images, XA and XB are
typically subsets of Zn and the transformed points T (x)|x∈XA
do not necessarily coincide with the points of the reference
set XB ; an illustrative example is given in Fig. 2.

We, therefore, provide the following definitions suited for
the task of image registration:

Definition 3 (Asymmetric Average Minimal Distance for
Image Registration): Given fuzzy set A on reference set XA ⊂
Rn, fuzzy set B on XB ⊂ Rn, a weight function wA : XA →
R≥0, and a crisp subset (mask) MB ⊂ Rn, the Asymmetric
average minimal distance for image registration from A to B ,
parameterized by a transformation T : XA → Rn, is

d−→
R
AMD(A, B; T, wA, MB )

= 1�
x∈X̂

wA(x)

�
x∈X̂

wA(x)d(T (A(x)), B) (20)

where X̂ = {x : x ∈ XA ∧ T (x) ∈ MB}.
Definition 4 (Average Minimal Distance for Image Regis-

tration): Given fuzzy set A on reference set XA , fuzzy set B
on XB , weight functions wA : XA → R≥0 and wB : XB →
R≥0, and crisp subsets (masks) MA, MB ⊂ Rn, the Average
minimal distance for image registration between A and B ,
parameterized by an invertible transformation T : Rn → Rn,
with inverse T −1, is defined as

d R
AMD(A, B; T, wA, wB , MA, MB )

= 1

2

�
d−→

R
AMD(A, B; T, wA, MB )

+ d−→
R
AMD(B, A; T −1, wB , MA)

�
. (21)
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Fig. 2. Illustration of the Asymmetric average minimal distance for image
registration. (a) Source set A (radius represents associated weight; gray-level
represents membership). (b) Target set B with associated mask MB . (c) The
transformed (by rotation and translation) A on top of B . (d) Illustration of
the contributions to the point-to-set distance d̄α by the central point of A .
Thickness of lines show the α-integrated height contributed by each point
in B . (e-f) The inwards and complement parts of d̄α visualized as 1D graphs,
where the x-axis is the Euclidean distance (in 2D) from the mid-point and
the points at the left and right side (of the origin) respectively are the points
on the left and right side of the mid-point T (A(x)) in (d).

The distance d R
AMD is based on full sampling, taking into

account all points in the two sets which have non-zero weights,
as long as they are transformed to points inside the mask
associated with the other set. To reduce the computational cost
of the distance and, in addition, to enable random iterative
sampling, we propose an approximate version of d R

AMD:
Definition 5 (Subsampled Average Minimal Distance for

Image Registration): Given fuzzy set A on reference set XA ,
fuzzy set B on XB , weight functions wA : XA → R≥0 and
wB : B → R≥0, and crisp subsets (masks) MA, MB ⊂ Rn,
the Subsampled average minimal distance for image regis-
tration between A and B , parameterized by an invertible
transformation T : Rn → Rn, with inverse T −1, and crisp
sets PA ⊆ XA and PB ⊆ XB , is defined as

d̃ R
AMD(A, B; PA, PB , T, wA, wB , MA, MB )

= 1

2

�
d−→

R
AMD(A ∩ PA, B; T, wA, MB )

+ d−→
R
AMD(B ∩ PB , A; T −1, wB , MA)

�
. (22)

Inserting (11) or (13) as point-to-set distance in (20), and
hence indirectly in (21) and (22), provides extensions of

this family of distances to the α-cut-based distances, which
we denote d−→

R
αAMD, d̄−→

R
αAMD, d R

αAMD, d̄ R
αAMD, d̃ R

αAMD and

d̃̄ R
αAMD.
Normalization of the weights of the sampled points, intro-

duced through Def. 1, renders the magnitude of the distance
(and subsequently its derivatives) invariant to the size and
aggregated weight of the sets or of the sampled subsets.
Since the normalization is done separately from A to B
and from B to A , both directions are weighted equally even
if the total weights of the point subsets from the two sets
are different. This normalization can simplify the process of
choosing e.g. step-length of various optimization methods, and
makes it more likely that default hyper-parameter values can
be found and reused across different applications.

B. Registration

We propose to utilize symmetric distances d̄αAMD and
d̃̄αAMD as cost functions in (3) to define concrete image
registration methods. Inserting d̄ R

αAMD into (3) we obtain

T̂ = arg min
T ∈�

d̄ R
αAMD(A, B; T, wA, wB , MA, MB ) . (23)

For the case of subset sampling with sets PA and PB ,
registration is defined as

T̂ = arg min
T ∈�

d̃̄ R
αAMD(A, B; PA, PB , T, wA, wB, MA, MB ).

