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Abstract— We propose a sparse imaging methodology called
chaotic sensing (ChaoS) that enables the use of limited yet
deterministic linear measurements through fractal sampling.
A novel fractal in the discrete Fourier transform is introduced
that always results in the artifacts being turbulent in nature.
These chaotic artifacts have characteristics that are image
independent, facilitating their removal through dampening (via
image denoising), and obtaining the maximum likelihood solution.
In contrast with existing methods, such as compressed sensing,
the fractal sampling is based on digital periodic lines that
form the basis of discrete projected views of the image without
requiring additional transform domains. This allows the creation
of finite iterative reconstruction schemes in recovering an image
from its fractal sampling that is also new to discrete tomography.
As a result, ChaoS supports linear measurement and optimization
strategies, while remaining capable of recovering a theoretically
exact representation of the image. We apply the method to the
simulated and experimental limited magnetic resonance (MR)
imaging data, where restrictions imposed by MR physics typically
favor linear measurements for reducing acquisition time.

Index Terms— Fractal sampling, Chaos, sparse image recon-
struction, discrete Fourier slice theorem, Ghosts, fractals, missing
data, compressed sensing.

I. INTRODUCTION

RECOVERING an image of an object from a set of
measurements is of great importance in the physical

sciences, engineering and medicine. For example in medicine,
medical imaging aids clinicians in diagnosing diseases [1].
This process of image reconstruction, whether from projected
views of the object or a transform space such as the Fourier
space, is challenging because acquisition is always limited is
some sense. The limitations may occur because the imaging
modality has high time-cost, such as in magnetic resonance
(MR) imaging, or because the instrumentation has a lim-
ited range of motion, such as in many biomedical imaging
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Fig. 1. A schematic of the finite fractal for the DFT introduced in this
work. The base pattern is self-similar at multiple scales to create a multi-
band response in discrete Fourier space. A high resolution image is available
as supplementary material, but details can be seen by zooming in on this
figure.

experiments at synchrotron facilities. It could be because the
imaging modality exposes the specimen to ionizing radiation
and this exposure needs to be minimized, such as in computed
tomography (CT). Or it could be because the imaging methods
chosen are themselves ill-posed, as with most algorithms
utilized in medical imaging [2], [3].

In cases such as these, limited imaging data creates ambi-
guity about the object and manifests itself as reconstruction
artifacts known as Ghosts1 in the recovered image [3]–[7].

1Sometimes referred to as phantoms [4] or ambiguity functions.
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These Ghosts have invisible structures in the direction of
known measurements and generate visible artifacts corre-
sponding to unmeasured directions [6]. Thus, it is essential
that image reconstruction algorithms be able to mitigate these
artifacts, preferably with low computational complexity.

In this work, we propose a new approach to sparse imaging
called Chaotic Sensing (ChaoS) that utilizes a new fractal
for sampling in the discrete Fourier transform (DFT) (see
figure 1). The novel contributions can be summarized as
follows:

1) The proposed ChaoS method utilizes a deterministic
sampling pattern (in the form of a newly proposed frac-
tal) that can be decomposed into discrete tomographic
projections while producing artifacts turbulent in nature
and therefore appearing independent of the image being
recovered. The resulting linear reconstruction method-
ology handles significantly under-sampled imaging data
(shown up to a reduction factor 8), while still recovering
the image with promising performance over existing
methods.

2) A newly discovered fractal for the DFT is presented
(see figure 1) that is formed from discrete linear mea-
surements. This fractal disorders the Ghosts causing
them to be turbulent via the frequency domain. The
measurements from this fractal also map to discrete
projections that forms a periodic sinogram and facilitates
efficient reconstruction.

3) Developing novel finite maximum likelihood expectation
maximization (f MLEM) and finite simultaneous iter-
ative reconstruction technique (f SIRT) algorithms for
complex-valued periodic discrete projections, where the
result is obtained via linear optimisation. These finite
iterative algorithms also facilitate fast back-projection
directly via DFT space because a discrete periodic slice
theorem is used that requires no interpolation.

4) We apply the proposed ChaoS methodology to complex-
valued MR imaging experimental data of phantoms
in the form of simulated fractal sampling of the data
and compare the results to other sparse imagingc
methods.

A fractal is a self-similar pattern or structure that repeats
itself on multiple scales. They have an associated “roughness”
that classifies them with a fractional or Hausdorff dimen-
sion and was first formally introduced by Mandelbrot [8]
(see also [9]). They are a subset of a large body of work
called chaos theory or complex dynamical systems developed
independently by Lorenz [10], Feigenbaum [11] and others,
who found that deterministic systems exhibit non-periodic,
high entropic behavior with a sensitive dependence on initial
conditions.

We employ the term “turbulent” in a technical sense to
represent the chaotic mixing of imaging information that is
self-similar at multiple scales, i.e. the image is convolved with
a fractal point spread function (PSF). This is analogous to the
dissipation of energy at large scales and low frequencies into
many smaller scales and higher frequencies within fluid flow
that can lead to chaotic motion [12] and conform to stable

solution spaces that have to be fractals [10], [12]. Our intuitive
usage of the term is best summarized by Richardson [13] in
a famous comment on atmospheric turbulence.2

The goal is to make self-similar, multi-scale yet determin-
istic measurements that promote disordered artifacts in the
recovered image using fractals. Since the object is consistent
within the measurements, the disorder is removed through
(linear) reconstruction schemes. Advantages of the proposed
scheme include:

1) more practical realizations in the laboratory. For exam-
ple within MR imaging, by exploiting the underlying
geometry of the measurements via fractals, such as a
set of discrete periodic lines in our case,

2) sparse methods that support faster, linear image recon-
struction by way of projections of the object,

3) no need for additional sparse transform domains,
4) governed by an exact uncertainty principle [6], [14],

so that the reconstructions are guaranteed to be void
of Ghost artifacts that are mentioned by Herman and
Davidi [15] when the prescribed imaging information is
utilized,

5) fast iterative reconstruction with low computational
complexity through using a discrete periodic slice theo-
rem.

