
5378 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

Hadamard Coding for Supervised Discrete Hashing
Gou Koutaki , Member, IEEE, Keiichiro Shirai , Member, IEEE, and Mitsuru Ambai, Member, IEEE

Abstract— In this paper, we propose a learning-based super-
vised discrete hashing (SDH) method. Binary hashing is widely
used for large-scale image retrieval as well as video and document
searches, because the compact binary code representation is
essential for data storage and reasonable for query searches using
bit operations. The recently proposed SDH method efficiently
solves mixed-integer programming problems by alternating opti-
mization and the discrete cyclic coordinate descent (DCC) method.
Based on some preliminary experiments, we show that the SDH
method can be simplified without performance degradation.
We analyze the simplified model and provide a mathematically
exact solution thereof; we reveal that the exact binary code is
provided by a “Hadamard matrix.” Therefore, we named our
method Hadamard coded-SDH (HC-SDH). In contrast to the
SDH, our model does not require an alternating optimization
algorithm and does not depend on initial values. The HC-SDH
is also easier to implement than the iterative quantization. Exper-
imental results involving a large-scale database show that the
Hadamard coding outperforms the conventional SDH in terms
of precision, recall, and computational time. On the large data
sets SUN-397 and ImageNet, the HC-SDH provides a superior
mean average of precision (mAP) and top-accuracy compared
with the conventional SDH methods with the same code length
and FastHash. The training time of the HC-SDH is 170 times
faster than the conventional SDH and the testing time including
the encoding time is seven times faster than the FastHash which
encodes using a binary-tree.

Index Terms— Supervised discrete hashing, Hadamard matrix,
binary orthogonal.

I. INTRODUCTION

B INARY hashing is an important technique for pattern
recognition, computer vision, machine learning, and

large-scale image/video/document retrieval [1]–[7]. Binary
hashing enables multi-dimensional feature vectors with inte-
gers or floating-point elements to be transformed into short
binary codes.

This binary code representation is an important technique
since large-scale databases occupy large amounts of storage.
Furthermore, it is easy to compare a query in binary code with

Manuscript received October 26, 2017; revised April 1, 2018 and
May 26, 2018; accepted June 18, 2018. Date of publication July 12, 2018;
date of current version August 14, 2018. This work was supported by JST
PRESTO. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Xiaochun Cao. (Corresponding author:
Gou Koutaki.)

G. Koutaki is with the Department of Electrical and Computer Engineer-
ing, Kumamoto University, Kumamoto 860-8555, Japan (e-mail: koutaki@
cs.kumamoto-u.ac.jp).

K. Shirai is with the Faculty of Engineering, Shinshu University,
Nagano 380-8553, Japan (e-mail: keiichi@shinshu-u.ac.jp).

M. Ambai is with the Denso IT Laboratory, Inc., Tokyo 150-0002, Japan
(e-mail: manbai@d-itlab.co.jp).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2018.2855427

a binary code in a database because the Hamming distance
between them can be computed efficiently by using bitwise
operations that are part of the instruction set of any modern
CPU [8], [9].

Many binary hashing methods have been proposed in the
past two decades. Locality-sensitive hashing (LSH) [1] is one
of the most popular methods. LSH generates binary codes by
using a random projection matrix and thresholding using the
sign of the projected data. Iterative quantization (ITQ) [2] is
another state-of-the-art binary hashing method. ITQ optimizes
a projection matrix of the hash function by iterating projection
and thresholding procedures according to the given training
samples. The binary code of a query is compared with the
binary codes in a database, and efficient algorithms for search-
ing for the nearest neighbor code have been developed [10].
Moreover, classifiers such as support vector machine and its
improved method [11] are used for the classification.

Binary hashing can be roughly classified into two types:
unsupervised hashing [3], [6], [12]–[15] and supervised hash-
ing. Supervised hashing uses label information if it exists.
In general, supervised hashing is more accurate than unsuper-
vised hashing; thus, in this study, we target supervised hashing.
In addition, some unsupervised methods such as LSH and ITQ
can be converted into supervised methods by imposing label
information on their feature vectors. For example, canonical
correlation analysis (CCA) [16] can transform feature vectors
to maximize inter-class variation and minimize intra-class vari-
ation according to the label information. Hereafter, we refer
to these processes as CCA-LSH and CCA-ITQ, respectively.

Rather than imposing label information on feature vectors,
such as in CCA, imposing it directly on hash functions
has been proposed. In this case, a cost function is defined
by both the label information and feature vectors. Kernel-
based supervised hashing (KSH) [17] uses spectral relaxation
to optimize the cost function through a sign function. The
feature vectors are transformed by kernels during preprocess-
ing. KSH has also been improved to kernel-based supervised
discrete hashing (KSDH) [18]. It relaxes the discrete hashing
problem through linear relaxation. Supervised discriminative
hashing [5] decomposes training samples into inter- and intra-
samples. Column sampling-based discrete supervised hashing
(COSDISH) [19] uses column sampling based on semantic
similarity, and decomposes the problem into a sub-problem
to make it easier to solve. In these methods, binary code b
is computed as b = sign(P�x) by using a sign function
and linear matrix operation on the input feature vector x.
A main problem of these approaches is to obtain the matrix P.
On the other hand, the use of other algorithms to compute
the binary code has also been proposed. For example, fast

1057-7149 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3414-1085
https://orcid.org/0000-0003-2072-5087

KOUTAKI et al.: HADAMARD CODING FOR SDH 5379

supervised hashing (FastHash) [20] generates a binary code
using a boosted decision tree.

The optimization of binary codes leads to a mixed-integer
programming problem involving integer and non-integer vari-
ables, which is an NP-hard problem in general [7]. Therefore,
many methods either discard the discrete constraints or trans-
form the problem into a relaxed problem, i.e., a lin-
ear programming problem [21]. This relaxation significantly
simplifies the problem, but is known to affect classification
performance [7].

Recent research has introduced a type of supervised discrete
hashing (SDH) [7] that directly learns binary codes with-
out relaxation. SDH is a state-of-the-art method because of
its ease of implementation, reasonable computation time for
learning, and enhanced performance over other state-of-the-art
supervised hashing methods. SDH solves discrete problems
by using a discrete cyclic coordinate descent (DCC) method,
which is an approximate solver of 0-1 quadratic integer
programming problems. In the latest work of [22], rather than
using the integer programming solver, a simple sign operation
to optimize the binary code generates good binary codes of
SDH and it is efficient to train samples while maintaining the
performance. This algorithm is known as fast SDH (FSDH).

Moreover, there are some improvements in supervised
hashing and its cost function. Supervised discrete hash-
ing with relaxation (SDHR) [23] improved label-loss by
adding an offset vector. In spite of the simple modifica-
tion, the performance can be improved. In [24], �p,q mixed
norm is introduced as the cost function for robust similarity
searches. Distributed adaptive binary quantization has been
proposed [25] and it optimizes the binary codes associated
with the distribution of training samples. Some methods use
the structure of samples [26], [27]. A sparse encoding and
sparse anchor representation are also useful for general hash-
ing frameworks [28], [29]. Recently, neural network based
hashing methods have been developed [30], [31] and have
high accuracy.