(24)

By selection of new random subsets PA and PB in each itera-
tion, various stochastic gradient descent optimization methods
can be realized.

To solve the optimization problems stated in (23) and (24)
with efficient gradient-based optimization methods, the par-
tial derivatives of the distance measures with respect to the
transformation parameters of T are required.

C. Gradients

The derivative of (9), the crisp point-to-set distance measure
d(T (x), S) (in n-dimensional space), with respect to parame-
ters Ti of the transformation T applied to a point x ∈ X ,
yielding y = T (x), can be written as

∂d

∂Ti
=

n�
j=1

∂d

∂y j

∂y j

∂Ti
. (25)

The values ∂d
∂y j

are the components (partial derivatives) of the
gradient ∇d(y, S) of the point-to-set distance in point y ∈
Y ⊂ Rn , and are not dependent on the transformation model.

The gradient of the fuzzy point-to-set distance measure (11)
is given by the integral over α-cuts, of gradients of the (crisp)
point-to-set distances:

∇d(x , S) =
� h(x )

0
∇d(x, αS) dα . (26)

D. Algorithms for Digital Images on Rectangular Grids

The distances and gradients can be computed efficiently
for the special case of digital images on rectangular grids.
For images quantized to � ∈ N>0 non-zero discrete α-levels
the integrals in (11) and (26) are suitably replaced by sums.
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Algorithm 1 Distance and Gradient Maps

The number of quantization levels is typically taken to be a
small constant; a choice of � = 7 non-zero equally spaced
α-levels has previously shown to provide a good trade-off
between performance, speed and noise-sensitivity [11], and
we keep it for all experiments.

We need a discrete operator to approximate the gradient of
d(x, S) for a set S defined on a rectangular grid with spacing
s ∈ Rn

>0. We propose to use the following difference operator
providing a discrete approximation of ∇d(x, S) :

�d(x) = γx(δ1[d](x), . . . , δn[d](x)) , (27)

where

δi [d](x) = 1
2si

(d(x + si ui , S) − d(x − si ui , S)) , (28)

γx is an indicator function,

γx =
�

1, for d(x, S) �= 0
0, for d(x, S) = 0 ,

(29)

and ui is the unit-vector along the i -th dimension.
The indicator function γx causes the operator �[S](x) to be

zero-valued for points included in S (i.e., where the distance
transform is zero-valued). This prevents discretization issues
along set boundaries, where the standard central difference
operator yields non-zero gradients, which can cause the mea-
sure to overshoot a potential voxel-perfect overlap.

By creating tables for the distance and gradient sums for
each image as a pre-processing step, using either of the proce-
dures in Alg. 1 (�αDT for inwards distances and �αDT_BD

Algorithm 2 Point-to-Set Distance and its Gradient w.r.t. T

for bidirectional distances), the distance and gradient may then
be readily computed with Alg. 2. |T | denotes the number
of parameters of the transformation, which is 6 for two-
dimensional (2D) affine transformations, and 12 for three-
dimensional (3D) affine transformations.

The procedures in Alg. 1 have linear run-time complexity
O((� + 1) |XA |), achieved by using a linear-time algorithm
for computing the distance transform (see [31]) in line 4
of Alg. 1. The space complexity of the algorithm is O((� +
1) |XA |) and the D, G structures must remain in memory to
enable fast lookup in Alg. 2. Figure 3 shows an example of
the distance and gradient of a sample α-level. Alg. 2 computes
the point-to-set distance and gradient w.r.t. the transformation
using the pre-computed tables and has run-time complexity
O(|T | n) thus being independent of � and the size of A and B .

Algorithm 3 performs a complete registration given two
images, their binary masks, weight functions, and an ini-
tial transformation. Algorithm 3 completes N full iterations,
however other termination criteria may be beneficial (see
Sec. IV). The registration consists of pre-processing, followed
by a loop where the symmetric set distance and derivatives
are computed and T is updated. �T −1

�T , in line 6 of Alg. 3

denotes a matrix
� ∂T −1

j
∂Ti

�
of partial derivatives of the parameters

of the inverse transform T −1 w.r.t. the parameters of the
forward transform T . This matrix relates the computed partial
derivatives �d2

�T −1 with the parameterization of the forward
transform.

