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Fast Piecewise-Affine Motion Estimation
Without Segmentation

Denis Fortun , Martin Storath , Dennis Rickert, Andreas Weinmann, and Michael Unser , Fellow, IEEE

Abstract— Current algorithmic approaches for piecewise affine
motion estimation are based on alternating motion segmentation
and estimation. We propose a new method to estimate piecewise
affine motion fields directly without intermediate segmentation.
To this end, we reformulate the problem by imposing piece-
wise constancy of the parameter field, and derive a specific
proximal splitting optimization scheme. A key component of
our framework is an efficient 1D piecewise-affine estimator
for vector-valued signals. The first advantage of our approach
over segmentation-based methods is its absence of initialization.
The second advantage is its lower computational cost, which is
independent of the complexity of the motion field. In addition to
these features, we demonstrate competitive accuracy with other
piecewise-parametric methods on standard evaluation bench-
marks. Our new regularization scheme also outperforms the more
standard use of total variation and total generalized variation.

Index Terms— Motion estimation, optical flow, optimization,
piecewise affine.

I. INTRODUCTION

TWO important prior models have been explored for
motion estimation. The first one works with a dense rep-

resentation of motion and imposes at each pixel a smoothness
constraint [19] such as total variation (TV) [5], [56] or total
generalized variation (TGV) [4], [44]. These regularization
terms are most often convex and well suited to a large
collection of optimization techniques. However, they create
undesirable artefacts like staircasing or smoothing of motion
discontinuities. The second type of prior model works with
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parametric representations of motion, which may be chosen to
provide a satisfying match of 3D translations on the camera
plane. In particular, the piecewise-affine model overcomes the
limitations of TV and TGV and has yielded very accurate
results in several previous works [37], [42], [55]. Yet, in spite
of these achievements, local smoothness priors are still pre-
ferred to piecewise-parametric ones in most motion estimation
methods. The main difficulty that restrain the spreading of the
piecewise-parametric model is the challenging optimization
problem it involves. In this work, we address this optimization
issue.

The problem is usually formulated as the joint segmen-
tation of the motion field and estimation of the parameters
inside each region, following the seminal work of Mumford
and Shah [25] for the image segmentation part. The inter-
dependency of these two tasks translates into highly non-
convex optimization. The existing solutions proceed itera-
tively by alternating an optimization step with respect to
the image partition and an optimization step with respect to
the motion parameters. This alternating scheme causes two
main issues. Firstly, the resulting scheme is very sensitive
to initialization and can only be used for refinement. Sec-
ondly, the computational cost is often prohibitive for prac-
tical applications. In particular, it depends on the number of
regions, which should typically be very large to achieve high
accuracy.

In this paper, we propose a new method to estimate
piecewise-affine motion fields. It eschews the explicit seg-
mentation of motion and the aforementionned limitations of
existing methods. Our main contributions can be summarized
as follows:

• We revisit the standard formulation and impose a
piecewise-constant regularization of the field of affine
parameters. It leads to the direct estimation of a
piecewise-affine motion field without intermediate seg-
mentation.

• We propose an optimization method based on a specific
proximal-splitting approach that yields a series of 1D
piecewise-affine vectorial estimation problems. We design
an efficient solver that is based on dynamic programming
and inspired by the works on segmentation described in
[33], [35], and [48].

• We present experimental evidence on the reference bench-
marks MPI Sintel [7] and Kitti [16] showing that our
approach outperforms the standard TV and TGV reg-
ularizations, and that it is competitive with the best
performing piecewise-parametric methods [40], [55].
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• Our optimization scheme does not require any initial-
ization of the motion field, and it is faster than other
piecewise-parametric approaches. In particular, the com-
putational time does not depend on the complexity of the
motion field.

Thus, our method combines the advantages of the
piecewise-affine model with robustness and a low computa-
tional cost. It can be integrated as a regularizer in various
motion estimation frameworks.

The outline of the paper is as follows: In Section II,
we review related works and identify their limitations.
In Section III, we describe the model and optimization method
that we propose. In Section IV, we evaluate the performance
of our method on standard benchmarks. In Section V, we give
concluding remarks.

II. RELATED WORKS

Motion estimation aims at recovering the deformation
field between to consecutive frames of an image sequence.
Piecewise-parametric approaches based on joint motion seg-
mentation and parameter estimation have been formulated as
an optimization problem of the form

J = min
R,w

(
ρ(w) + λ

2

L∑
n=1

L(Rn)

)
, (1)

where L is the number of regions, R = {R1, . . . , RL} is a
partition of the image, w is a piecewise-parametric motion field
on R (i.e. w is parametric on each Rn for n = 1, . . . , L .), ρ is
a function that imposes data fidelity, L is a segmentation prior
usually defined as the total boundary length delineating the
segmented regions Rn, and λ is a balance parameter between
ρ and L. Problems of this type are typically minimized
alternately with respect to R, which amounts to an image-
partitioning problem, and with respect to w, which amounts
to a parametric motion fitting. A similar formulation has also
been used recently for image segmentation [57].