A. Contributions and Advantages of Our Method

In this study, we first analyze the SDH method and point
out that it can be simplified without performance degrada-
tion based on some preliminary experiments. We analyze
the approximated model and provide a mathematically exact
solution thereof. Because the exact solution can be provided by
the Hadamard matrix as described later, we name our method
Hadamard coded-supervised discrete hashing (HC-SDH). The
model simplification is validated through experiments involv-
ing several large-scale datasets.

The advantages of the proposed method are as follows:
• Unlike SDH or FSDH, HC-SDH does not require alter-

nating optimization or hyper-parameters, and is does not
depend on the initial value.

• It is easier to implement than ITQ and is efficient in terms
of computational time. In MATLAB, the implementation
of HC-SDH only requires three lines.

• High bit scalability: the learning time and performance
of HC-SDH do not depend on the code length.

• HC-SDH is superior in terms of precision and recall than
other state-of-the-art supervised hashing methods.

B. Related Work

1) PQ Type Hashing: Binary hashing methods such as ITQ
and SDH are a kind of quantization hashing. Another type
of quantization hashing, product quantization (PQ), is well
known [32]–[36]. PQ-type hashing uses vector quantization
such as k-means and an input feature vector is represented by
the code word of training samples. In binary hashing, a query
vector is encoded into a binary code and a symmetric distance
such as the Hamming distance is used. On the other hand,
in PQ-type hashing, the query vector is not encoded into a
binary code and an asymmetric distance is used for searching.
Although discussions of PQ-type hashing vs. binary hashing
are continuing today, in this study, we focus on binary hashing.

2) Matrix Factorization: As described subsequently,
the SDH method poses a matrix factorization
problem: F = W�B. The popular form of this problem
is singular value decomposition (SVD) , and when W
and B are unconstrained, the Householder method is
used for computation. When W ≥ 0, non-negative matrix
factorization (NMF) is used [37]. In the case of the SDH
method, B is constrained to {−1, 1} and W is unconstrained.
In a similar problem setting, Slawski et al. proposed matrix
factorization with binary components [38].

3) Other Applications: Other applications of factorization
with binary components exist outside of hashing for pattern
recognition and image retrieval. In this regard, [38] reported an
application to DNA analysis for cancer research in which B is
constrained to {0, 1}, and indicates unmethylated/methylated
DNA sequences. The factorization was optimized by using
CPLEX. Furthermore, a similar model has been proposed
for use in display electronics. The work of [39] proposed
binary continuous decomposition for multi-view displays.
Their model decomposes multiple images F into binary
images B and a weight matrix W. An image projector projects
binary 0-1 patterns through digital mirror devices (DMDs), and
the weight matrix corresponds to the transmittance of the LCD
shutter. The decomposition was optimized by using particle
swam optimization (PSO) and a branch-and-bound method.

The remainder of this paper is organized as follows.
Section II contains an overview of the SDH method and
Sec. III discusses the technical problems this model presents.
Section IV elaborates on the proposed approximated SDH
method and analyzes the model, after which the exact solution
of the model is provided. Section V describes the experiments
in detail, provides the results, and discusses the findings.
Finally, the paper is concluded in Sec. VI.

II. SUPERVISED DISCRETE HASHING (SDH) MODEL

In this section, we introduce the supervised discrete hash-
ing (SDH) model. Let xi ∈ R

M be a feature vector as an
M dimensional column vector, and let us introduce a set of
N (≥ M) training samples X := [x1, . . . , xN] ∈ R

M×N . Then,
consider binary label information yi ∈ {0, 1}C corresponding

5380 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

to xi , where C is the number of classification categories.
Setting the k-th element to 1, [yi]k = 1, and the other
elements to 0 indicates that the i -th vector belongs to class k.
By concatenating N yi vectors horizontally, a label matrix
Y := [

y1, . . . , yN
] ∈ {0, 1}C×N is constructed.

A. Binary Code Assignment to Each Sample

To each sample xi , an L-bit binary code bi ∈ {−1, 1}L is
assigned. By concatenating N bi vectors horizontally, a binary
matrix B := [b1, . . . , bN] ∈ {−1, 1}L×N is constructed. The
binary code bi is computed as

bi = sign
(

P�xi

)
, (1)

where P ∈ R
M×L (hence P� ∈ R

L×M) is a linear transfor-
mation matrix and sign(·) is the sign function. The major
aim of SDH is to determine the matrix P from training
samples X. In practice, feature vectors {xi} are transformed by
preprocessing. Thus, we denote the original feature vectors xori

i
and the transformed feature vectors xi .

B. Preprocessing: Kernel Transformation

The original feature vectors of training samples xori
i

(i = 1, . . . , N) are converted into the feature vectors xi ∈R
M

using the following kernel transformation �:

xi ← �(xori
i)

=
[

exp

(

−�x
ori
i − a1�2

σ

)

, . . . , exp

(

−�x
ori
i − am�2

σ

)]�
,

(2)

where am is an anchor vector obtained by randomly sampling
the original feature vectors, am = xori

rand. Then, the trans-
formed feature vectors are bundled into the matrix form
X := [x1, . . . , xN].

C. Classification Model

Following binary coding by (1), we assume that the binary
code that classifies the class is effective, and formulate the
following simple linear classification model:

ŷi =W�bi , (3)

where W ∈ R
L×C is a weight matrix and ŷi is an esti-

mated label vector. As mentioned above, its maximum index,
arg min

k
[̂yi]k , indicates the assigned class of xi .

D. Optimization of SDH

The SDH problem is defined as the following minimization
problem:

min
B,W,P

�Y−W�B�2 + λ�W�2 + ν�B− P�X�2, (4)

where � · � is the Frobenius norm, and λ ≥ 0 and ν ≥ 0 are
balance parameters. The first term includes the classification
model explained in Sec. II-C. The second term is a regularizer
for W to avoid overfitting. The third term indicates the fitting
errors due to binary coding.

In this optimization, it is sufficient to compute P, i.e., if P
is obtained, B can be obtained by (1), and W can be obtained
from the following simple least-squares equation:

W =
(

BB� + λI
)−1

BY�. (5)

However, because of the difficulty presented by optimization,
the optimization problem of (4) is usually divided into three
sub-problems comprising the optimization of B, W, and P,
respectively. Thus, the following alternating optimization is
performed:

(i) Initialization: B is initialized, usually randomly.
(ii) F-Step: P is computed by the following simple

least-squares method:

P =
(

XX�
)−1

XB�. (6)

(iii) W-Step: W is computed by (5).
(iv) B-Step: After fixing P and W, Eq. (4) becomes

min
B
�Y�2 − 2Tr(W�Y�B)+ Tr(B�WW�B)

+ ν
(
�B�2 − 2Tr(P�XB)+ �P�X�2

)

⇒ min
B

Tr(B�QB+ F�B), (7)

where

Q : = WW� ∈ R
L×L ,

F : = −2
(

WY+ νP�X
)
∈ R

L×N . (8)

Note that Tr(B�B) = L N . The trace can be rewritten as

min{bi }

N∑

i=1

b�i Qbi + f�i bi , (9)

where fi ∈ R
L is the i -th column vector of F. The {bi }

are independent of one another. Therefore, it reduces to the
following 0-1 integer quadratic programming problem for each
i -th sample:

∀i min
bi∈{−1,1}L

b�i Qbi + f�i bi . (10)

Here, the FSDH method simply computes the binary code as

B = sign(WY+ νP�X). (11)

(v) Iterate steps (ii)∼(iv) until convergence is achieved.