After presenting the current literature in image reconstruc-
tion with missing or limited data, the proposed methods are
presented in section II with the results of MR imaging focused
simulations and experiments thereafter and a discussion of
these findings in section IV.

A. Previous Work

Traditional methods for handling Ghost artifacts involve
using either a large number of measurements to com-
pensate [5], iterative schemes based on algebraic recon-
struction [16], [17] or expectation maximization (EM)
algorithms [18]. This is especially true when signal-to-noise
ratio (SNR) and photon counts are low such as in positron
emission tomography (PET) [19]. Popular algorithms in these
scenarios include the EM algorithms [19] and their extensions
for accelerated convergence [20], better image quality [21]
and arbitrary image pixel depths [22]. Image reconstruction
methods can even be created that learn their characteristics to
remove them given enough training data [23]. Other methods
for reducing Ghosts include fusion of multi-modal data [24],
minimizing the �1-norm in reconstructions [25], [26], solving
certain system of equations [27] or by fast direct deconvolution
of Ghost artifacts if no noise is present [28]. See Chandra
et al. [28] for a summary of the work in Ghosts during the
last century.

The most significant progress towards reducing and even
eliminating Ghost artifacts was made independently by
Candès et al. [29] and Donoho [30], an area now known as
compressed sensing (CS). In their approach, the acquired data
is structured or acquired with random sampling so that the

2“Big whirls have little whirls that feed on their velocity, and little whirls
have lesser whirls and so on to viscosity” - Richardson, 1922 [13].
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Ghosts are incoherent in the reconstructed space and convex
optimization is used to effectively minimize or threshold out
their effects [31], [32]. Combined with transform sparsity, i.e. a
transform space where the number of bases needed to represent
the object is very small with respect to the total number of
bases in the space, the signal can be acquired and recovered
with fewer samples than the Nyquist sample rate [30]. This
measurement is then a compressed form of the signal with-
out significant loss of data. The signal is usually recovered
using methods such as iterative thresholding [33], basis pur-
suit [34] or orthogonal matching pursuit [35]. This approach
has been successfully applied to MR imaging [36], [37] and
other areas of imaging [38], [39]. See Eldar and Kutyniok [32]
for a detailed review of CS.

However, CS has four important considerations:

1) random sampling is not always practical in some sys-
tems. In MR imaging for example, three and two
dimensional (2D) random sampling of k-space is not
practical because of the MR hardware and sequence
protocol limitations. Since random sampling in the
frequency-encoding direction is impractical, the incoher-
ence due to one dimensional (1D) random sampling is
reduced, leading to reduced undersampling ability and
reconstruction fidelity.

2) transform sparsity is required, but ideally not in mea-
surement space. In MR imaging for example, anatomical
objects are usually not suitably sparse in k-space [40],
[41], requiring dense sampling near the central k-space
region. Therefore, the measurement data is transformed
into a transform space where the image is sparse and the
artifacts remain noise-like, such as the wavelet domain.

3) non-linear reconstruction algorithms such as convex
optimization or basis pursuit algorithms have high
computational complexity relative to the fast Fourier
transform (FFT) [42] and still are a subject of active
research [37], [43].

4) Herman and Davidi [15] showed that Ghost artifacts
may remain hidden with respect to the projected views,
although clearly visible within the image as a strong
artifact (see [15, Fig. 2]), when a small number of pro-
jections are used. These artifacts could have important
implications in a medical setting.

The proposed ChaoS provides a methodology that does
not require a transform domain or even assume the image
is highly compressible under certain conditions. It can utilize
limited linear measurements in DFT space and still produce
image independent artifacts. These artifacts can be removed
using computationally efficient reconstruction algorithms, and
results in a theoretically exact image of the object under
prescribed conditions.

II. CHAOTIC SENSING

The fundamental principle behind the proposed ChaoS
methodology is to promote deterministic disorder in the
reconstructed image and chaotic mixing of imaging informa-
tion created from limited measurements. Since the image is
assumed consistent within the measurements, any resulting

Fig. 2. The Ghost artifacts as a consequence of various sampling methods
in DFT space. From top to bottom, the artifacts due to a radial sampling,
random sampling and the proposed fractal sampling before any algorithms
are applied. Each color in the sampling plots on the left represent the same
sample line. These lines are radial lines, columns and discrete slices for
(a), (b) and (c) respectively. The proposed method naturally produces artifacts
with little discernible structure while using discrete periodic lines in DFT
space.

artifacts from the reconstruction process will be turbulent.
We utilize the image independent nature of these artifacts to
allow the dampening and eventual removal of these artifacts.
An important application area of the proposed methodology is
MR imaging, which is time-expensive because it is currently a
slow imaging modality and scanners cost millions of dollars.
To reduce the MR acquisition times, sparse imaging methods
that preserve image quality are sought.

A. Discrete Fourier Ghosts

The excellent soft tissue contrast in MR imaging is obtained
by measuring the radio frequency (RF) electro-magnetic waves
produced by Hydrogen atoms through spatial density (spatially
varying, nuclear spin harmonic), response to external magnetic
fields and the relaxation properties. The RF measurements
results in a harmonic representation equivalent to that of the
DFT of the object that is also referred to as k-space in the
literature. The difficulty is determining the most time efficient
coverage or tiling method of 2D DFT space to facilitate a
suitable recovery of an image of the object.