The differences between existing methods concern mainly
the solver for the image-partitioning problem. In a continuous
setting, following the approach of Mumford and Shah [25],
the problem has been addressed with an implicit level-set
representation of the partitioning curve in [13], [28], and [43].
A primal-dual optimization strategy was used in [42]. In a dis-
crete setting, iterated conditional modes and high confidence
first approaches were exploited in [3], [24], and [27]. Graph-
cuts methods have also been used in [31], and more recently
in [55]. Layered models, introduced in [46], involve a similar
optimization problem but add a depth information between the
different regions, from which occlusions can be derived. This
model has been revitalized in [32] and [37]–[39].

The first limitation of these approaches is their sensitiv-
ity to initialization when optimizing (1) with an alternating
scheme. This is illustrated in [39] and [42], where the opti-
mization is initialized through advanced motion estimation
methods [36], [50]. In [8], an alternating direction method
of multipliers (ADMM) approach is used to solve (1) with-
out intermediate segmentation steps. However, the underlying

model is piecewise-constant and not rich enough in most prac-
tical scenarios; it is initialized by a block matching algorithm.

The second limitation is the computational time, which
is mostly spent on the image-partitioning problem. The
earliest works retain at most five regions to make the prob-
lem tractable [3], [13], [24], [28]. More recently, the lay-
ered approach [39] handles a larger number of regions but
requires several hours of computation, and the primal dual
approach [42] can take up to one hour despite a GPU
implementation. The method proposed in [55] achieves around
fifteen minutes for (1240 × 370) image, with a graph cut
minimization approach.

In contrast, our method is initializaton-free and has a
significantly lower computational cost.

Beyond solving (1), other techniques can be involved to
improve the results. They include the handling of occlu-
sions [2], [27], [42], label cost terms to limit the num-
ber of regions [42], [55], edge-driven models to fit image
boundaries [28], deviations from the parametric models to
estimate more complex deformations [37], smoothness of the
parameters of neighboring regions [55], or post-processing
refinements with a variational optimization of TV-based mod-
els [55]. Yet other methods rely on similar principles but
incorporate additional information obtained from their applica-
tive context, like epipolar constraints [21], [45], temporal
consistency [21], or semantic information about the type of
moving objects in the scene [32].

Extensions of TV to second order derivatives result in
approximately piecewise-affine solutions [29], [41]. However,
the �1 norm does not delineate moving objects as sharply
as the Mumford-Shah model (1). In this line, the over-
parametrized approach [20], [26], which models a spatially
varying parameter field with TV regularization, also shows
this undesirable effect.

III. PROPOSED PIECEWISE-AFFINE ESTIMATION

In this section, we detail our method to estimate piecewise-
affine motion fields. After the model and minimization prob-
lem, we present our optimization strategy based on directional
splitting. The splitting leads to vector-valued denoising prob-
lems in 1D with piecewise-affine regularization. We provide
an efficient solver for these problems (Section III-D).

A. Piecewise-Affine Model

Let two successive frames of an image sequence be I1, I2 :
� → R, where � ⊂ N

2 is the image grid. Our goal is to
estimate the piecewise-affine motion field w : � → R

2 that
transports I1 to I2 according to (1). It is common to discretize
the length L(Rn) of the boundary of a segment Rn by

L(Rn) =
K∑

k=1

αk |{x ∈ Rn : x + dk /∈ Rn}|, (2)

where dk is an element of the set D ⊂ (Z2)K of directions,
αk > 0 is its corresponding weight [1], [9], and |A| denotes
the number of elements of a set A ⊂ �.. The choice of
D and α determines how well the regularizer approximates
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rotational invariance. Considering only horizontal and vertical
directions, with D = {(0, 1), (1, 0)}, creates block artifacts
similar to those of anisotropic TV regularization. To attenu-
ate them, we use the four-directional neighborhood system
D = {(0, 1), (1, 0), (1, 1), (−1, 1)} that includes diagonal
directions. The weights are chosen such that the norm built
from the basis vectors of D best approximates the isotropic
Euclidean norm [9], [35].

Henceforth, we assume that the motion field w can be
written in terms of the parameter field P : � → R

2×3 as

w(x) = P(x)x̄ (3)

for all x ∈ �, where x̄ = (x1, x2, 1) denotes the homogeneous
coordinates of x. When P is piecewise constant, it defines a
partition R of the domain �. This allows us to conveniently
express the piecewise-affine model (1) as

J = min
w,P

(
ρ(w) + λ

K∑
k=1

αk�∇dk P�0

)

s.t. w(x) = P(x)x̄ (4)

for all x ∈ �, where �∇dk P�0 counts the number of parameter
changes with respect to the direction dk , as given by

�∇dk P�0 = |{x ∈ � : P(x) �= P(x + dk)}| . (5)

Note that the factor 1
2 that was compensating for the double

counting of the boundary lengths in (1) is not needed in (4).
Although our final goal is to estimate the flow field w,
the introduction of P in (4) is important for the deriva-
tion of our proposed algorithm. Differently from the over-
parametrized approach [17], [26], we do not estimate the
parameters but directly the motion field.