III. DISCUSSION OF THE SDH METHOD

A. 0-1 Integer Quadratic Programming Problem

1) DCC Method: SDH solves (10) by using a discrete cyclic
coordinate descent (DCC) method. This method optimizes a
one-bit element of bi while fixing the other L − 1 bits; the
l-th bit bl is optimized as

bl = −sign

(
2

∑

i
=l

Qi,l bi + fl

)
. (12)

Then, all bits l = 1, . . . , L are optimized, and this procedure is
repeated several times. In addition, the DCC method is prone
to converge to a local minimum because of its greediness.
To improve this method, Shen et al. proposed using a proximal
operation of convex optimization [40].

KOUTAKI et al.: HADAMARD CODING FOR SDH 5381

Fig. 1. Convergence of optimizations with several initial conditions.
Even though the problem is simple, conventional solvers with alternating
optimization (DCC and full search) cannot reach the optimal solution (green
line) and converge to local minima.

2) Branch-and-Bound Method: In the case of a large num-
ber of bits L ≥ 32, solving (10) exactly is difficult because this
problem is NP-hard. However, a few efficient methods capable
of solving the 0-1 integer quadratic programming problem,
exist. In [39], a branch-and-bound method is used to solve the
problem. Their approach is to expand b into a binary tree of
depth L, and the problem of (10) is divided into a sub-problem
by splitting b = [b�1 , b�2]�. At each node, the lower bound
is computed and compared with the given best solution; child
nodes can be excluded from the search.

The computation of the lower bound depends on the struc-
ture of Q, q, and b. In general, a standard method for
computing the lower bound is the linear relaxation method,
b ∈ {−1, 1}L ⇒ b ∈ [−1, 1]L . In this case, a rough lower
bound of the quadratic term in (10) can be provided by
the minimum eigenvalues of Q. However, linear relaxation
is pointless in the SDH method because L > C in general;
hence, the matrix Q =WW� is rank deficient and, as a result,
the minimum eigenvalue of Q becomes zero.

Even if we could obtain an efficient algorithm, such as
branch-and-bound and a good lower bound, the application of
binary hashing would still present computational difficulties
because code lengths of L = 64, 128, or 256 bits, which are
frequently encountered, would remain too long to optimize.

B. Alternating Optimization and Initial Value Dependence

Even if we could perform the binary optimization in (10),
the resulting binary codes B would not always be optimal
because they depend on other fixed variables W and P.
In addition, alternating optimization is prone to cause a serious
problem: the solution depends on the initial values, and may
converge to a local minimum during iteration, even if each step
of F-Step, W-Step, and B-Step provided the optimal solution.

Figure 1 shows an example of the optimization result for a
simple version of the SDH method in (4) with a small number
of bits (L, C, N)=(16, 10, 10). In this case, an exact solution
is known and the minimum value is 0.94 (green line in Fig. 1).
The DCC (red lines) provides results for 10 randomized initial
conditions. The full search (blue lines) provides the results of

an exact full search in B-Step, where 216 = 65, 536 nodes are
searched.

Despite the small size of the problem, the cost function
of conventional alternating solvers (DCC and full search)
cannot find the exact value, and depend on the initial values.
Interestingly, a full search immediately converges to a local
minimum, and the results are less accurate than those of DCC.

IV. PROPOSED SDH METHOD

We introduce a new hashing model by approximating
the SDH method. The new model utilizes the following
assumptions:

A1: The number of bits L of the binary code is a power
of 2: L = 2l .

A2: The number of bits is greater than the number of
classes: L ≥ C .

Single-labeling

A3: problem.

A4: �WY�2 � ν�P�X�2 in (8).
Note that assumptions A1∼A3 also become the limitations
of the proposed model. In A4, SDH recommends that the
parameter ν is set to a very small value, such as ν = 10−5 [7].
In practice, �WY�2 � 31.53 and ν�P�X�2 � 0.013 in the
CIFAR-10 dataset. Furthermore, when ν = 0, almost the
same results can be obtained for all datasets as shown in
the experimental results in Sec. V.

Using the approximation, we solve the following problem
for each N-sample bi in B-Step:

∀i min
bi∈{−1,1}L

b�i Qbi + f�i bi , (13)

where Q := WW� is a constant matrix and fi that is the
i -th column vector of F := −2WY depends on label yi .
By using the single-label assumption in A3, the number of
kinds of yi is limited to C:

y1 = [1, 0, . . . , 0]�, . . . , yC = [0, 0, . . . , 1]�. (14)

Thus, it is sufficient to solve only C of the N integer quadratic
programming problems of (13). In general, the number of
samples N is larger than the number of classes: N � C ,
e.g., N = 59, 000 and C = 10. Thereby, the computational
cost of B-Step becomes 5, 900 times lower. In other words,
the approximation proposes the following:

Proposition 1: The approximation by ν = 0 defines the
SDH method to assign a binary code to each class.

After obtaining the binary codes of each class B� =[
b�1, . . . , b�C

] ∈ {−1, 1}L×C , the binary codes of all samples B
can be constructed by lining up b�i as

B :=
[
b�y1

, . . . , b�yN

]
. (15)

After constructing B, the projection matrix P can be obtained
by (6).

5382 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

A. Analytical Solutions of the Approximated SDH Method

From Proposition 1, we found that it is sufficient to deter-
mine the binary code for each class. Furthermore, we can
choose the optimal binary codes under the approximation
model as follows:

Lemma 1: If f (xi) is convex, the solution of

min{xi }

N∑

i

f (xi) s.t .
N∑

i

xi = L (16)

is given by the mean value xi = L/N (i = 1, . . . , N).
Proof: See Appendix VI-A. �

Theorem 1: An analytical solution of the approximated
SDH B� is obtained as a Hadamard matrix.

Proof: Using the approximation and label representations
in (14), the SDH method in (4) becomes

min
B�,W

�I −W�B��2 + λ�W�2, (17)

where I ∈ R
C×C is an identity matrix. Using the solution

of (17), i.e., W=(B�B�� + λI)−1B�, and the eigendecomposi-
tion of B��B� =U�DU, we denote the eigenvalues as σi and
denotes a diagonal matrix diag(D)= {σi }Ci=1 and then obtain∑C

i=1 σi = Tr(D)= Tr(B��B�)= LC as the trace of diagonal
values. Then, (17) can be represented simply as

min
B�

C∑

i=1

λ

σi + λ
s.t .