However, when only a partial coverage of the DFT is
available, artifacts become superimposed on the recovered
image [4]. The shape and form of these Ghost artifacts are
dependent on the structure(s) of the missing coefficients in
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DFT space, since errors in DFT space are convolved in image
space because of the convolution theorem [3]. Figure 2 shows
a comparison of the Ghosts produced by the proposed method
compared to two common strategies in MR imaging.

The imaging methods based on CS rely on the measure-
ments being made in a particular sampling pattern to ensure
that the artifacts superimposed on the recovered image are
incoherent, i.e. the artifacts have a random or white noise-
like structure [30]. A random sampling pattern is usually
employed to ensure that the artifacts are also random in
nature (see figure 2(b)). The image is then recovered by
effectively compressing the reconstruction and denoising the
result iteratively. The compression is obtained by assuming the
image is known to be sparse or in another transform domain.
Wavelets have been shown to work well with MR imaging
data [36].

However, true random sampling in MR imaging is imprac-
tical (see [44, Sec. 2.1.4]). To resolve the spatial origins of
the spins, spatial encoding signals are embedded into the
decay signals. To this end, frequency encoding (small fre-
quency offset δ f ) is introduced into one of the dimensions by
superimposing a magnetic field gradient along this dimension
during the measurement. To resolve additional dimension(s),
phase encoding (δp) by means of spatially dependent phase
offset is used. It is typically achieved by introducing frequency
offsets δ f of determined duration T (δp = δ f ·T ) immediately
before the measurement. Typically, repeated measurements
with identical timing albeit varied phase offsets are performed
to resolve the 2nd or 3rd dimension. Since the decay must
complete and steady state be reached between measurements,
a measurement cycle incurs a fixed time cost. This means
that measurements made (phase-encoding direction) where
another decay is required are time expensive, while those
made within a decay period (frequency-encoding) are cheap.
Therefore, CS based methods rely on incoherence in usually
only one dimension, by acquiring full phase encoding direc-
tions randomly and a transform domain for 2D incoherence
being still applicable [36]. This results in a lower fidelity
reconstruction when compared with 2D incoherence as with
a full CS solution [44]. As a result, despite being more than
a decade since its inception, there are only a few CS based
MR methods commercially available as MR imaging clinical
sequences.

B. Turbulent Ghosts

The proposed ChaoS provides a methodology that does not
require a transform domain. It can utilize limited linear mea-
surements in DFT space and still produce object independent
artifacts. These properties are made possible because of fractal
sampling.

1) Fractals: Fractals are constructed from a set of simple
deterministic rules, yet exhibit complex behavior at multiple
scales. For example, the Sierpinski carpet is formed by simply
dividing a rectangle into 9 equal parts and removing the
center. The process is repeated with the remaining rectangles
ad infinitum to produce a pattern that has an area of zero.
This particular fractal sees repeated use in RF design [45] and

Fig. 3. An example of a fractal known as the Julia set [47] for a given
constant/offset c. Available in color in the online version of this article.

more recently in MR imaging hardware [46]. Other examples
include the Cantor set, the Terdragon set, the Mandelbrot set
and the Julia sets. An example of a Julia set [47] is given
in figure 3. In this work, we will create a new fractal for the
DFT shown in figure 1 and described in the next section.

2) Fractal Frequency Response: Examining the fractal
in figure 1, the base pattern of this fractal in discrete Fourier
space repeats itself at multiple scales with finer and finer
resolutions at higher Fourier frequencies. This produces a
multi-band response in image space, in the same way as fractal
antennas were designed [45]. These antennas are capable of
receiving and transmitting at multiple bands because they have
the same shape, i.e. it is self-similar, at the required (different)
scales for those frequency bands.

3) Turbulence: In image space (after an inverse DFT is
applied to the measurements) the image is effectively con-
volved with a fractal PSF causing turbulence and ensuring
mixing of artifacts.This turbulence is the same phenomenon
that is responsible for allowing golf balls to travel greater
distances when struck. The dimples of the ball disrupts airflow,
dissipating the energy of the oncoming air. Otherwise, the lam-
inar flow into the ball would create high pressure and push
against the low pressure behind the ball to slow its progress.
Likewise, the chaotic mixing of an image or fluid with self-
similarity at multiple scales, i.e. it exhibits flow of energy from
large scales to smaller scales, then from smaller scales to even
smaller ones and so on. It can be viewed as the dissipation
of energy with a power spectrum that follows a Kolmogorov
power-law with length scale or equivalent to how eddies form
in fluid flow and how energy is dissipated at higher and higher
wave numbers. Therefore, the fractal ensures artifacts do not
correlate or cascade into meaningful structures, particularly
those that are image dependent. Figure 4 shows how the
incoherent and turbulent artifacts from figure 2(c) have similar
visual characteristics. We will measure the turbulence using
a metric called turbulent intensity τ , which is the standard
deviation of the velocity fluctuation �v = g − ḡ, where g = ∇ I
is the image gradient and ḡ is the mean of g.
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Fig. 4. The velocity fluctuations of the artifact gradient vector fields from
the radial, random and fractal sampling schemes of the top left-hand corner
of the images in figure 2.