The data term in (1) reflects the assumption of the conser-
vation of an image feature along the motion trajectory. Here,
we rely on the usual assumption of constant brightness and
penalize deviations with an �1 norm to gain robustness to
local violations such as occlusions or illumination changes.
The linearized form of this criterion is

ρd(w) =
∑
x∈�

|∇� I2(x) w(x) + It (x)|, (6)

where ∇� =
(

∂
∂x1

, ∂
∂x2

)�
and It is the discrete temporal

image gradient given by It = (I2 − I1). Note that this data
term (6) does not depend on the parameter field P but only
on the associated flow field w.

B. Splitting Approach and Augmented Lagrangian Resolution

The problem (4) is non-convex and NP-hard. Thus,
the convergence to a global minimum cannot be guaranteed.
To find a practical solution, we devise a splitting strategy.
We divide (4) into easier subproblems in an ADMM-like
augmented-Lagrangian framework, which has turned out
to often work well for non-convex problems [11], [18], [34],
[47], [54].

The starting point for our method is the formulation in terms
of the parameter field (4). We introduce splitting variables
Pk to decouple the data term and the terms associated to

the directions dk of the regularization. This leads to the
optimization problem

J = min
w,P1,...,PK

ρ(w) + λ

K∑
k=1

αk�∇dk Pk�0

s.t. w(x) = zk(x),

zk(x) = Pk(x)x̄, ∀x ∈ �, ∀k = 1, . . . , K . (7)

Then, the augmented Lagrangian (in scaled form) of (7)
writes

Aη(w, {Pk}k, {zk}k, {μk}k)

= ρ(w) + λ

K∑
k=1

αk�∇dk Pk�0

+ η

2

K∑
k=1

∑
x∈�

∥∥∥∥w(x) − zk(x) + μk(x)

η

∥∥∥∥
2

2
− 1

2η

∥∥μk(x)
∥∥2

2 ,

s.t. zk(x) = Pk(x)x̄, ∀x ∈ �, ∀k ∈ {1, . . . , K },

where {μk}k=1,...,K are Lagrange multipliers and η > 0 is a
parameter that controls the fulfillment of the constraints, and
influences the speed of convergence. Further, � · �2

2 denotes
the squared Euclidean norm in R

2. Note that we include the
equality constraints into the target functional only with respect
to the motion field variables. The couplings of the parameter
fields Pk and the flow fields zk remain as explicit constraints.
This will become important when solving the subproblems.

Next, we follow the ADMM strategy and iteratively mini-
mize the augmented Lagrangian with respect to w and zk , and
perform gradient ascents on the Lagrange multipliers as

w(n+1) = arg min
w

Aη(w, z(n)
1 , . . . , z(n)

K )

(z(n+1)
1 , ·) = arg min

z1,P1
Aη(w(n+1), z1, . . . , z(n)

K , P1)

s.t. z1(x) = P1(x)x̄, ∀x ∈ �
...

(z(n+1)
K , ·) = arg min

zK ,PK
Aη(w(n+1), z(n+1)

1 , . . . , zK , PK )

s.t. zK (x) = PK (x), ∀x ∈ �

μ
(n+1)
1 (x) = μ

(i)
1 (x) + η(w(n+1)(x) − z(n+1)

1 (x)), ∀x ∈ �

...

μ
(n+1)
K (x) = μ

(n)
K (x) + η(w(n+1)(x) − z(n+1)

K (x)), ∀x ∈ �.

(8)

Observe that we only need the minimizing arguments with
respect to the zk variables, but not with respect to the parame-
ter field. This is the reason why we omit the minimizer with
respect to Pk on the left hand side of (8).

The accuracy and efficiency of our approach is based on
our ability to solve exactly and at low computational cost each
subproblem in (8). In Sections III-C and III-D, we detail our
solvers for the update of w and zk , respectively.
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C. Update of w

The minimization with respect to w in (8) writes

ŵ = arg min
w

(
ρ(w)+ η

2

K∑
k=1

∑
x∈�

∥∥∥∥w(x) − zk(x) + μk(x)

η

∥∥∥∥
2

2

)
.

(9)

With simple manipulations, we rewrite (9) as

ŵ = arg min
w

(
ρ(w) + ηK

2

∑
x∈�

�w(x) − r(x)�2

)
, (10)

where

r(x) = 1

K

K∑
k=1

(
zk(x) − μk(x)

η

)
. (11)

Problem (10) is pointwise and admits a closed-form solution
with the thresholding scheme

ŵ(x) = r(x) +

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇I

ηK
, ρ0(r(x)) < −�∇ I�2

2

ηK

−∇I

ηK
, ρ0(r(x)) >

�∇ I�2
2

ηK

−ρ0(r(x))
∇ I

�∇I�2
2

, |ρ0(r(x))| ≤ �∇ I�2
2

ηK
,

(12)

where ∇I = ∇� I2(x) and ρ0(r(x)) = |∇I r(x)+It |. A similar
step appears in the context of a primal-dual optimization
framework [10], [56].