C∑

i=1

σi = LC. (18)

By Lemma 1, σi = L (i = 1, . . . , C). This implies that B� is
an orthogonal matrix with binary elements {−1, 1}; in other
words, B� ∈ {−1, 1}L×C can be obtained as a submatrix of
the Hadamard matrix H∈{−1, 1}L×L . We named our method
Hadamard coded-supervised discrete hashing (HC-SDH). �

Corollary 1: The following characteristics can be obtained
easily:

• B� is independent of regularization parameter λ (i.e., it is
λ-invariant).

• The optimal weight matrix W of HC-SDH is given by
scaling the binary matrix B� as W = 1

L+λB�.
• The minimum value of (17) is given by λC

L+λ .
In short, this means it becomes possible to eliminate

the W-Step, the alternating procedure, and the initial value
dependence. Moreover, an exact solution of the HC-SDH
method can be obtained independently of the hyper-parameters
λ and ν.

B. Implementation of HC-SDH

Algorithm 1 and Figure 2, respectively, show the algorithm
of HC-SDH and sample MATLAB code, which is simple and
easy to implement. Figure 3 shows an example of B� and B.
A Hadamard matrix of size 2k×2k can be constructed recur-
sively by Sylvester’s method [41] as

H2 : =
[

1 1
1 −1

]
,

H2k : =
[

H2k−1 H2k−1

H2k−1 −H2k−1

]
(k ≥ 2). (19)

Algorithm 1 Hadamard Coded-Supervised Discrete Hashing
(HC-SDH)

Fig. 2. Sample MATLAB code for the main part of HC-SDH, which is
implemented in only three lines and is easier to implement than the ITQ
algorithm.

Fig. 3. An example of the construction of B� and B with L = 8 bits and
C = 4 classes. After computing B� from the Hadamard matrix, the binary
code B with N columns is constructed according to label yi .

Furthermore, Hadamard matrices of orders 12 and 20 were
constructed by Hadamard transformation [42]. Fortunately,
in applications of binary hashing, because L = 16, the num-
bers of bits that are frequently used are 32, 64, 128, 256, and
512, and Sylvester’s method suffices in most cases. Here,
the assumption A1 is not a necessary and sufficient condition
because it suffices to obtain the binary orthogonal matrix
such as a Hadamard matrix. More precisely, it is known
that there exist Hadamard matrices when n is a power of 2;
n = L/12 or L/20. Therefore, for example L = 24, 48, 96,
and 192 are also available and are sufficient for actual
applications.

C. Analysis of Bias Term of HC-SDH

We have already shown that B, which is obtained from
the Hadamard matrix, minimizes two terms: �Y−W�B�2 +
λ�W�2. Furthermore, we pay attention to the way in which B
affects the bias term �B−P�X�2. In this subsection, we con-
tinue to analyze its behavior. We suppose that samples are
sorted by label yi . Let P� = BX�

(
XX�

)−1
be the bias term:

�B− P�X�2 = �B (I−K) �2
= Tr(B�B)− Tr(BKB�), (20)

KOUTAKI et al.: HADAMARD CODING FOR SDH 5383

Fig. 4. Visualization of matrix K (left) and matrix B�B (right). B�B of
SDH includes a “negative” block in the non-diagonal components, and reduces
Tr(KB�BK).

where K := X�
(
XX�

)−1
X ∈ R

N×N is a projection matrix.
Therefore, to reduce the bias term, Tr(BKB�) should prefer-
ably have a large value. Then, using K = KK, we can rewrite
it as

Tr(BKB�) = Tr(KB�BK), (21)

where B�B is a block-diagonal matrix:

B�B = L

⎡

⎢
⎣

JN1 O
. . .

O JNC

⎤

⎥
⎦ , (22)

where JNk ∈1Nk×Nk are matrices with all elements equal to 1,
and Nk is the number of samples with label yi = k. Using
these values, Tr(KB�BK) in (21) can be expressed as

L
N∑

i=1

[(
Ki,1 + . . .+ Ki,N1

)2 + (
Ki,N1+1 + . . .+ Ki,N2

)2

+ . . .+ (
Ki,NC−1+1 + . . .+ Ki,NC

)2
]
, (23)

where {Ki, j } with the same label yi = y j are summed.
The definition K := X�

(
XX�

)−1 X, Kij can be regarded
as the normalized correlation of xi and x j . Since samples
with the same label must represent a similar feature vector,
Tr(KB�BK) is assumed to be a large value.

Figure 4 shows visualizations of matrices K and B�B for
SDH and HC-SDH. High-correlation areas of K are partitioned
by each class block. B�B of SDH includes a “negative” block
in the non-diagonal components, and reduces Tr(KB�BK).
On the other hand, the proposed HC-SDH shows clear blocks;
the diagonal blocks take the value L and the non-diagonal
blocks 0.

V. EXPERIMENTS

We tested two experiments named Experiment I and Exper-
iment II. First, we tested datasets having a small number
of classes, C = 10, with many methods, and then we
tested datasets having over 100 classes with methods chosen
according to the results of Experiment I.

A. Datasets

We tested the proposed method on four kinds of
large-scale image datasets: CIFAR-10 and CIFAR-100 [43],
SUN-397 [44], MNIST [45], and ImageNet-2012 [46]. The
feature vectors of all datasets were normalized.

Recently, although an evaluation method for supervised
hashing has been discussed [47], we use a standard method
for the evaluation.

CIFAR-10 and CIFAR-100 include labeled subsets
of 60,000 images. In Experiment I, we used 512-dimensional
GIST features [48] extracted from the images. N = 59, 000
training samples and 1,000 test samples were used for eval-
uation. The number of classes was C = 10 in CIFAR-10,
and included “airplane,” “automobile,” “bird,” and so on.
In Experiment II, a CIFAR-100 of/with a large number of
classes C = 100 was used.

SUN-397 is a large-scale image dataset for scene recog-
nition with 397 categories, and consists of 108,754 labeled
images. In Experiment I, we extracted 10 categories with
C = 10 and N = 5, 000 training samples. A total of 500 train-
ing samples per class and 1,000 test samples were used.
We used 512-dimensional GIST features extracted from the
images. For C = 10, we named the dataset “SUN-10.”
In Experiment II, we used C = 397 classes and N = 79, 400
training samples.

MNIST includes an image dataset of handwritten digits.
The feature vectors we used were given by 28×28 = 784 [pix]
of data that were normalized. The number of classes was
C=10, i.e., ‘0’ ∼ ‘9’ digits. We used N = 30, 000 training
samples and 1,000 test samples for evaluation.

ImageNet is a large-scale image dataset with over
20,000 categories and it includes 14 million images.
We extracted 1024-dimensional GIST features from images
resized to 64×64 pixels. We sampled 50,000 training samples
and 1,000 test samples from 1,000 categories of the original
dataset.