It is also well known that turbulent flows conform to
“attractors” in phase space, a space defined by the main
parameters of the equations of motion describing the sys-
tem, and these attractors have to be fractals in the case of
turbulence [10], [12]. An attractor is a shape or structure
in phase space that the system evolves to when in steady
state. One of the famous attractors is known as the Lorenz
attractor from a study of atmospheric sciences, where the
system follows an owl head like structure never traversing
the same path on that structure but always attracted to that
structure no matter the initial conditions [10]. The fractal in the
DFT creates turbulence to ensure a mixing of artifacts that give
it a disorderly appearance in much the same way that Ruelle
and Takens [12] found that turbulent motion is a mathematical
consequence of fractal structures when analyzing the equations
of motion of fluids. In this work, we take the reciprocal view
that a fractal in frequency space, i.e. in the DFT, will create a
chaotic mixing of imaging information by the way of circular
convolution of the image with the fractal structure.

C. Finite Fractal

The chaotic mixing of image information is dependent on
the fractal structure in DFT space. In this work, we will
create a new fractal for the DFT shown in figure 1. Note
that the Python implementation of the proposed methods
and associated algorithms are provided as an open source
project [48].

To construct this new finite fractal for the DFT, recall
that the majority of the power of DFT space of natural
images lies near the origin (i.e. the DC coefficient). Therefore,
to ensure that we can adequately represent and reconstruct
natural images, we require a set of closest lattice points (b, a)
visible from the origin to tile the central DFT region. These
lattice points (b, a) can be defined as the set of irreducible
rational fractions a/b of the Farey sequence, where a, b ∈ Z

and gcd(a, b) = 1 (i.e. a and b have no common factor other
than unity) [49]. We can interpret a Farey fraction as a vector
[b, a] (i.e. a pixels across and b pixels up) in DFT space.

To generate this set of tiling lattice points near the origin
(in one octant of the plane) of order N , we simply use
the mediant property of the Farey sequence [49] to generate
all the irreducible vectors and then sort these vectors by
their �2 = a2 + b2 norm, i.e. the Euclidean distance from
the origin, to select the closest ones. This set of vectors
and their multiples then tile a circular region around the

Fig. 5. The tiling effect of the �2 minimal Farey sequence (i.e. sorted vectors
from (1)) visualized in the image plane as a binary image using the discrete
lines (2) for N = 8 and M = 32. The inset shows the closest vectors [b, a]
visible from the (centerd) origin used to generate the lines.

origin. These vectors correspond directly to the FN Farey
sequence of fractions. Beginning with [b1, a1] = [1, 0] and
[b2, a2] = [1, 1], to obtain the mediant lattice point [b3, a3],
one recursively computes

a3

b3
=

(
a1 + a2

b1 + b2

)
, (1)

until [b3, a3] = [N , 1] and any other (soon to be mentioned)
criteria is met. Direct computation can be done using well-
known methods such as Pascal’s Triangle (with memory) or by
equations that solve for the subsequent term. Symmetry of the
Farey sequence in an octant of the plane is used to create
the vectors for all other octants using simple flip and mirror
operations. For example, when N = 3, the generated set (in
the half plane) is

[1, 0], [1, 1], [−1, 1], [2, 1],
[1, 2], [−2, 1], [−1, 2], [3, 1],
[1, 3], [−3, 1], [−1, 3], [3, 2],
[2, 3], [−3, 2], [−2, 3], [0, 1].

The extent of the tiling near the origin is controlled by N ,
which tiles a small aperture near the origin (see inset of
figure 5). In fact, the tiling of the origin and its relation to
reconstruction properties are controlled by a criterion that will
be defined in the next section. We can then associate the set
of discrete lines with slopes defined by these fractions as

�t,θab =
⎧⎨
⎩

t = bv − au if
a

b
� 0

t = au − bv if
a

b
< 0,

(2)

where the line is at an angle θab = tan−1(a/b). The lines (2)
are radial if we set t = 0 and ensure that all points multiple
to the irreducible vectors of the Farey sequence are covered.
An example of the generated vectors for N = 8 within a
larger image M = 32 and an example of their resulting lines
are shown in figure 5.

Finally, to form the fractal shown in figure 1, we simply
compute the modulo N of the point coordinates for the lines,
i.e. (mod N), to ensure any points outside the image wraps
back into image space. The (mod N) operator is a form of
clock arithmetic that leaves only the remainder. For example,
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the time 1 pm is a result of 13 modulus 12. This operator
is responsible for creating circular boundary conditions so
that lines always remain within a fixed image space. Due to
these boundary conditions, only a total of N points per line
are required as they repeat after a period of N by design.
An example of the fractal created by algorithm 1 for N = 4127
and 284 discrete lines is provided as supplementary material.

Although the lines (2) are used to create the fractal of
figure 1, we can map the slopes of these lines to a more
convenient set of periodic lines to facilitate simpler recon-
struction using a discrete Fourier slice theorem [50]. In this
work, we will assume that for which N = p, where p is prime
to simplify the reconstruction process.

D. Finite Iterative Reconstruction

The primary objective of the proposed reconstruction meth-
ods is to de-construct the measurements of the finite fractal
into discrete periodic lines from which it is constructed to
the natural discrete slices of the DFT [50], [51]. The discrete
Fourier slice theorem (dFST) is a mechanism by which the
2D DFT can be tiled completely and exactly without the need
for any interpolation using discrete periodic lines or slices

v ≡ mu + t (mod N), (3)

u ≡ psv + t (mod N), (4)

with the set of slopes

m = {m : 0 � m < N, m ∈ N}, (5)

s = {s : s < N/p, s ∈ N}, (6)

of a N × N image and where u, v, m, s, t ∈ Z. It has the
simplest form above when N = p, where p is prime, so that
s = 0 and the number of slices required to tile the entire space
is N + 1. An example of the prime size N = p = 5 tiling is
shown in figure 6. It has been shown previously that the Farey
sequence is intimately linked to the slopes m of the DFT slices
and that there is a many-to-one mapping between them [52].
Chandra et al. [53] developed an exact analytic mapping from
a Farey vector to the slope m as

m ≡ ab−1 (mod N), (7)

where b−1 is the multiplicative inverse of b so that 1 ≡ bb−1

(mod N), which can be computed easily via the extended
Euclidean algorithm [49].