The overall run-time complexity is O(N |T | n(|XA | +
|XB |) + (� + 1)(|XA | + |XB |)). Practical choices for N
tend to be in the range [1000, 3000], depending on hyper-
parameters (e.g. λ), and distance in parameter-space between
starting position and the global optimum. The evaluation in
Sec. V confirms empirically that convergence, according to
(31) or (32), tends to be reached after 1000 to 3000 iterations,
using an optimizer with a decaying λ.

The QUANTIZE procedure in Alg. 2 takes the membership
of point v, μA(v), and gives the index i of the minimal
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Fig. 3. (a) Example α-cut in a small 2D image. (b) Binary mask. (c) α-cut
after masking. (d) (Euclidean) Distance transform (for (c)). (e-f) Gradient
approximation of the distance transform �DT.

Algorithm 3 Symmetric Registration

α-level (α1, …, α�) for which μA (v) ≥ αi . If the membership
is below all α-levels, the index is 0. For � equally spaced
α-levels, the quantization can be expressed as

QUANTIZE(μA (v)) = ��μA(v) + 0.5�. (30)

The INTERPOLATE procedure in Alg. 2 computes the
value of the discrete functions D and G in point v̂ which
may not be on the grid due to application of T . There are

many interpolation schemes proposed in the literature, but
we suggest that either nearest neighbor (for maximal speed)
or linear interpolation (for higher accuracy) are used here,
since the distance and gradient fields are smooth. By linearity
of integration and summation, nearest neighbor and linear
interpolation may be performed on the pre-processed D and G
and yield the same result as if each level was interpolated
before integration, allowing efficient computation. The (dis-
cretized) measure does not require intensity interpolation; the
interpolation operates on distances and gradients only.

IV. IMPLEMENTATION

We implemented the proposed distance measure and regis-
tration method in the open-source Insight Segmentation and
Registration Toolkit (ITK) [14]. We chose this particular
software framework because it

• enables the use of an existing optimization framework,
• allows for a fair comparison against well written, tested,

and widely used implementations of reference similarity
measures, with support for resolution-pyramids,

• supports anisotropic/scaled voxels in relevant algorithms,
• facilitates reproducible evaluation,
• makes the proposed measure easily accessible for others.

The built-in ITK optimizer we have used for the registration
tools and all the evaluation is RegularStepGradientDescen-
tOptimizerv4. This is an optimizer based on gradient descent,
with an initial step-length λ, and a relaxation factor which
reduces the used step-length gradually as the direction of the
gradient changes, in order to enable convergence with high
accuracy. In addition to a maximum number of iterations N ,
two termination criteria are used: (i) a gradient magnitude
threshold (GMT),�

∂d
∂T1

2 + . . . + ∂d
∂T|T |

2
< GMT, (31)

and (ii) a minimum step-length (MSL),

λr < MSL, (32)

where r is the current relaxation coefficient. We use default
values of 0.0001 for both of these criteria. A relaxation factor
of 0.99 is used for all experiments, since it performed well
in preliminary tests; in this study we are willing to trade
some (potential) additional iterations for better robustness.
To maximize utilization of the limited number of α-levels,
images are normalized before registration to make sure that
they are within the valid [0, 1] interval. We use the following
robust normalization technique: Let Pρ(X) denote the ρ-th
percentile of image X with respect to image intensities,

NORMρ(X) = max
�
0, min

�
1,

(X − Pρ(X))

P1−ρ(X) − Pρ(X)

��
. (33)

V. PERFORMANCE ANALYSIS

We evaluate performance of the proposed method, both
for 2D and 3D images, in two different scenarios; (i) we
perform a statistical study on synthetically generated images,
where we seek to recover known transformations and measure
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the registration error by comparing the ground truth loca-
tions of known landmarks with the corresponding registered
ones; (ii) we apply the proposed framework to real image
analysis tasks: landmark-based evaluation of registration of
TEM images in 2D, and atlas-based segmentation evaluation
of 3D MR images of brain.

To compare the proposed measure and registration method
against the most commonly used alternative methods and
similarity measures, we select the widely used ITK imple-
mentations of optimization framework and similarity mea-
sures (SSD, PCC and MI) as the baseline of intensity-based
registration accuracy. Note that the PCC measure is denoted
Normalized Cross Correlation (NCC) in the ITK framework.

All experiments are performed on a workstation with a
6-core Intel i7-6800K, 3.4GHz processor with 48GB of RAM
and 15MB cache. The operating system used is Ubuntu
16.04 LTS. The compiler used to build the framework is g++
version 5.4.0 (20160609). Version 4.9 of the ITK-framework
is used for testing and evaluation.