Note that while we give here the solution for a data term
derived from brightness constancy, the pointwise nature of the
problem makes it tractable for other assumptions. For example,
solutions for more sophisticated data fidelity terms based on
normalized cross correlation or census transform are studied
in [44].

D. Fast Update of zk

We address the minimization of the augmented Lagrangian
with respect to zk in the ADMM steps (8). It is instructive to
first consider the case z1 which corresponds to the minimiza-
tion in the vertical direction d1 = (0, 1).

Our first step is to reduce the problem to a one-dimensional
parameter estimation. To this end, we write the corresponding
line in (8) as

(ẑ1, ·) = arg min
z,P

(
κ�∇d1P�0 +

∑
x∈�

�v(x) − z(x)�2
2

)
,

s.t. P(x)x̄ = z(x), (13)

with v(x) = w(x) + μk(x)
η and κ = 2αkλ

η . Recall that x ∈
� = {1, . . . , m} × {1, . . . , n} and that z ∈ R

2 and P ∈ R
2×3.

A crucial observation is that �∇d1P�0 only takes into account
neighborhood differences within the vertical scan lines. There-
fore, the two-dimensional optimization problem (13) boils
down to independent one-dimensional subproblems. Let us

fix a vertical scan line by choosing a fixed index x1; the
corresponding 1D minimizer ẑ1 is then given by

(ẑ1(x1, ·), ·)
= arg min

z
,P


(
κ�∇d1P
�0 +

n∑
i=1

∥∥v
(i) − z
(i)
∥∥2

2

)
,

s.t. P 

11(i)x1 + P 


12(i)i + P 

13(i) = z


1(i)

P 

21(i)x1 + P 


22(i)i + P 

23(i) = z


2(i), (14)

for all m, where v
(m) = v(x1, m), and where z
 and P
 are
the flow field and parameter field on a one-dimensional line,
respectively. As x1 is fixed, the search space in P 
 can be
reduced to parameter fields which are constant in the P 


11
and P 


21 component, say P 

11 = P 


21 = 0, without increasing
the functional value. Let us denote such a reduced parameter
field by P

; i.e. P

(i) = (0, P 


12(i), P 

13(i); 0, P 


22(i), P 

23(i)).

The remaining four entries of the reduced parameter field are
estimated via

P̂

 = arg min
P



(
κ�∇d1P

�0 +

n∑
i=1

(v 

1(i) − P 


12(i)i − P 

13(i))

2

+ (v 

2(i) − P 


22(i)i − P 

23(i))

2
)

. (15)

The crucial point is that the problem (15) can be solved exactly
and efficiently and that ẑ(x1, ·) in (14) is recovered directly
from the reduced parameter field P̂

 by

ẑ

1(x1, i) = P̂ 


12(i)i + P̂ 

13(i)

ẑ

2(x1, i) = P̂ 


22(i)i + P̂ 

23(i) (16)

without computing an optimal full parameter field P̂
 in (14).
We propose to solve problem (15) by dynamic program-

ming. To that end, we cast it to a partitioning problem. We
denote by I a partition of N = {1, 2, . . . , n}, so that I consists
of subsets of N such that ∪I∈I = N and I ∩ J = ∅ whenever
I �= J. Here, we additionally require that each I ∈ I is a
“discrete interval”; that is, I is of the form {l, l + 1, . . . , r}.
The minimum functional value in (14) is equal to the minimum
value of the functional

B(I) = κ(|I| − 1)+
∑
I∈I

2∑
t=1

min
a,b∈R

∑
p∈I

(ap + b − v 

t (p))2 (17)

taken over all partitions I of N . (Note that the sum over t =
1, 2 comes from expanding the Euclidean norm in R

2.) From
an optimal partition Î which minimizes B, the minimizer P̂


of (15) can be obtained by letting P̂

 on I ∈ Î the (vectorial)
affine linear parameters determined by

(P̂ 

t2, P̂ 


t3)=arg min
a,b

∑
p∈I

(ap+b−vt(x1, p))2, for t = 1, 2.

(18)

It now remains to compute an optimal partition Î for prob-
lem (17). Our solver is based on the scheme presented in [15],
[23], and [51] which we explain next. We denote the optimal
functional value for data given on the domain {1, . . . , r} by

B∗
r = min

I partition on {1,...,r}
B(I). (19)
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It satisfies the Bellman equation

B∗
r = min

l=1,...,r

(
B∗

l−1 + κ +
2∑

t=1

εlrt

)
, (20)

where we let B∗
0 = −κ and

εlrt = min
a,b∈R

r∑
p=l

(ap + b − vt (x1, p))2. (21)

This reveals that B∗
r can be computed from B∗

l−1 and εlrt for
l = 1, . . . , r and for t = 1, 2. By the dynamic programming
principle, we successively compute B∗

1 , B∗
2 , until we reach B∗

n .
As our primary interest is the partition I rather than the
functional value, we keep track of a corresponding optimal
partition. An economic way is to store at step r the minimizing
argument l∗ of (20); see [15] for a detailed description of that
data structure. We further note that the εlrt in (21) can be
computed in O(1) by precomputation of the moments of the
data in (14); see Appendix A for a detailed description. The
worst case complexity of this algorithm is O(n2), where n
is the number of elements in one line of the motion field.
Thus, we get the complexity O(N3/2), where N denotes the
number of pixels in the image. Since n lines can be processed
simultaneously, the complexity is O(N) if n processors are
available. To further accelerate the computations, we adopt
the pruning strategy of [33].