Much the same way as the conventional slice theorem of
the Fourier transform (FT) in integral form, the inverse DFT
of the slices are (periodic) projections of a discretised Radon
transform called the finite Radon transform or discrete Radon
transform (DRT) [50]. The slices of the DFT F(u, v) are then
transformed exactly into a discrete periodic projection space
R(m, t) that forms a periodic sinogram. The slices and the
projections of the DRT are effectively duals of each other
utilizing the same lines (3) and (4) with only a 1D DFT of
sequences and a 90 degree rotation of the coordinate system
between them [50].

The periodic sinogram R(m, t) of the DRT is obtained by
extracting the slices of the DFT and computing the inverse

Fig. 6. The tiling of discrete lines defined by equations (3) and (4) for a
prime-sized DFT space of N = 5 with t = 0. Here the DC point is centerd
and each white square (and red dot) represents a sample. The lines have slopes
according to the set m (mod N) with the slope being m steps up and one
step across. The equivalent Farey vectors, i.e. shortest distance from the DC,
are shown as red arrows.

1D DFT of each slice. Since the slices of the DFT, and
therefore R(m, t) space, does not require any interpolation,
the back-projection requires no interpolation either and so it
can be computed as a convolution without any interpolation
error. This is referred to as circulant back-projection (CBP),
since the result is a superposition of circulant matrices [54].
Adding slices to the DFT is O(μN), where μ is the total
number of measured slices and there are at most N +1 slices.
Computing the 1D FFT, which has the order of O(N log N),
the total computational complexity of back-projection of the
periodic sinogram is O(N2)+O(N2 log N), since μ is at most
order N . Taking the highest order, the total complexity of the
algorithm is O(N2 log N) for a N × N image, which is same
as the 2D FFT. Therefore, it is possible to create fast recon-
struction schemes to the periodic sinogram by constructing
finite projection and back-projection operators in DFT space.

We propose novel fast f MLEM and f SIRT algorithms for
periodic projections that can be intuitively seen as the iterative
back-projection correction on the periodic sinogram via the
EM and algebraic algorithms, the former of which is guar-
anteed convergence to the local maximum of the likelihood
function and hence the global maximum when the function is
convex [18]. In most practical applications, the EM algorithm
is known to always converge to the global solution [55].

Following a similar notation to Lalush and Wernick [56],
but adapted to periodic projection and back-projection, let
the measured (partial) periodic sinogram from the fractal be
represented as g j , the DRT projection as the operator R
and the DRT back-projection as the operator R−1, then the
f MLEM estimate of the image f at iteration n + 1 can be
written as

f n+1 = f n

μ
· R−1

(
g j

R f n

)
. (8)

Likewise, the Landweber-type f SIRT estimate of the image
can be obtained in a similar way. Figure 7 shows a flowchart
representation of the reconstruction algorithm.
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Fig. 7. The (linear) fractal image reconstruction algorithm used in this work,
where g = R f n , f r = R−1 · gr and R is the DRT (i.e. periodic projection)
operator.

In these methods, the Ghosts due to under-sampling are
removed through a combination of obtaining the most likely
solution to the imaging data acquired and dampening of the
Ghosts through (edge preserving and/or textural) smoothing.
This is made possible because the Ghosts are turbulent and
image independent in nature, so that consistent parts of the
image is preserved and the method converges to a solution
close to the original image. In our implementation, we taper
the smoothing off at two stages (mid and end) as the final solu-
tion is obtained. Python implementations of the reconstruction
algorithms are provided open-source [48].

Note that the normalization terms in (8) are simple scalars,
in contrast with conventional iterative methods, where it is
an image of back-projected ones at the same angles as the
sinogram. In a classical scenario, the back-projection operator
is continuous and windowed, so that the image is not uniformly
sampled. In the finite case, the circulant matrices cover the
entire space evenly because the lines (3) form the basis of
periodic projections for the set of all translates

t = {t : t < N, t ∈ N}. (9)

Hence the weightings become a scalar proportional to the
number of projections μ.

Another contribution of our work on the f MLEM and
f SIRT is that the projection and back-projection operators R
and R−1 are fast, since they can be computed in DFT space
without the need for interpolation [50]. Projection R is simply
computed by taking the 2D DFT of the image, extracting
the discrete slices and computing their 1D inverse DFTs.
Similarly, back-projection R−1 is computed by placing the
1D DFTs of the projections into an empty 2D DFT space and
computing the 2D inverse DFT. Thus, the total computational
complexity of the proposed method is O(I N2 log N), where
I is the total number of iterations required for convergence.
Utilizing the convergence acceleration of the ordered sub-
sets [20] to both algorithms usually results in I � N .

Lastly, one needs to consider the uncertainty principle for
the number of slices required for accurate reconstruction.

Algorithm 1 Fractal Measurements for Finite Iterative Recon-
struction

The number required is dictated by the Katz criterion

K =
max

(∑N−1
j=0 |a j |,∑N−1

j=0 |b j |
)

N
, (10)

where usually K � 1. The minimal information required for
an exact reconstruction is known to be when K = 1 [6], [14].
This intuitively means that the number of bins, or equivalently
the number of equations, is equal to the number of pixels that
need to be reconstructed. This can be used as an additional
termination criteria for generating the Farey sequence and the
fractal. Thus, the full algorithm to compute the measurements
using the finite fractal of the DFT follows the simple and
deterministic rules as given in algorithm 1. A fractal of a size
greater than that original image being measured with k > 1
allows for exact reconstruction (i.e. when aiming for fidelity
and not sparseness), so that the entire space is not tiled by
the slices of the DFT. In this work, we have found that the
prime p nearest to, but larger than 2N usually suffices for this
purpose. We demonstrate the proposed ChaoS methodology in
the following section.