A. Datasets

One biomedical 2D dataset and one medical 3D dataset are
used for the evaluation.

1) TEM Images of Cilia (2D): The dataset of 20 images of
cilia [12] is acquired with the MiniTEM3 imaging system.
Each image is isotropic of size 129 × 129 pixels, with a
pixel-size of a few nm. An example is shown in Fig. 1.
A particular challenge is the near-rotational symmetry of the
object: 9 pairs of rings are located around a central pair
of rings, which gives 9 plausible solutions for a registration
problem. The alignment of the central pair can be taken into
special consideration to reduce the number of solutions to two.
The dataset comes with a set of 20 landmarks per image,
indicating the position of each of the relevant structures to
be detected and analysed – 20 rings (2 in the center and 18
in a circle around the center). The landmarks are produced
by a domain expert and are only used for evaluation of the
registrations.

2) LPBA40 (3D): LPBA40 [13] is a publicly available
dataset of 40 3D images of brains of a diverse set of healthy
individuals, acquired with MRI. The images are anisotropic,
of size 256 × 124 × 256 voxels with voxel-size 0.86 ×
1.5 × 0.86 mm3. The dataset comes with segmentations of the
brains into 56 distinct regions marked by a medical expert,
which are used in this study as ground-truth for evaluation.
LPBA40 includes two atlases: first 20 out of 40 MR images
of brain in the dataset are used to generate one brain atlas
by Symmetric Groupwise Normalization (SyGN) [32]; another
atlas is created analogously, from the last 20 brains in the
dataset. The atlases contain both a synthesized MR image and
the fused label category in all the voxels, as well as a whole
brain mask which may be used for brain extraction.

B. Evaluation Criteria

We evaluate accuracy and robustness of the registration
methods in presence of noise, their robustness w.r.t. change

3MiniTEM imaging system is developed by Vironova AB.

of roles of reference and floating image (symmetry), and
their speed. We quantify the performance of the observed
frameworks in terms of the following quality measures:

1) Average Error Measure (AE): The registration result is
quantified as the mean Euclidean distance between the sets
of corresponding image corner landmarks LR and T (LF)
in the reference image space, after transformation of the
floating image corner landmarks LF, where |LR| is the number
of landmarks (4 in 2D; 8 in 3D). The quality measure is
defined as

AE(T ; LR, LF) = 1

|LR|
|LR|�
i=1

dE (LR(i), T (LF(i))). (34)

A slight variation of this measure, the Average Minimal
Error (AME), is used in the real task of cilia registration:

AME(T ; LR, LF) = 1

|LR|
|LR|�
i=1

min
x∈LF

dE (L R(i), T (x)) . (35)

For the central pair, the error is simply AMECP = AME,
whereas for the outer rings we utilize the knowledge that an
odd (even) landmark should be matched with an odd (even)
landmark of the other image. The error function for the outer
rings, [12], is therefore defined as:

AMEOuter(T ; LOdd
R , LOdd

F , LEven
R , LEven

F )

= 1
2 (AME(T ; LOdd

R , LOdd
F )+AME(T ; LEven

R , LEven
F )) . (36)

2) Success Rate (SR): A registration is considered success-
ful if its AE is below one voxel(pixel). Success rate (SR)
at a given AE value corresponds to the ratio of successful
registrations (w.r.t. the set of performed ones).

3) Symmetric Success Rate (SymSR): is defined as the ratio
of performed registrations which are successful (i.e., AE ≤ 1)
in both directions, i.e., when the roles of reference and floating
image are exchanged.

4) Inverse Consistency Error (ICE) [33]: Given a set of
interest X A ⊆ A, the transformations TAB : A → B , and
TBA : B → A, the ICE of this pair of transformations is

ICE(TAB, TBA; X A) = 1

|X A|
�

x∈X A

dE (TBA(TAB(x)), x). (37)

We compute ICE considering all the points of the reference
image for each of the cases where Symmetric Success is
observed (AE ≤ 1 in both directions).