B. Comparative Methods and Settings

The proposed method was compared with six state-
of-the-art supervised hashing methods: CCA-ITQ, SDH,
FSDH [22], COSDISH [19], FastHash [20], and KSDH [18].
Unsupervised or semi-supervised methods were not
assessed. All methods were implemented in MATLAB
R2016 and tested on an Intel i7-6950X@3.0 GHz CPU with
DDR4 SDRAM@128 GB.

CCA-ITQ: ITQ are state-of-the-art binary hashing meth-
ods. They can be converted into supervised binary hashing
methods by preprocessing feature vectors X using label infor-
mation. Canonical correlation analysis (CCA) transformation
was performed and feature vectors were normalized and set to
zero mean. They generated the projection matrix P, and binary
codes were assigned by (1).

COSDISH is a recently proposed supervised hashing
method. COSDISH generates the projection matrix P, as does
ITQ. The feature vectors are transformed such that they have
zero mean and are normalized through variance in preprocess-
ing. We used open-source MATLAB code, published by the
authors [19], for the computation.

FastHash is a nonlinear binary hashing method. The
binary codes are generated by boosted decision-tree. We used
open-source MATLAB code, published by the authors [20],
for the implementation.

5384 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

Fig. 5. Comparative results of precision, recall of Hamming distance within radius 2, and mAP for CIFAR-10 with code lengths from 16 to 128.

TABLE I

PRECISION OF HAMMING DISTANCE WITH RADIUS 2, MAP, TRAINING TIME, AND TEST TIME FOR CIFAR-10 WITH A 64-BIT CODE LENGTH

KSDH is a kernel-based discrete hashing method, which
is an improvement of kernel-based supervised hashing
(KSH) [17]. KSDH generates the projection matrix P. The
feature vectors are transformed by kernel function and anchor
points similar to SDH in preprocessing. Because public code
of KSDH does not exist, we used the MATLAB code of KSH,
published by the authors of KSH [17], and modified it to
implement KSDH.

SDH and FSDH are well-known supervised discrete hash-
ing methods. We used λ=1 and ν=10−5 with the maximum
number of iterative cycles set to 5, anchor points M=1, 000,
M=3, 000 and M=5, 000, and kernel parameter σ =0.4 for
all datasets. SDH generated the projection matrix P, and binary
codes were assigned by re-projection (1). Furthermore, to show
the validity of the HC-SDH approximation, we evaluated
the case where ν = 0 (SDHν=0). We used the open-source
MATLAB code, published by the authors of the SDH [7], for
the computation. FSDH uses almost the same model as SDH.
FSDH differs from SDH in that FSDH optimizes the binary
code B by (11).

HC-SDH: The proposed method used the same parame-
ters as SDH: anchor points M = 1, 000, M = 3, 000 and
M=5, 000, and kernel parameter σ = 0.4 for all datasets.
HC-SDH generated the projection matrix P and assigned
binary codes through re-projection (1), as in SDH. Our code
will be made available to the public,1 and is shown in Fig. 2.

1https://github.com/goukoutaki/HCSDH

C. Experiment 1: Small Classes and Short Code Length

We tested two kinds of experimental settings. In the first
experiment, a small number of classes C = 10 and short code
lengths L = 16, 32, 64, 96, and 128 were used.

1) Precision, Recall, and mAP: Precision and recall were
computed by calculating the Hamming distance between the
training samples and the test samples with a Hamming
radius of 2. Furthermore, the mAP was computed by rank-
ing the Hamming distance. Anchor points M = 1, 000,
3, 000, and 5, 000 were used for SDH, FSDH, KSDH,
and HC-SDH.

CIFAR-10: Table I provides the results of precision, mAP,
training time, and test time for the CIFAR-10 dataset with
a 64-bit code length. The results in the table indicate that
FastHash achieved the highest mAP. The proposed HC-SDH
yielded the best precision. SDH and SDH(ν = 0) provided
almost the same performance. The difference in training time
is derived from the number of iterative cycles of SDH and
SDH(ν= 0) converged faster than SDH. The performance of
FSDH was similar to that of SDH and the former required
less time for training than the latter method. The mAP of
HC-SDH is comparable to that of SDH. However, the pre-
cision of HC-SDH was high and the training time was the
shortest.

All the methods SDH, FSDH, HC-SDH, and KSDH
generate the binary code by a linear operation and sign
function of (1) and the same feature used for kernel

KOUTAKI et al.: HADAMARD CODING FOR SDH 5385

Fig. 6. Comparative results of precision, recall of Hamming distance within radius 2, and mAP for SUN-10 with code lengths from 16 to 128.

TABLE II

PRECISION AND MAP FOR MNIST AND SUN-10
WITH A 64-BIT CODE LENGTH

transformation in Sec. II-B. Therefore, the time these methods
requires for testing depends on the number of anchor
points. The longest computational testing time was obtained
for the kernel transformation. Although a high mAP was
obtained by FastHash, it required more computational time
than SDH because of the decision-tree-based binary code
generation.

Figure 5 shows the results of precision, recall and mAP for
the CIFAR-10 dataset with code lengths L = 16, 32, 64, 96,
and 128. The number of anchor points M = 3000, was used
for SDH, FSDH, HC-SDH, and KSDH. Although FastHash
showed a satisfactory mAP, the precision was reduced as a
function of the code length. As the code length increases,
SDH and FSDH reduce the precision to the same extent as
FastHash. However, the proposed HC-SDH maintains high
precision and recall for any code length. This is a significant
advantage of the proposed method. In general, an increase
in the code length tends to decrease the precision with such a
narrow threshold resulting from a Hamming radius of 2. SDH,
FSDH, and SDH(ν=0) almost achieve the same results. The
performance of HC-SDH improves when the number of anchor
points increases.

SUN-10: Figure 6 shows the results of the SUN-10 dataset.
The same number of anchor points was used as for CIFAR-10.
In this dataset, the recall rates of the HC-SDH remained high
in spite of long code lengths. When the SDH and HC-SDH
had the same number of anchor points, HC-SDH was clearly
superior. The mAP of FastHash was comparable to that of

TABLE III

COMPARISON OF PERFORMANCE WITH AND WITHOUT THE BIAS TERM

TABLE IV

�WY�2 AND ν�P�X�2 FOR ALL DATASETS FOR ν = 10−5

HC-SDH5000, for which the number of anchor points was
M = 5, 000.

MNIST: Figure 7 shows the results of the MNIST dataset.
HC-SDH yielded the best results for all datasets with the
same trends. It retained high precision and recall even with
long code lengths. The mAP is almost saturated for all
methods.

2) ROC Curves by Hamming Ranking: Figure 8 shows the
precision-recall ROC curves based on Hamming ranking. For
CIFAR-10, FashHash and COSDISH show the best result.
For the CIFAR-10 and MNIST datasets, SDH, FSDH, and
HC-SDH show almost the same results. Increasing the number
of anchor points of HC-SDH improves the performance of
HC-SDH5000 such that it becomes comparable to FastHash
for SUN-10.