III. RESULTS

To demonstrate the performance and properties of the pro-
posed ChaoS method, the turbulent nature of the Ghosts were
studied, the finite fractal was analyzed and MR simulations
of the proposed ChaoS method conducted for reconstruction
images from limited Fourier coverage. Lastly, an MR experi-
ment was conducted on a phantom scanned using a Bruker
BioSpec 94/30 small animal 9.4T MR scanner (Ettlingen,
Germany).

A. Turbulent Ghosts

Firstly, the disorderly or turbulent nature of the Ghosts
created using the finite fractal (i.e. sampling that still utilizes
discrete radial lines and center tiling) were compared to the
conventional radial type sampling and the random sampling
of CS that produce incoherent Ghosts. The total number of
samples was kept constant for all three types of sampling and
the Ghost artifacts observed without any attempt to remove
them. Figure 2 shows a comparison of the Ghosts produced
by the proposed method compared to these strategies for the
Shepp-Logan image.

The turbulent intensity τ of different Ghosts, such as
those of figure 2, were compared for a number of images.
Figure 4 shows how the incoherent and turbulent artifacts from
figure 2(c) have similar visual characteristics. The incoherent
and turbulent artifacts were found to have a similar τ , while
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Fig. 8. Reconstruction performance of the proposed, radial and CS methods for recovering the Shepp-Logan phantom from its simulated MR measurements.
The synthesized k-space with Gaussian noise had a SNR of 30dB and sampling patterns with a reduction factor of 2 (i.e. 50% of full DFT sampling) were
used. The sampling patterns and initial Ghosts are given in figure 2 and the images were gamma corrected for visualization with γ = 0.5. The image sizes
of N = 256 and p = 257 were used for the CS and finite iterative methods respectively with the latter using a fractal with 128 discrete periodic lines.

both always being a few orders of magnitude different to the
radial artifacts. This property of the turbulent Ghosts was also
observed for the Cameraman and Lena images.

B. Finite Fractal

The fractal created in this work for p = 257 was found
to have a fractal dimension of 1.79 using the box count
algorithm. The dimension being closer to two rather than to
the dimension of its constituents, i.e. the discrete lines, points
to the fact that the fractal transcends considerations of just
discrete lines and must be thought of as a collective entity.
For example, the spacing between the individual points of
each periodic line may be very large and their individual
effects could be considered with respect to the Ghosts, but
their collective effect in tiling at multiple scales with other
lines to create the fractal supersedes these effects to produce
turbulence.

The fractal also had the remarkable property that it is invari-
ant under DFT and inverse DFT transforms, i.e. it is the same
in discrete Fourier and image spaces. The invariance of the
finite fractal to the DFT is probably due to the strong symmetry
of the geometry structure, which is not only in rotational
symmetry, but in modular/periodic symmetry as well, as all
periodic lines begin and end as the same point due to the finite
geometry of DFT space. Very few functions have such strong
symmetry to remain unchanged by such transforms, usually
resulting in at best a scaled invariance, such as the Gaussian
function. Further work is required to mathematically prove
this result and in determining the analytical properties of the
fractal and categorizing their different types.

C. Finite Iterative Reconstruction

We simulated an MR imaging example by taking measure-
ments via k-space trajectories and showed the performance
of the proposed method when compared to the conventional
radial reconstruction of figure 2 and a sparse CS MR recon-
struction method [36] with 30 dB SNR. Figure 8 shows the
simulated performance of these methods and the proposed
ChaoS method of MR imaging of the Shepp-Logan phantom
image. Additional figures for different reduction factors and
the Cameraman image are provided as supplementary material.

We have assumed a Gaussian noise model as errors in MR
complex signals usually conform to a Gaussian distribution in
both real and imaginary components with only the magnitude
images being of a Rician or Rayleigh distribution, depending
on SNR [57]. We evaluated the quality of each method through
metrics such as root mean squared error (RMSE), peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [58] and
visual information fidelity (VIF) [59] with the same level of
sampling. The latter two are known as perceptual metrics that
have been shown to outperform most other metrics (including
PSNR) on public subjective viewing image databases [60]. The
random sampling was selected as suggested by Majumdar [44,
Fig. 2.8(b)] to ensure full 2D incoherence and best fidelity.

Figure 2 shows the k-space sampling utilized for this
simulation and the Ghosts present on the initial (uncorrected)
reconstruction from the limited imaging data. The CS method
utilized the same number of sample points as the finite iterative
methods but with additional introduced tiling near the DC
coefficient of a radius of 16 coefficients. Table I shows the
various metrics used to evaluate the proposed ChaoS scheme
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TABLE I

PHANTOM RECONSTRUCTION PERFORMANCE

Fig. 9. The convergence performance of the proposed ChaoS f MLEM and
f SIRT methods for simulated MR measurements. The oscillations are caused
by the non-local means denoising applied at regular intervals (10 iterations
in this case) to perturb the current estimate out of local minima. Since the
image is consistent within the periodic projections, the system continues to
converge to the maximum likelihood solution while the denoising algorithm
steadily dampens the Ghosts out of existence.

compared to the radial and CS methods for the Shepp-Logan
phantom.