5) Jaccard Index for Segmentation Evaluation: For two
binary sets, R1 and R2, the Jaccard Index is defined as

J (R1, R2) = |(R1 ∩ R2)|
|(R1 ∪ R2)| . (38)

6) Execution Time: We evaluate (i) the execution times
required for one iteration in the registration procedure,
i.e., times needed to compute the distance (similarity) measure
and its derivatives, with full sampling, and in full image
resolution, between two distinct images from the same set,
as well as (ii) the execution time for complete registrations.
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C. Parameter Tuning

The distance measure and optimization method have a num-
ber of parameters which must be properly chosen. Synthetic
tests indicated that the following values lead to good optimiza-
tion performance: three pyramid levels with downsampling
factors (4, 2, 1) and Gaussian smoothing σ = (5.0, 3.0, 0.0),
max 3000 iterations per level and an initial step-length λ =
0.5. The number of α-levels used is � = 7, which has shown
to provide a reasonable trade-off between computational costs,
sensitivity to significant variations in intensity and robustness
to noise [11]. The optimal value for � is application-dependent;
in essentially all observed cases, � > 1 (non-crisp) outperforms
a crisp (binarized) representation. Normalization percentile
is normally 5%. This same parameter setting, if not stated
differently, is used in all the tests, on both synthetic and real
data.

D. Synthetic Tests

A synthetic evaluation framework is used to evaluate the
performance of the proposed method, and to compare it
with standard tools based on SSD, PCC, and MI, in a con-
trolled environment. For this evaluation, we construct sets of
transformed versions of a reference image and add (a new
instance of) Gaussian noise to each generated image. The
transformations are selected at random from a multivariate
uniform distribution of rotations measured in degrees (1 angle
for 2D images and 3 Euler angles for 3D images) and
translations measured in fractions of the original image size.

1) 2D TEM Images of Cilia: Three sets of transformed
images are built based on image Nr. 1 in the observed dataset,
by applying on it the following three groups of transforma-
tions: Small, containing compositions of translations of up
to 10% of image size (in any direction) and rotations by up
to 10◦; Medium, containing compositions of translations and
rotations such that at least one of the parameters exceeds
the range of Small, and falls within 10 − 20% of image
size of translation (in at least one direction), or 10 − 20◦ of
rotation; and Large, containing compositions of translations
and rotations such that at least one of the parameters exceeds
the range of Medium, and falls within 20 − 30% of image
size of translation (in at least one direction), or 20 − 30◦ of
rotation. The transformed images are also corrupted by addi-
tive Gaussian noise, from N (0, 0.12) (σ =0.1, corresponding
to a PSNR ≈ 20 dB). Each group of transformations is applied
1000 times, and the resulting images are registered to image
Nr. 1, each time corrupted by a new instance of Gaussian
noise.

To evaluate symmetry, we performed 1000 registrations
of images transformed by randomly selected translations of
up to 30% of image size, and rotations by up to 30◦, and
corrupted by additive noise from N (0, 0.12). Each of the
registrations were performed twice, with exchanged roles of
reference image and floating image.

Intensity-based registration with gradient-descent optimiza-
tion can be computationally demanding, requiring the distance
function and its derivative for each iteration of the optimization
procedure. The time to compute the distance and derivatives

is directly proportional to the number of sampled points.
We, therefore, evaluate influence of the sampling fraction
on registration success, observing registrations after Small
transformations and added noise (with σ = 0.1), over a range
of sampling fractions. For each evaluated sampling fraction,
1000 registrations are performed and SR and AE are computed
for successful registrations (AE ≤ 1). No resolution pyramids
are used for these tests.

2) 3D MR Images of Brain: Three sets of transformed
images are built based on image Nr. 1 in the observed dataset,
by applying to it the following three groups of transformations:
Small, containing compositions of translations of up to 10%
of image size (in any direction) and rotations by up to
10◦ (around each of the rotation axes); Medium, containing
compositions of translations and rotations such that at least
one of the parameters exceeds the range of Small, and falls
within 10 − 15% of image size of translation (in at least one
direction), or 10−15◦ of rotation (around at least one rotation
axes); and Large, containing compositions of translations and
rotations such that at least one of the parameters exceeds the
range of Medium, and falls within 15 − 20% of image size of
translation (in at least one direction), or 15 − 20◦ of rotation
(around at least one rotation axes). The transformed images are
also corrupted by additive Gaussian noise, from N (0, 0.12).
Each group of transformations is applied 200 times, and the
resulting images are registered to image Nr. 1, each time
corrupted by a new instance of Gaussian noise.

E. Results of Synthetic Tests

1) 2D TEM Images of Cilia: Figure 4 shows the distrib-
utions of registration errors (AE), for the three transforma-
tion classes. Superiority of the proposed measure, and the
corresponding registration framework, is particularly clear for
Medium and Large transformations; it reaches a 100% success
rate, with subpixel accuracy, whereas the competitors not only
exhibit considerably lower accuracy, but also much lower
success rate, i.e., they completely fail in a large number of
cases.