3) Validation of Our Approximation of SDH: We validated
our approximation of SDH with ν = 0 in (4) by comparing
its performance with that of SDH with ν = 0 under the
same conditions. Table III presents the comparative results
of SDH with ν = 10−5 and SDH with ν = 0. For all
datasets, the results of SDH and SDH with ν = 0, were
almost identical. Table IV provides �WY�2 and ν�P�X�2
of SDH for all datasets after optimization. We can confirm

5386 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

TABLE V

TRAINING TIMES FOR CIFAR-10 [S] WITH CODE LENGTHS 16, 32, 64, 96, AND 128

Fig. 7. Comparative results of precision, recall of Hamming distance within radius 2, and mAP for MNIST with code lengths from 16 to 128.

Fig. 8. Comparative results of Precision and Recall ROC curves for all datasets and all methods with 32-bit code lengths.

�WY�2 � ν�P�X�2. For CIFAR-10, ν�P�X�2 is 0.041%
of �WY�2. This means that our approximation was appropriate
for supervised hashing.

4) Training Time: Table V lists the training time of each
method for CIFAR-10 with code length L = 16, 32, 64, 96,
and 128 for 59,000 training samples. As the number of anchors
increased, the training time increased for SDH, FSDH, and
HC-SDH. The training time for SDH, KSDH, COSDISH,
and FastHash increased significantly with the code length.
On the other hand, the training times required by FSDH
and HC-SDH are almost the same for all code lengths. The
reason for the increase in the time for SDH is that the

TABLE VI

LOSS COMPARISON OF SDH AND HC-SDH FOR SUN-10

number of iterative cycles of the DCC method depended
on the code length because it optimizes the binary code
bitwise.

KOUTAKI et al.: HADAMARD CODING FOR SDH 5387

TABLE VII

BIT-SCALABILITY OF HC-SDH AND SDH FOR CIFAR-10 AND 10,000 TRAINING SAMPLES

TABLE VIII

COMPARISON OF MAP, TOP-5 ACCURACY, TRAINING TIME, AND TEST TIME FOR SUN-397(C=397)

5) Loss Comparison: We define W-loss and P-loss of the
SDH method in (4) as follows:

W-loss = �Y−W�B�2,
P-loss = �B− P�X�2. (24)

Tables VI show the two types of loss of SDH and HC-SDH
after optimization of the SUN-10 datasets. As described in
Sec. IV-A, HC-SDH can minimize W-loss exactly. Therefore,
for all datasets, HC-SDH results in a lower value of W-loss
than SDH. Furthermore, as described in Sec. IV-C, HC-SDH
can also reduce P-loss. HC-SDH obtained a lower value of
P-loss than SDH.

D. Experiment 2: Large Classes and Code Lengths

To validate our method for a more actual case, we evaluated
the dataset with large classes and code lengths.

1) Bit-Scalability of Larger Code Lengths for CIFAR-10 and
CIFAR-100: First, we show the bit-scalability of the training
time for CIFAR-10. Table VII contains the comparative results
in terms of computational time and performance with a wide
range of code lengths L = 32 ∼ 1024 for the CIFAR-10
dataset. In this experiment, N = 10, 000 training samples,
1,000 test samples, and 1,000 anchors were used. The com-
putational time of HC-SDH was almost identical in terms of
the code length because the main computation in HC-SDH
involved matrix multiplication and inversion

(
XX�

)−1
of (6).

In practice, the inverse matrix was not computed directly,
and a Cholesky decomposition was performed. In contrast,
the computational time for SDH exponentially increased and
the precision decreased significantly. This means that the DCC
method converged to local minima in the case of large code
lengths as discussed in Sec. III-B.

TABLE IX

THE MAP AND TOP-5 ACCURACY FOR CIFAR-100(128 BITS)
AND IMAGENET(1024 BITS)

2) Larger Number of Classes and Larger Code Lengths:
Second, we tested using three datasets with a larger number
of classes as follows.

SUN-397: C = 397 classes with N = 79, 400 training
samples.

CIFAR-100: C = 100 classes with N = 50, 000 training
samples.

ImageNet: C = 1000 classes and we sampled N = 50, 000
training samples from the original 1.2 million training samples.

Table VIII lists the results of mAP, top-5 accuracy, training
time, and test time for the larger classes of the SUN dataset.
The results of SDH show that, by increasing the number
of anchor points, it becomes possible to improve the mAP.
In general, a large number of bits is useful for a large
number of classes. HC-SDH achieves the best mAP, accuracy,
and training time compared with SDH and FSDH. When
M = 30, 000 is used, mAP = 0.527 can be obtained by
HC-SDH. When M = 10, 000, the training time of the
proposed HC-SDH is five times faster than that of FSDH and
170 times faster than SDH.

The test times of these SDHs are similar. FastHash provides
a good mAP; however, the training time and test time are
longer than for HC-SDH. The time SDHs require for testing

5388 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

TABLE X

PERFORMANCE FOR THE CIFAR-100 DATASET WITH OVER 128 BITS

Fig. 9. Comparative results of precision and recall ROC curves for SUN-397, CIFAR-100 and ImageNet.

depends on the number of anchor points and most of the
computation is derived from the kernel transformation. The
test time of HC-SDH with M = 30, 000 is seven times faster
than FastHash and the mAP and top-5 accuracy of HC-SDH
is superior to the results of FastHash.

Table IX lists the results of mAP, top-5 accuracy for
CIFAR-100 and ImageNet datasets with 10000 anchors.
As well as SUN-397, HC-SDH outperforms the other methods
under the same conditions.

Figure 9 shows the precision and recall ROC curve
of the SUN-397, CIFAR-100 and ImageNet datasets with
512, 128 and 1024 bits, respectively. FSDH, HC-SDH, and
FastHash were evaluated and M = 30, 000 anchor points were
used for FSDH and HC-SDH. HC-SDH provided the best
performance. Table XIII compares the loss between FSDH
and HC-SDH for this dataset with 512 bits and M = 30, 000.
When the code length is large, FSDH cannot optimize the
W-loss and P-loss and performs poorly. Although HC-SDH
does not minimize the P-loss explicitly, as discussed in
Sec. IV-C, HC-SDH reduces the P-loss indirectly. Actually,
Table XIII shows that the P-loss of HC-SDH is less than that
of SDH.

Moreover, Table X shows the results for CIFAR-100 with
32, 64, 128, 256, 512 and 1024-bit code lengths and M =
10, 000 anchors. At 32 and 64 bits, we cannot use HC-SDH
due to assumption A2. When the code length is less than the
number of classes C , the mAP increases according to the code
length. As well as the results of CIFAR-10, the proposed
HC-SDH shows almost the same performance for all code
lengths. The conventional SDH can improve the performance
by increasing the code length, but, it cannot outperform the
proposed HC-SDH.