We found that non-local means smoothing [61] applied
periodically worked well for dampening the Ghost artifacts.
Figure 9 shows the (SSIM and PSNR) convergence character-
istics of the proposed method for the Shepp-Logan phantom
in the MR imaging simulation, while figure 10 shows the
convergence properties given different values of redundancy
K , and hence different projection sampling rates, for fixed
image size and number of iterations.

The simulation was implemented in-house using the Python
programming language via Numpy and Scipy libraries [62]
with additional algorithms (such as image denoising) utilized
from Scikit-Image [63]. The pyFFTW implementation of the
FFT algorithm was also found to be faster than the FFTPACK
implementation in Scipy probably because of the mature and
prime-sized FFT algorithms available in FFTW [64]. All
simulations were computed on an Intel i7-2600K 3.4 GHz
with 16GB of RAM on Windows 10. The algorithms used in
this work have been made open source [48].

Figure 10 also shows that the reconstruction convergence
degrades as the redundancy parameter K is reduced. This is
to be expected as there is more ambiguity and less SNR in the
measurements corresponding to the reduction in the imaging
data. The degradation could also be due to the dependence of
the convergence on not only the number of projections, which

Fig. 10. The convergence performance of the proposed f MLEM method
for MR imaging simulation with varying redundancies or projection sampling
rates K . Since K affects the number of projections, and therefore the reduction
factor, the subset size s would also need tuning to improve convergence.

is dictated by K , but also on the number of subsets s per K ,
since the selection of s was fixed for this simulation.

D. MR Experiment

Finally, we conducted an MR experiment of a phantom in
the laboratory to demonstrate the proposed ChaoS scheme on
acquired MR imaging data. A single slice of a phantom was
scanned using a Bruker BioSpec 94/30 small animal 9.4T MR
scanner (Ettlingen, Germany) with an image size of p = 257
using the FLASH (Cartesian) sequence. The phantom was
that of a series of Lego blocks in a plastic tube filled with
a liquid solution made up of 2.62 g (0.0448 mol) NaCl and
2.14 g (0.0047 mol) NiSO4 · 6H2O per 1000 g distilled water.
The Bruker mouse head volume coil (diameter of 40mm) with
quadrature drive was used to acquire images.

The Cartesian space was then sampled according to patterns
shown in figures 2 and 8. This corresponded to the sampling
of pixel locations of the fractal pattern for p = 257, s = 16,
250 iterations and K = 1.2 corresponding to a reduction
factor of 2 (i.e. 50% of the full Cartesian sampling). The
same reduction factor and sampling rate was used to sample
pixel locations of the Cartesian space for the radial and
CS methods as a comparison. Since full random sampling
in MR imaging is not feasible, the standard CS sampling
approach was conducted with randomness along phase encod-
ing (columns) as described by Lustig et al. [36]. The non-local
means smoothing algorithm was utilized for the regularization
of the ChaoS method. The result of the complex-valued
reconstruction is shown in figure 11. The reconstruction took
174 seconds using a serial implementation of the complex-
valued f MLEM algorithm using Numpy and pyFFTW. The
RMSE, PSNR, SSIM and VIF of the radial, CS and proposed
ChaoS methods are shown in table I when utilizing half of the
fully sampled Cartesian reconstructed image. The reduction
factor was also varied and the reconstructions computed for
each of the methods. The resulting PSNRs of the results
are shown in figure 12 when compared to a full Cartesian
reconstruction.
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Fig. 11. The full FLASH (Cartesian), radial, CS and proposed ChaoS (bottom row, left to right) reconstructions of a Lego phantom acquired using a Bruker
BioSpec small animal 9.4T scanner with N = 256 and p = 257. The radial, CS and proposed ChaoS algorithms have the same sampling rate corresponding
to a reduction factor of 2 (i.e. half of the full DFT sampling) with the latter utilizing the parameters s = 16, K = 1.2, 128 periodic lines and 250 iterations.
The radial reconstruction utilized the sampling given in figure 2. The images were gamma corrected for visualization with γ = 0.5.

The initial MR experiment with a Lego phantom scanned
at 9.4T shown in figure 11 shows promise and behaves
as predicted by the MR simulation experiments. The only
complication found required using a complex-valued f MLEM
algorithm extended from the one proposed by Choi et al. [65]
that adjusts the EM algorithm to allow arbitrary ranges
of image values in the reconstruction to remove the non-
negativity constraint of the f MLEM. This is important in
complex-valued images as the real and imaginary parts can be
both positively and negatively valued. The upper and lower
bounds used for this ABf MLEM algorithm were in the order
of magnitude of the expected bit depth of the image. However,
this algorithm effectively requires an additional projection
and back-projection step per iteration rather than one, hence
requiring an additional two FFTs.

IV. DISCUSSION

The proposed ChaoS method was found to be robust in the
presence of noise and to arbitrary complex-valued measure-
ments as can be seen from figures 8 and 11. Both the simu-
lated and experimental results showed promising performance
over the radial and CS methods. Despite having the optimal
sampling pattern for fidelity through 2D incoherence [44] and
a non-linear optimiser (a non-linear conjugate gradient (CG)
in this case) in the simulation, the reconstruction from the CS
method had visible artifacts when compared to the proposed
ChaoS scheme.

In both the simulations and the MR imaging experiment
that involve significant under-sampling (50%-12.5% of full
sampling), the turbulent Ghosts are eventually removed with
the combination of search for the maximum likelihood solution

and dampening the Ghosts with image denoising. The image
independent nature of the Ghosts allows edge preserving and
texture reducing smoothing to dampen the Ghosts over time.
This forced the optimisation out of local minima and approach
the global solution. This can be seen in the oscillatory nature
of the convergence in figure 9.