Overall registration performance is summarized in Table I,
for complete sampling (a), and for random sampling of 10%
of the points (b). The proposed method has 100% success rate
and also 100% symmetric success rate. The other observed
measures exhibit much lower success rate and poor symmetry
scores; the second best, SSD, succeeds in 54% of the cases,
and succeeds symmetrically in only 31% of the cases. The
registration error for successful registrations is considerably
smaller for the proposed method, while the execution time is
considerably lower. The reduced sampling fraction in (b) has
a small impact on the proposed method while substantially
degrading the performance of the other measures.

Figure 5 shows registration performance for varying sam-
pling fractions; Small transformations, in presence of noise
(σ = 0.1) are considered. We observe that the registration
performance flattens and stabilizes at approximately 0.01 sam-
pling fraction (1% of the points). We conclude that previous
findings of [17] and [30], suggesting that random subsampling
provides good performance even with very small sampling
fractions, apply well for the proposed measure.
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Fig. 4. Registration error for 2D TEM images of cilia with Gaussian noise of σ = 0.1 added, for three observed transformation classes. (a-d) Examples of
reference-floating image pair with corresponding masks. (e-g) Cumulative histograms of the fraction of registrations with registration error AE below a given
value (left and up is better). The red vertical line shows the chosen threshold for success, AE ≤ 1. (a) Reference image. (b) Reference mask. (c) Floating
image. (d) Floating mask. (e) Small transformations. (f) Medium transformations. (g) Large transformations.

TABLE I

REGISTRATION OF SYNTHETIC 2D IMAGES OF CILIA. THE TABLES SHOW

SUCCESS RATE (SR), AVERAGE ERROR (AE) OF SUCCESSFUL

REGISTRATIONS, SYMMETRIC SUCCESS RATE (SYMSR), AVERAGE
INVERSE CONSISTENCY ERROR (ICE) AND AVERAGE RUNTIME

FOR THE REGISTRATION WITH COMPLETE SAMPLING (A)
AND WITH RANDOM SUBSAMPLING (B). SUCCESSFUL

REGISTRATIONS ( AE ≤ 1) OF TRANSFORMATIONS
UP TO (AND INCLUDING) LARGE,

ARE CONSIDERED

2) 3D MR Images of Brain: Figure 6 shows the observed
distributions of registration errors (AE) for the three trans-
formation classes, and clearly confirms that the proposed
method is robust and with high performance, even for larger
transformations, while the magnitude of the transformation has
a substantial negative effect on the performance of the other
observed measures.

Figure 7 presents bar plots corresponding to the performed
synthetic tests on the LPBA40-dataset, consisting of 200
registrations of images after up to (and including) Large
transformations (with additive Gaussian noise, N (0, 0.12)).

Fig. 5. (Left/Blue) SR for registrations of cilia images, and (Right/Red)
AE of the successful registrations, as functions of sampling fraction for
the proposed method. Both measures improve (almost) monotonically with
sampling fraction and flatten out after approximately 0.01.

Successful registrations (AE ≤ 1) are observed. Here as well,
the proposed method delivers 100% success rate, whereas the
second best, SSD, succeeds in only 33% of the cases. The
registration error for successful registrations is the smallest
for the proposed method. We observe a relative increase in
execution time of the proposed registration framework in
3D case, where it is slightly slower than the other measures.

3) Execution Time Analysis: The number of iterations
required for convergence of the optimization (registration)
typically range from 1000 to 3000. Measures SSD, PCC and
MI use cubic spline interpolation. Lookups from the distance
maps for d̄ R

αAMD are done using linear interpolation. Table II
shows the mean (and standard deviation) execution time of
one iteration, which includes computation of the measures and
their derivatives, repeated 1000 times for 2D, and 50 times for
3D affine image registrations. We observe that the proposed
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Fig. 6. Registration error for 3D MR images of brain with Gaussian noise, σ = 0.1, added, for three observed transformation magnitudes classes.
(a-f) Example of reference-floating image pair in slices along each major axis. (g-i) Cumulative histograms of the fraction of registrations with registration
error AE below a given value (left and up is better). The red vertical line shows the chosen threshold of success, AE ≤ 1. (a) Reference (XY). (b) Reference (XZ).
(c) Reference (YZ). (d) Floating (XY). (e) Floating (XZ). (f) Floating (YZ). (g) Small transformations. (h) Medium transformations. (i) Large transformations.