So far, we have discussed the direction d1. For the directions
d2, . . . , dK , we get intrinsically one-dimensional problems
along the paths determined by the finite-difference vectors in
a similar way. More precisely, we solve the one-dimensional
problems of the form (14) linewise along vertical paths for
k = 2 and along diagonal and antidiagonal paths for k = 3, 4,
respectively. The 1D subproblems in vertical direction have
length m. Meanwhile, those in the vertical direction have
varying lengths, because the number of pixels in a diagonal
direction depends on its offset.

IV. EXPERIMENTAL RESULTS

A. Large Displacements Model

Modern evaluation benchmarks often include large displace-
ments. To cope with them, we extend the model described in
Section III by adopting the approach described in [6], [30], and
[49]. It has become standard for variational motion estimation.
This amounts to adding a term φ(w, m) to the model (4),
to promote similarity of the motion field w to the motion of a
precomputed set of matched pixels m : � ⊂ � → R

2, defined
on a sparse subset � of the image grid. This leads to

J = min
w,P

ρ(w) + γφ(w, m) + λ

K∑
k=1

αk�∇dk P�0

s.t. w(x) = P(x)x̄ (22)

for all x ∈ �, where γ > 0 is a balance parameter and
φ(w, m) is defined by

φ(w, m) =
∑
x∈�

c(x) �w(x) − m(x)�1, (23)

TABLE I

COMPARISON OF AEP ON BENCHMARKS

Fig. 1. Equivalence between vector (left) and color (right) representations
of displacement vectors.

where c is the indicator function of � defined by

c(x) =
{

1, x ∈ �

0, else.
(24)

We compute the matches with the method described in [49],
using the public code of the authors.1 This new term has
almost no impact on the computational cost in the optimization
framework described in Section III. We introduce an additional
splitting variable associated to φ, which generates a new
subproblem that is solved directly, like in Section III-C.
We give the detailed minimization steps in Appendix B.

Finally, to overcome the restriction of small displacements
of the linearized data term (6), the estimation is integrated in
a standard coarse-to-fine scheme [5].

B. Evaluation Datasets

We validate our method on two reference benchmarks for
motion estimation.
The MPI Sintel benchmark is composed of sequences extracted
from a realistic animated movie. It contains 1 064 training
sequences with available ground truth and 564 test sequences

1http://lear.inrialpes.fr/src/deepmatching/
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Fig. 2. Comparison with the TV motion fields (left column) and their associated error maps (right column). We provide a zoomed cutout of the motion
field in each case. The error map shows the euclidean distance between the estimated motion vector and the ground truth at each pixel, represented with the
colorbar displayed on the second row.

used for blind evaluation [7]. Each sequence has a final and a
clean version. The final version introduces perturbations such
as motion blur, defocus, or atmospheric fog, which are not
present in the clean version. These effects are handled by the
data term or by specific estimation strategies. To focus on the
evaluation of the regularization, we used the clean dataset in
our experiments.
The Kitti benchmark [16] is composed of 193 training
sequences and 193 test sequences, acquired in real outdoor
conditions on a platform installed on a moving car. A ground
truth is provided only for half of the pixels. This benchmark
is characterized by large illumination changes.
We compute the estimation accuracy with the endpoint error,
defined at each pixel as the Euclidean distance between the

estimated motion vector and the ground truth. We report the
averaged endpoint error (AEP) on the whole image. Estimating
motion in occluded regions is an important problem that is
beyond the scope of this paper [14], [22], [52], [53]. Therefore,
we compute the errors only in non-occluded regions.
The results on the two benchmarks are presented in Table I,
on the training and test sets. We consider methods with public
codes for the training set, and the ones with published results
for the test set. Therefore, some methods are not present in
both categories. We did not report the result of DataFlow
for the test set of MPI Sintel since the published results
have been obtained without the large displacement extension
of Section IV-A, which is decisive to obtain comparable
results.
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Fig. 3. Comparison with the TGV motion fields. The visualizations of TGV-Census and NLTGV-Census are taken from [29]. The input images are from the
f inal version of the MPI Sintel dataset.

Fig. 4. Comparison of the motion fields (columns 1 and 3) and their associate error maps (columns 2 and 4) on the sequences market_4 (columns 1 and 2)
and ambush_2 (columns 3 and 4) of the MPI Sintel benchmark. The error map shows the euclidean distance between the estimated motion vector and the
ground truth at each pixel, represented with the colorbar displayed on the second row.