TABLE XI

RESULTS FOR THE MULTI-LABELED NUS-WIDE DATASET

E. Computational Complexity Analysis

In the conventional SDH, B-Step requires approximately
O(TDCCL2 NC), where TDCC is the number of iterations of
the DCC algorithm and it is set to TDCC = 10 in this study. The

computational bottleneck is P-Step, i.e., P = (
XX�

)−1
XB�

especially the inverse of XX� requiring O (
M3

)
for Cholesky

factorization, 2 where M is the dimension of the feature
vector x and it is also the number of anchor points. After
adding some matrix multiplications, finally it approximately
becomes O (

M2 N + M3 + M N L
)
. The SDH iterates the

steps until convergence or a maximum of T = 5 iterations.
Although the computational cost of an iteration in the FSDH
and HC-SDH is the same, the proposed method is T = 5 times
faster than the FSDH because our method requires a one-time
calculation.

2The computational bottleneck is at
(

XX�
)−1

, and in our method, it is

solved by the mldivide function of MATLAB. Since XX� is a symmetric
matrix, Cholesky factorization and forward and backward substitution are used
for solving it. The computational complexity for each operation to solve Ax =
b, where A := XX� of size N × N , is as follows: 1/3 N3 + 2/3 N in
Cholesky factorization A = LL�; N2 in forward substitution Ly = b; N2 in
backward substitution L�x = y. Additionally, other computational costs for
matrix multiplication are added.

KOUTAKI et al.: HADAMARD CODING FOR SDH 5389

TABLE XII

INTRA-CLASS DIVERSITY OF BINARY CODES FOR EACH CLASS

F. Discussion and Limitation

From the two experiments, we conclude that:
• Increasing the number of anchor points of the SDHs can

improve the mAP and accuracy (the maximum number
of anchor points is limited to the number of training
samples). This increase causes an increase in the training
and test time. Thus, we need to choose the number of
anchor points according to the test time.

• The training time of HC-SDH is more efficient than that
of SDH and FSDH.

• Larger code lengths can improve the performance in a
dataset with a larger number of classes. On the other
hand, HC-SDH maintains its performance.

We assume explicitly some assumptions A1∼A4 in Sec. IV
and they also become the limitations of HC-SDH. A1 is
sufficiently practical and A4 has been confirmed experimen-
tally through the evaluations for the six datasets in Table VI.
A2 means that the number of classes is limited to C ≤ L.
Usually, L = 64 ∼ 2048-bits are used in binary hashing in
practice. Although the maximum number of classes is limited
to approximately 2000, it is practical for many applications
within this limit. A3 means that the proposed HC-SDH is lim-
ited to single-labeling problems. Despite this limitation, there
are many applications of binary hashing for single-labeling
problems such as surface categorization from a hyperspec-
tral image in remote sensing [49], text categorization [50],
analysis for DNA sequences [51], applications of intelligent
transportation systems (ITS) such as traffic signs [52] and
vehicle classification [53] and more.

1) Extension to Multi-Labeling Hashing of HC-SDH: With
the assumption A3, although the proposed HC-SDH can
only handle single-labeling problems, there exist some tech-
niques to convert a single-labeling problem to multi-labeling
problem [54]. Note that the final output of both the conven-
tional SDH including multi-labeling models and the proposed
HC-SDH is the projection matrix P. A simple method to
extend the HC-SDH to a multi-labeling model is to duplicate
a multi-labeled training sample to multiple single-labeled
training samples and then learn by HC-SDH.

Table XI shows the results of SDH, FSDH, and HC-SDH for
the multi-labeled dataset NUS-WIDE [55]. In the evaluation,
the dataset includes 81 classes, and 100,000 training samples
and 10,000 test samples were used. M = 1, 000 anchors were
used in all methods. The proposed HC-SDH has a comparable
performance to SDH and FSDH with less computational time
despite the simple implementation. This indicates that the
proposed HC-SDH can handle the multi-labeling problem.

TABLE XIII

LOSS COMPARISON OF FSDH AND HC-SDH
FOR SUN-397 WITH 512 BITS

2) Re-Projection for Binary Codes and Intra-Class
Diversity: As well as other types of the SDH methods, each
binary code for test and training samples is converted by
b = sign

(
P�x

)
using the projection matrix P obtained in

Algorithm 1. Although our optimization for HC-SDH tends
to assign the same binary code to training samples in the
same class, each sample has a slight different binary code
due to re-projection. It can represent a unique characteristic
of the samples in the same class.

To observe the intra-class diversity, we checked it by
computing the diversity of some dataset. First, we defined the
intra-class diversity of binary codes as

σ 2
c :=

1

Nc

Nc∑

i=1

�bc,i − b̂c�2, (25)

where bc,i is the binary code for the training sample xi in
class c. b̂c is the mean vector of binary codes in class c. Nc is
the number of samples for the class c. Table XII shows the
diversity of CIFAR-10 and MNIST. The results show almost
the same values, which means that HC-SDH can represent the
diversity as well as SDH and FSDH.

3) Larger Number of Classes: For larger datasets with
over 10,000 classes, hierarchical classification can be used.
In hierarchical classification, multiple classifiers are used in
classifying sub-trees [56], e.g., a current version of ImageNet
has 21,841 categories and those are divided into 27-subtrees.
For a large-scale dataset, we can select our HC-SDH for
classifying the subtrees.

VI. CONCLUSIONS

In this paper, we simplified the SDH (supervised discrete
hashing) method to an HC-SDH (hadamard coded-supervised
discrete hashing) method by approximating the bias term,
and provided exact solutions for the proposed SDH method.
We revealed that the exact solution can be provided by the
Hadamard matrix. The proposed SDH approximation was
validated by comparative experiments with the SDH method.
Unlike conventional SDH, the HC-SDH does not require

5390 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

alternating optimization which would cause it to converge
to local minima. The HC-SDH is easy to implement. The
experimental results showed that our method outperformed
several state-of-the-art supervised hashing methods. In particu-
lar, for large code lengths, HC-SDH can maintain performance
without losing precision. For the large datasets SUN-397 and
ImageNet, HC-SDH provided the best mAP and top-accuracy
compared to the conventional SDH methods with the same
code length and FastHash. The training time of HC-SDH is
170 times faster than conventional SDH and the testing time
is seven times faster than FastHash.

Our idea, which avoids using alternating optimization by
using a Hadamard matrix, is easily applicable to other super-
vised hashing models such as the cross-modal model [57].
This model uses multiple features of not only images but also
text or video data. Here, in [57], the problem of alternating
optimization and its limitation was discussed. Our Hadamard
coding assigns one category to one binary code. Therefore,
it is an example of the vector quantization method in binary
space. For the assignment, the idea of collective matrix
factorization [58] may be useful. In future work, we plan
to extend Hadamard coding to a kind of vector quantization
approach to accelerate the search time.

APPENDIX

A. Proof of Lemma 1

The optimization problem in (16) is known as the resource
allocation problem [59]–[61]. Here we present a simple proof
for the solution.