Fig. 7. Results of synthetic registration of 3D brain images from the LPBA40 dataset. The plots show the (a) success-rate (SR), (b) mean error (ME) for
successful registrations and (c) the average runtime in seconds for the registration with random subsampling with 0.01 sampling fraction. (a) Higher is better.
(b-c) Lower is better. Bold marks the best result w.r.t. each statistic.

TABLE II

TIME ANALYSIS OF DISTANCE (SIMILARITY) VALUE AND DERIVATIVE

COMPUTATIONS FOR A FULL RESOLUTION IMAGE, REPEATED TO

GENERATE STATISTICS. BOLD MARKS THE FASTEST MEASURE IN
EACH CATEGORY (2D AND 3D). THE 2D IMAGES ARE OF

SIZE 1600 × 1278, AND THE 3D IMAGES ARE OF

SIZE 256 × 124 × 256

measure is the fastest per iteration both in 2D and 3D.
Note that these execution time measurements exclude pre-
processing.

F. Evaluation on Real Applications

1) Registration of Cilia: Registration of multiple cilia
instances detected in a single TEM sample, for enhancement of
diagnostically relevant sub-structures, requires a pixel-accurate
and robust method which is able to overcome the challenges
posed by the near-rotational symmetry of a cilium. At most

two of the possible solutions properly align the central pair,
which is vital for a successful reconstruction.

We compare the performance of the proposed method with
reported results of a previous study [12] which uses intensity-
based registration with PCC as similarity measure. We follow
the general protocol described in [12] and perform, as a first
step, a multi-start rigid registration (parameterized by angle θ
in radians, and translation t = (tx , ty)), followed, in a second
step, by affine registration initiated by the best (lowest final
distance) registration of the 9 rigid ones.

No resolution pyramids are used since they were observed
to interfere with the multi-start approach (by facilitating large
movements). The registrations are performed in full resolution,
without stochastic subsampling. For the rigid registration we
use a small circular binary mask with radius of 24 pixels,
positioned in the center, combined with a squared circular
Hann window function. The affine registration is performed
using a circular binary mask with radius of 52 pixels; the mask
removes the outside background and the outer plasma which is
not helpful in guiding the registration. No additional weight-
mask is used for the affine registration. Step length 0.1 was
used for the rigid and 0.5 for the affine registration. We use
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TABLE III

REGISTRATION OF CILIA: PERFORMANCE OF THE PROPOSED
METHOD COMPARED TO REFERENCE RESULTS, SHOWN AS

THE ‘MEAN (STD-DEV)’ OF THE REGISTRATION ERROR

(IN PIXELS) W.R.T. THE CONSIDERED SETS OF LANDMARKS

FOR THE 19 REGISTRATIONS. ‘R’ DENOTES RIGID,
‘A’ DENOTES AFFINE AND ‘D’ DIENOTES DEFORMABLE

REGISTRATION. BOLD MARKS THE SMALLEST

ERROR FOR EACH SET OF LANDMARKS

� = 7. Normalization percentile is set to 0% for the rigid stage
and 1% for the affine stage.

A feature-based approach is also included in this per-
formance evaluation. The SIFT feature-detector [7], with
RANSAC [34] as model fitting and correspondence point
filtering method, as implemented in FIJI, is evaluated with
both rigid and affine transformation models. The tests are
performed with, and without, circular masks (as described
above), and with systematically varied parameter settings
(using grid search): initial Gaussian blur tested with values
in the range [0.4, 2.4], with steps of 0.4; feature descriptor
size tested with {1, 2, 4, 6, 8}; steps per scale octave tested
with {1, 2, 3, 4, 5}. The other available parameters are set to
their default values, since we observed insensitivity to those
parameters in our preliminary tests.

2) Atlas-Based Segmentation (LPBA40): In [35], a protocol
for evaluation of distance/similarity measures in the context
of image registration was proposed. The protocol starts with
affine registration, for which results are reported, and then
proceeds to deformable registration. Since this study focuses
on the development of an affine (linear) registration framework
based on the proposed distance measure, we compare with
the reported affine-only performance; an improved affine reg-
istration is of great significance since a very high correlation
between the performance of the affine registration and that of
the subsequent deformable registration has been established.

We start from the two atlases created utilizing the Advanced
Neuroimaging Tools (ANTs) registration software suite and
the open-source evaluation script provided in the reference
study [35]. We utilize the atlas created using Mutual Informa-
tion since that is the one found in [35] to be best performing
and is used as the basis for the whole deformable registration
study. Two-fold cross validation is utilized; the first atlas is
registered to the last 20 brain images and the second atlas is
registered to the first 20 brains, hence all registrations are done
with brains that did not contribute to the creation of the atlas.