C. Visualization of Motion Fields

We display motion fields with the standard color code
defined in Fig. 1. The hue indicates the direction of the
displacement, and the saturation indicates the amplitude of
the displacement.

D. Implementation Details

The parameters are optimized on a subset of 30% of the
training data set, both on MPI Sintel and Kitti. The results of
Table I are obtained on the rest of the sequences. To accelerate
convergence, we increase the value of η at each iteration in (8).
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We start with the initial value η(0) = 0.01 and we define the
sequence (η(i))i∈N by a geometric evolution η(i+1) = τ η(i)

with τ = 1.1. As pre-processing, we apply Gaussian filtering
with a variance of 0.9 to the input images to reduce the
influence of noise. We apply a weighted median filter as a
post-processing at each scale of the coarse-to-fine scheme to
remove outliers. The scale factor of the coarse-to-fine pyramid
is set to 0.75.

The algorithm has been implemented in MATLAB,
with a C++ implementation for the dynamic program-
ming solver. The 1D piecewise-affine denoising subproblem
(Section III-D), which consumes most of the computational
time, is naturally parallelizable. The reported runtime results
have been obtained with a parallelization on 4 cores, on an
Intel Xeon CPU 2.6GHz.

E. Comparison Methods

We want to focus on regularization while validating our
piecewise-affine model. We consider competing methods that
are as close as possible to ours and compare our method
with 1) the usual TV and TGV regularizations, and 2) other
piecewise-parametric approaches.

1) TV-Based Methods: The method named Classic++ is
described in [38]. It uses the same data term as ours, with
an anisotropic TV regularization but without the features
described in Section IV-A.

The DeepFlow method [49] differs from our formulation
of Section IV-A by an isotropic TV regularization instead of
our piecewise-affine constraint and by a gradient conservation
in addition to the intensity conservation (6).

Finally, we also consider the nonlocal extension of TV
described in [38] and named Classic+NL.

To demonstrate the importance of the piecewise-affine
model compared to TV regularization, we create a method
that we term Ours-TV by replacing the one-dimensional
piecewise-affine constraint in (22) by a one-dimensional TV
regularization. This leads to the optimization problem

J = min
w

(
ρ(w) + γφ(w, m) + λ

K∑
k=1

αk T Vk(w)

)
, (25)

where T Vk applies TV regularization in the kth direction. The
minimization framework remains unchanged, except for the
subproblems with respect to zk in (8). They become TV-�2
denoising problems, efficiently solvable with the taut-string
algorithm [12].

2) TGV-Based Methods: The second-order TGV regulariza-
tion generalizes the TV approach and imposes a piecewise-
affine form by introducing penalization of second derivatives
with an �1 norm [4]. We consider the method Data Flow
described in [44]. It uses TGV regularization with several
advanced data terms. In our experiments, we used the sum
of absolute differences, which is a patch-based version of
brightness constancy. We integrated φ from (22) in DataFlow,
taking advantage of the public code provided by the authors.

We also performed comparisons with the nonlocal version
of TGV proposed in [29], termed NL-TGV. However, the data
term in NL-TGV is different from ours. It is based on the

Fig. 5. Comparisons between the results of our method, PH-Flow [55],
and FC-2Layers-FF [40] on images from the test sequence of the MPI Sintel
benchmark.

census transform, which provides invariance to illumination
changes.

3) Piecewise-Parametric Methods: The method termed
PH-Flow estimates a piecewise homography model and is
based on the formulation (1) with inter-piece regularization
and graph cut optimization [55].

We also perform comparisons with the method FC-2Layers-
FF [40], which is based on a layered representation and is
not purely piecewise-parametric but allows deviations from
an affine model in each of the segmented region.

We used the publicly available codes for Classic++ and
Classic+NL,2 DeepFlow,3 and Data Flow.4

F. TV and TGV Regularization

In Figure 2, we compare our result with methods based
on TV regularization, namely, Ours-TV, Classic++, and its
nonlocal variant Classic+NL, in the case of smooth variations
of the motion field and small displacements. We display the
estimated motion field and the endpoint error maps. The TV
regularization produces typical staircasing artifacts due to the

2http://people.seas.harvard.edu/ dqsun/
3http://lear.inrialpes.fr/src/deepflow/
4http://github.com/vogechri/DataFlow/



5620 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

Fig. 6. Reconstruction of motion edges (last row) from the motion field estimated with our method (third row) on examples of the MPI Sintel dataset. Black
pixels in the motion fields represent occluded region.

piecewise constancy of the solution. This effect is emphasized
in the cutouts of Figure 2. Our piecewise-affine approach does
not produce staircasing and is much closer to the ground truth,
both visually and in terms of AEP. We also observe that the
motion discontinuities are more accurately recovered with our
approach.

In Figure 3, we compare our method with the methods
TGV-Census, NLTGV-Census and DataFlow, which are based
on TGV regularization. The absence of staircasing of TGV
comes at the price of some blurring artifacts in the result. Even
the nonlocal approach NLTGV-Census, which is specifically
designed to reduce blurring, cannot solve completely the
problem. In contrast, our method combines a good restitution
of affine displacements with a satisfactory recovery of sharp
motion discontinuities.