In MR imaging, the random sampling pattern for the CS
method is usually one that only has 1D coherence, because
MR measurements are optimized for linear acquisition and
not 2D non-linear trajectories. As a result, the MR experiment
showed that the CS method had significant 1D artifacts due
to only having 1D coherence, meaning the Ghost artifacts in
this dimension could not be adequately removed. The fractal
sampling on the other hand, had no such limitation as it
remains unchanged from the patterns used in the simulation.
This shows that the proposed ChaoS method has greater
potential in real-world applications to MR imaging and other
areas where linear sampling is preferred.

The non-local means denoising algorithm [61] was found to
be the best performing regularization in MR experiments con-
trast to CS, where total variation algorithms are preferred. This
is probably due to the turbulent nature of the Ghosts, since the
turbulence manifests as texture features more than pseudo-
random noise, and the non-local means algorithm is more
suited to artifacts with texture. Therefore, other (non-linear)
regularization algorithms, such as the bilateral filter [66], may
also prove successful.

Although both f MLEM and f SIRT are designed with
different noise models in mind, namely Poisson and Gaussian
respectively, the effects of noise is very small compared to
the effect of the Ghosts and therefore application of either
method is justified. The reconstruction errors are unstructured
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Fig. 12. The reconstruction performance of the proposed ChaoS method
compared to CS for a Lego phantom acquired using a Bruker BioSpec small
animal 9.4T scanner. The reduction factors 2, 4, and 8 correspond to 50%,
25% and 12.5% of the fully sampled FLASH (Cartesian) sequence data.

as expected and there are no apparent issues with convergence
(see figure 9).

Transform sparsity could also be introduced into the pro-
posed method, although shown to be not necessary, to compute
more convex optimisation type solutions. Do and Vetterli [67]
have already shown how the slices of the DFT can naturally
map to a wavelet representation. Randomizing imaging data
via the DRT has also been explored and may be useful in
this endeavor [68]. Figure 8 also shows that MR acquisitions
should be possible and could prove a more natural fit for sparse
MR image reconstruction than CS because the geometry of
k-space is equivalent to DFT space allowing the use of discrete
lines in acquisition. These lines could be implemented via a
series of radial lines.

There are a couple of limitations of the proposed method
however. Firstly, we have assumed that the measurements are
acquired with a fractal pattern. In reality, the patterns are only
approximately fractals (or pseudo-fractals), since image sizes
are usually small (i.e. N � 216) and errors are present in sam-
pling positions in real world applications, such as diagnostic
imaging. Thus, one obtains more ideal turbulence at higher
image resolutions and therefore the proposed method would
likely work better at very large image sizes. The imperfection
of the fractal at lower resolutions can be seen in figure 8
utilized for the MR simulation. The result is that the Ghosts

are not perfectly turbulent, retaining some minimal structure.
We have shown however, that p = 257 is sufficient for
MR measurements and the proposed method yielded favorable
results in these contexts (see figures 8 and 11). In the same way
pseudo-random numbers are still suitable for use as random
numbers, we believe that pseudo-fractals will have similar
utility.

A second limitation is that the finite iterative reconstruction
algorithms developed in this work requires the use of non-
linear smoothing algorithms, such as non-local means, which
usually have high computational complexity, although it is
not required for every iteration. Faster algorithms of these
types of methods tend to be approximations of the desired
smoothing outcomes. However, when K > 2 and p was the
closest prime number greater than k N for k > 1, it was found
that the f MLEM algorithm did not require any smoothing
to remove the Ghosts directly providing the desired result.
In these cases, ChaoS is not dependent on any assumptions
of image appearance as it relies on the EM algorithm and the
DRT, where the latter can recover an arbitrary finite image
with compact support and the maximum likelihood solution
suffices directly because the Katz criterion is satisfied allowing
theoretically exact reconstruction.

There are a number of other interesting questions that arise
regarding the finite fractal presented in this work. The fractal
is very reminiscent of a diffraction pattern in crystallography.
It would be interesting to see if such a fractal could be phys-
ically realized based on previous work on “Diffractals” [69]
and fractal gratings [70]. More generally, it remains to be seen
if the fractal can provide further insight into number theory,
as the distances of Farey sequence from the origin is equivalent
to the Riemann hypothesis, which relates to the distribution of
prime numbers [71].

More crucially, it remains to be seen whether other fractals
can be utilized for making limited measurements, particularly
in DFT space. For example, the Julia set shown in figure 3
naturally exists in the complex plane. Given recent work
on studying the actual pattern of DFT coefficients utilized
in medical image reconstruction [41] showed that there is
a certain distribution of coefficients mostly near the origin,
fractal patterns that sample near the origin, such as the
Dragon or Julia sets, could prove very useful in medical image
reconstruction.

V. CONCLUSION

This work proposed the Chaotic Sensing (ChaoS) method-
ology that utilizes fractal sampling for the recovery of images
from significantly under-sampled imaging data. ChaoS pro-
duces turbulent mixing of image information resulting in
chaotic Ghost artifacts, yet in a deterministic fashion that
facilitates finite iterative reconstruction through discrete tomo-
graphic projections (see figure 7). The artifacts are removed
through a combination of obtaining the maximum likelihood
solution and dampening these artifacts via smoothing. The
proposed scheme was made possible via a newly discovered
fractal in the DFT (see figure 1), whose symmetry makes it
invariant in both image and DFT spaces. The work was eval-
uated and compared to compressed sensing using simulations
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on test images and MR phantom experiments (see figures 8
and 11). It was found to be robust to noise, positive and
negative complex-valued measurements and artifacts, while
offering promising performance over compressed sensing with
the same amount of under-sampling. Further work is required
in studying the mathematical properties of the new fractal and
in applying the proposed methodology to other applications.
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