The multi-label segmentations defined by the atlas are trans-
formed using the transformation parameters found during the
registration and compared to the ground-truth segmentations
for each brain. The Jaccard Index [36] is calculated per region,
as well as for the entire brain mask.

For the proposed method based on d̃̄ R
αAMD we use � =

7, normalization percentiles 5%, N = 3000, 0.05 sampling
fraction, and circular Hann windows as weight-masks.

TABLE IV

RESULTS OF ATLAS-BASED BRAIN SEGMENTATION. THE TABLE SHOWS
THE MEAN JACCARD INDEX FOR EACH OF THE BRAIN REGIONS FOR

d̄̃R
αAMD AND MUTUAL INFORMATION WITH AFFINE REGISTRATION

AS REPORTED IN [35]. FOR d̄̃R
αAMD , MEAN AND STD. DEV. ARE

DISPLAYED; FOR THE COMPARATIVE RESULTS (MIAFF),
ONLY MEAN WAS REPORTED

G. Results of Real Applications

1) Results of Registration of Cilia: Performance of the
proposed method, together with the best previously published
results, are shown in Tab. III. The table shows the mean and



3596 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 7, JULY 2019

standard deviation of registration error (AME, in pixels) of
the 19 registrations, for the three considered sets of land-
marks: the Central pair, the Outer rings, and All (1+9) ring
pairs. ‘R’ denotes rigid; ‘A’ denotes affine; and ‘D’ denotes
deformable registration.

The original study includes deformable registration as a
final stage, after the rigid and affine steps. Here presented
framework based on d̄ R

αAMD includes linear (rigid and affine),
but not deformable registration. However, as results included
in Tab. III confirm, the proposed method outperforms the
previous state-of-the-art, even if using only rigid and affine
registrations.

We note that with only rigid registration we improve the
alignment of the central pair while degrading the alignment
of the outer rings. After the affine registration, the alignment
of the central pair is improved further, plausibly due to the
less constrained transformation model of affine compared to
rigid, and we observe that the alignment of the outer rings and
the total alignment are improved substantially.

The feature-based method is omitted from Tab. III due to
complete failure on all 19 image registration tasks, both with
rigid and affine transformations; either too few matching points
were detected, or the ones found resulted in large erroneous
transformations. One such failed registration example is illus-
trated in Fig. 1.

2) Results of Atlas-Based Segmentation of Brains: Table IV
shows results of atlas-based brain segmentation. The Mean
Jaccard Index is computed for each of the brain regions, for
d̃̄ R

αAMD and MI, with affine registration as reported in [35]. For
d̃̄ R

αAMD, mean and std. dev. are displayed; for the comparative
results (MIAff, [35]), only mean was reported.

We observe that for the whole brain mask, for the aggre-
gated overlap, and for 43 out of the 56 distinct regions,
the proposed measure outperforms the reported performance
obtained with the MI metric; MI was the best performing
measure out of the three evaluated in [35].

VI. DISCUSSION

Compared to the traditional similarity measures (SSD, PCC,
MI), the proposed measure and associated registration method
require substantial amounts of memory to store the auxiliary
data-structures. A single 3D registration of two MR images of
brains may require approximately 4GB of working memory
with a reasonable set of parameters; contemporary machines
for high-end data processing typically have a lot more memory
than 4GB, but this requirement can affect how many registra-
tions can be performed in parallel on a single machine.

VII. CONCLUSION

In this study we have adapted a family of distance mea-
sures [11] to gradient descent based image registration, for
2D and 3D images. We have shown that such an extension
is feasible and that the very good performance of the mea-
sures observed previously for object recognition and template
matching, and their property of a large catchment basin for
local optimization, also hold in the context of registration.
This has been shown by evaluating the method in four main

ways: (i) on synthetic tests, (ii) execution time measure-
ment, (iii) registration of TEM-images of cilia for multi-
image super-resolution reconstruction, and (iv) atlas-based
segmentation with annotated MR brain images. We observe
that the proposed method provides outstanding performance
for intensity-based affine registration in terms of robustness,
accuracy and symmetry. It is also faster or similar in speed
to the commonly used measures, which allows its practical
applications. The framework developed in this study operates
on single-layer (e.g. gray-scale) images, but can be extended to
multi-layer images such as color images, either by considering
a linear sum of distances, or more sophisticated methods based
on simultaneous presence or absence of membership in the
multiple layers [23], [37]. Future work includes extending the
measures to non-linear (deformable), as well as multi-modal
registration.
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