In Figure 4, we compare the results of our method, Ours-
TV, DeepFlow and Data Flow. We recall that the essential
difference between these methods is only the regulariza-
tion strategy. We observe that the sharpness of discontinu-
ities is always better preserved in our results compared to
DeepFlow and Data Flow. Generally, the global shapes of
moving objects are more accurately delineated by our method.
We also observe staircasing artifacts in the results of Ours-
TV. Altogether, the best AEP is achieved by our method.
Note that large errors at image borders are due to occlusions
and are not taken into account in the computation of the
AEP.

These qualitative observations are confirmed by the bet-
ter results of our approach in Table I compared to the
methods with a similar framework but different regular-
ization: Ours-TV, DeepFlow, DataFlow, Classic+NL, and
NLTGV-Census.

G. Piecewise-Parametric Methods

1) Accuracy: In Figure 5, we show visual comparisons
between our method, PH-Flow, and FC-2Layers-FF. On these
examples, our method is able to retrieve more details and to
delineate motion discontinuities more accurately. The numer-
ical results of Table I show a clear advantage on MPI Sintel.
On the Kitti benchmark, our method is close to the best
performing method PH-Flow.

2) Initialization and Post-Processing: Our method is
initialization-free, contrarily to all other piecewise-parametric
motion estimation methods, as described in Section II. It is
also refinement-free, while the results of PH-Flow are obtained
after refinement with the method Classic+NL dedicated to
small displacements.

3) Runtime: Our method needs 135s to compute a motion
field on a pair of 1241 × 376 images of the Kitti benchmark,
while the runtime of PH-FLow reported on the Kitti website
is 800s for the same image pair. FC-2Layers-FF is not present
in the Kitti benchmark but reports a rutime of 40 minutes for
a pair of 600 × 400 images of the Middlebury benchmark.
Another major advantage of our method is that the runtime is
completely independent of the complexity of the motion field.
On the contrary, the computational cost of the segmentation
performed by PH-Flow and FC-2Layers-FF depends highly on
the number of regions, which can be very high for complex
motion fields. Also note that we estimate motion on non-
downsampled images, while PH-Flow computes piecewise
parametric motion on images downsampled by a factor of 2
before refinement.

4We reproduce the images publicly available on the website of the bench-
mark. We also give the AEP associated to each motion field.
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Fig. 7. Plot of the AEP (left) and computation time (right) with respect to the downsampling factor applied to the input images, and for two different values
of K .

H. Reconstitution of Piecewise-Affine Edges

To illustrate the piecewise-affine form of the estimated
motion fields, we show in Figure 6 a reconstruction of motion
edges obtained by thresholding the magnitude of spatial deriv-
atives of the motion field. When the scene is composed of a
few moving parts undergoing simple deformations, the image
domain is divided in a few meaningful regions. When the
motion is more complex, our method decomposes the motion
field in smaller pieces. A crucial aspect of our method is that
this increasing complexity has no effect on the computational
cost.

I. Tradeoff Between Computation Time and Accuracy

For specific applications, a compromise may be required
between accuracy and computation time. To analyze the
impact of image downsampling on this issue, we report
in Fig. 7 the AEP and the computation time obtained on the
first frame of the KITTI dataset, for different downsampling
factors applied to the input images. The computed motion
fields are upsampled with bicubic interpolation to the original
image size and are post-processed with a weighted median
filter. We also show the effect of the number of directions K
in the discretization of the gradient (4). We compare the results
with K = 4 (which is our choice in all previous experiments)
and K = 2.
We observe that the error increases almost linearly, while
the decrease of the computation time is very fast for small
downsampling factors. Similarly, the error is slightly higher
when K = 2 compared to K = 4, but the computation
time is significantly lower for small downsampling factors.
These elements could be taken into account for the choice of
a tradeoff between accuracy and computation time.

V. CONCLUSION

We have proposed a new method to estimate piecewise-
affine motion fields. In contrast to related methods, our
approach does not rely on explicit segmentation but directly
estimates a piecewise-affine motion field. Key steps in the
derivation are the specific formulation of the energy functional
as a constrained optimization problem and the decomposition

into tractable subproblems by an alternatig direction method
of multipliers strategy. Then, these subproblems are cast to
(non-convex) univariate piecewise-affine problems. A cru-
cial ingredient of our method is that we are able to solve
them exactly and efficiently. Our method overcomes the two
main limitations of previous piecewise-parametric approaches,
namely, sensitivity to initialization and computational cost.
Yet, our experiments show that it is competitive in terms of
quality. Further, they suggest that the piecewise affine model
improves upon total variation and total generalized variation
regularizations when using similar data terms. The versatility
of our proximal splitting strategy lets extensions of the method
to new data terms be easily implemented. Thus, the proposed
approach can serve as a general regularization framework for
motion estimation.

APPENDIX A
CALCULATION OF THE APPROXIMATION ERRORS

We describe how to efficiently compute the approximation
errors εlrt required in (20). Let g ∈ R

n×2. (This corresponds
to gpt = vt (x1, p). for all p, t in (20).) Taking the derivative
of the right-hand side of (21) with respect to a, b yields the
optimality conditions

r∑
p=l

wp(alrt p + blrt − gpt)p = 0

r∑
p=l

wp(alrt p + blrt − gpt) = 0. (26)

This linear system can be rewritten as

ak Elr + bk Glr = Ilrt ,

akGlr + bk Hlr = Jlrt , (27)

with the auxiliary quantities

Elr =
r∑

p=l

wp p2, Glr =
r∑

p=l

wp p, Hlr =
r∑

p=l

wp, (28)

Ilrk =
r∑

p=l

wpgpt p, Jlrk =
r∑

p=l

wpgpt . (29)
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The solutions a∗
lrk and b∗

lrk are given by

a∗
lrt = Ilr Hlr − Glr Jlrk

Elr Hlr − G2
lr

(30)

and

b∗
lrt = Elr Jlr − Ilrk Glr

Elr Hlr − G2
lr

. (31)

Plugging this into (21) gives us

εlrk

= J 2
lr Elr − 2Glr Jlrt Ilrt + Hlr I 2

lrt + G2
lr Klrt − Hlr Elr Klrt

G2
lr − Hlr Elr

(32)

where Klrt = ∑r
p=l wpg2

pt . Note that the involved sums
can be computed efficiently by utilizing precomputations of
moments. For example, Elr can be computed via Elr =
E 


r − E 

l−1 where E 


t = ∑t
p=1 wp p2. So Elr can be computed

in O(1) if the vector E 
 is precomputed. E 
 in turn can
be computed in O(n). For the other summations, analogous
schemes are applied.

APPENDIX B
OPTIMIZATION FOR THE LARGE DISPLACEMENT MODEL

To solve the minimization problem (22) for the extended
model, we follow the splitting scheme used for (7). We intro-
duce an additional splitting variable associated to the term φ.
Accordingly, (22) rewrites

J = min
w,u,P1,...,PK

(
ρ(w) + γ φ(u, m) + λ

K∑
k=1

αk�∇dk Pk�0

)

s.t. w(x) = zk(x),

u(x) = w(x),

zk(x) = Pk(x)x̄, ∀x ∈ �, ∀k = 1, . . . , K .

(33)

The augmented Lagrangian associated to (33) is then

Aη1,η2(w, u, {Pk}k, {zk}k, {μk}k,ξ)

= ρ(w) + γ φ(u, m) + λ

K∑
k=1

αk�∇dk Pk�0

+ η1

2

K∑
k=1

∑
x∈�

∥∥∥∥w(x) − zk(x) + μk(x)

η1

∥∥∥∥
2

2
− 1

2η1

∥∥μk(x)
∥∥2

2

+ η2

2

∑
x∈�

∥∥∥∥u(x) − w(x) + ξ(x)

η2

∥∥∥∥
2

2
− 1

2η2
�ξ(x)�2

2

s.t. zk(x) = Pk(x)x̄, ∀x ∈ �, ∀k ∈ {1, . . . , K }. (34)

Similarly to the update scheme (8), the ADMM steps
involve minimizing Aη1,η2(w, u, {Pk}k, {zk}k, {μk}k,ξ) with
respect to w, zk , and u. The minimization problem with respect
to zk is the same as in Section III-D. We detail now the
updates of w and u, which are very similar to the description
of Section III-C.

A. Update of w

The minimization w.r.t u in can be rewritten

min
w

ρ(w) + η1 K + η2

2

∑
x∈�

(w(x) − t(x))2 , (35)

where

t(x) = 1

η1 K + η2

(
η1 K r(x) + η2

(
u(x) + ξ(x)

η2

))
. (36)

The problem is pointwise and admits a closed-form solution
with the thresholding scheme

w(x) = t(x) +

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇I

η1 K
, ρ0(t(x)) < −�∇ I�2

2

η1 K

− ∇ I

η1 K
, ρ0(t(x)) >

�∇ I�2
2

η1 K

−ρ0(t(x))
∇ I

�∇ I�2
2

, |ρ0(t(x))| ≤ �∇ I�2
2

η1K
.

(37)

B. Update of u

The minimization w.r.t u in writes

J = min
u

(
γφ(u, m) + η2

2

∑
x∈�

�u(x) − v(x)�2

)
. (38)

where v(x) = w(x) − ξ(x)
η2

.
The problem is pointwise and admits a closed-form solution

with the thresholding scheme

uk(x)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vk(x), c(x) = 0,

vk(x) + γ

η2
, vk(x) − mk(x) < − γ

η2
and c(x) �= 0

vk(x) − γ

η2
, vk(x) − mk(x) >

γ

η2
and c(x) �= 0

mk(x), |vk(x) − mk(x)| ≤ γ

η2
and c(x) �= 0.

(39)

where k = {1, 2} and we use the notations u(x) =
(u1(x), u2(x)), v(x) = (v1(x), v2(x)), and m(x) =
(m1(x), m2(x)).
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