The constraint
∑N

i=1 xi = L can be regarded as a sur-
face equation in an N-dimensional space (x1, x2, . . . , xN).
On the other hand, the gradient vector of the object function∑N

i=1 f (xi) is defined as

g := [f �(x1), f �(x2), . . . , f �(xN)]� (26)

where f �(·) is the differentiated version of f (·) and the
i -th element (the gradient in the i -th direction) is given by
∂

∂xi

∑
j f (x j) = ∑

j
∂x j
∂xi

∂
∂x j

f (x j), and ∂x j
∂xi

becomes 1 if
i = j or 0 if i
= j .

Then, the gradient along the surface is obtained as the
projection of g onto the surface, and computed as the
inner-product of g and a set of vectors {n⊥} perpendicular
to the normal vector of the surface:

n := 1√
N
[1, 1, . . . , 1]� ∈ R

N , (27)

and the projected gradient g�n⊥ becomes 0 at the global
extremum point on the surface. This also indicates g and n
are parallel and their inner-product becomes

(g
�g�2

)�
n = 1 ⇒ g�n = �g�2. (28)

Substituting (26) and (27) into (28), we get

1√
N

∑

i

f �(xi) =
√∑

i

f �(xi)2 (29)

Additionally, when we express f �(xi) as
√

f �(xi)2 and 1√
N

as
1
N

√
N , we get

1
N

∑

i

√
f �(xi)2 =

√
1
N

∑

i

f �(xi)2. (30)

The shape of this equality actually corresponds to Jensen’s
inequality:

∑
i pih(yi) ≥ h(

∑
i pi yi) where

∑
i pi = 1, and

the equality holds if and only if {yi }, i.e., { f �(xi)
2} are all

equal:

f �(x1)
2 = f �(x2)

2 = . . . = f �(xN)2 (31)

Additionally, when f (·) is a convex function, f �(·) becomes
an injective function because f ��(·) ≥ 0 is a monotonically
increasing function. Also, if the sign of f �(·) does not change
within the valid range of xi (the case considered in this paper),
f �(·)2 becomes injective. Hence,

x1 = x2 = . . . = xN . (32)

Finally, substituting (32) into the condition
∑N

i=1 xi = L,
we get

∀i xi = L

N
. (33)

B. Details of (17) to (18)

We consider the expansion of (17) as

�I −W�B��2 + λ�W�2
= �I�2 − 2Tr(W�B�)+ Tr(W�B�B��W)+ λTr(WW�).

(34)

Here, we use �I�2 = C , W = (
B�B�� + λI

)−1
B�,

and B��B� = U�DU by eigendecomposition with an orthogo-
nal matrix U−1 = U� and UU� = U�U = I. Here, note the
following relationship to the inverse matrix:

(
B�B�� + λI

)−1 =
(

U�DU+ λU�IU
)−1

= U� (D+ λI)−1 U. (35)

Using the property of exchanging order of trace Tr(AB) =
Tr(BA) and Tr(D)=∑C

i=1 σi and Tr(D+ λI)−1=∑C
i=1

1
σi+λ ,

we get

(34) = C − 2Tr(W�B�)+ Tr(W�B�B��W)+ λTr(WW�)

=
C∑

i=1

(

1− 2
σi

σi + λ
+ σ 2

i

(σi + λ)2 +
λσi

(σi + λ)2

)

=
C∑

i=1

λ

σi + λ
. (36)

ACKNOWLEDGEMENT

The authors would like to thank Dr. Yusuke Matsui for
providing valuable advice related to the PQ-type hashing
algorithm.

KOUTAKI et al.: HADAMARD CODING FOR SDH 5391

REFERENCES

[1] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proc. Int. Conf. Very Large Data Bases (VLDB),
1999, pp. 518–529.

[2] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916–2929, Dec. 2013.

[3] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2009,
pp. 1042–1050.

[4] X. Li, G. Lin, C. Shen, A. van den Hengel, and A. Dick, “Learning
hash functions using column generation,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2013, pp. 142–150.

[5] V. A. Nguyen, J. Lu, and M. N. Do, “Supervised discriminative hashing
for compact binary codes,” in Proc. ACM Multimedia Conf. (ACMMM),
2014, pp. 989–992.

[6] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. T. Shen, “Learning binary
codes for maximum inner product search,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 4148–4156.

[7] F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete hashing,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 37–45. [Online]. Available: https://github.com/bd622/DiscretHashing

[8] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
robust independent elementary features,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2010, pp. 778–792.

[9] S. Gog and R. Venturini, “Fast and compact Hamming distance index,”
in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR), 2016,
pp. 285–294.

[10] Y. Cao et al., “Binary hashing for approximate nearest neighbor search
on big data: A survey,” IEEE Access, vol. 6, pp. 2039–2054, 2018.

[11] J. Gui, T. Liu, D. Tao, Z. Sun, and T. Tan, “Representative vector
machines: A unified framework for classical classifiers,” IEEE Trans.
Cybern., vol. 46, no. 8, pp. 1877–1888, Aug. 2016.

[12] W. Liu, J. Wang, and S. F. Chang, “Hashing with graphs,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2011, pp. 1–22.

[13] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2014, pp. 3419–3427.

[14] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical
Hashing: Binary Code Embedding with Hyperspheres,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 11, pp. 2304–2316, Nov. 2015.

[15] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2009, pp. 1753–1760.

[16] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, nos. 3–4, pp. 312–377, 1936.

[17] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised
hashing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2012, pp. 2074–2081. [Online]. Available:
http://www.ee.columbia.edu/~wliu/

[18] X. Shi, F. Xing, J. Cai, Z. Zhang, Y. Xie, and L. Yang, “Kernel-based
supervised discrete hashing for image retrieval,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2016, pp. 419–433.

[19] W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sampling based discrete
supervised hashing,” in Proc. AAAI Conf. Artif. Intell. (AAAI), 2016,
pp. 1230–1236. [Online]. Available: http://cs.nju.edu.cn/lwj/

[20] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter,
“Fast supervised hashing with decision trees for high-dimensional
data,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Apr. 2014, pp. 1971–1978. [Online]. Available: https://bitbucket.
org/chhshen/fasthash/

[21] A. Schrijver, Theory of Linear and Integer Programming. Hoboken, NJ,
USA: Wiley, 1986.

[22] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, “Fast supervised discrete
hashing,” IEEE Trans. Pattern Recognit. Mach. Intell., vol. 40, no. 2,
pp. 490–496, Feb. 2017.

[23] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, “Supervised discrete hashing
with relaxation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 3,
pp. 608–617, Mar. 2018.

[24] Y. Guo, G. Ding, and J. Han, “Robust quantization for general similarity
search,” IEEE Trans. Image Process., vol. 27, no. 2, pp. 949–963,
Feb. 2018.

[25] X. Liu, Z. Li, C. Deng, and D. Tao, “Distributed adaptive binary
quantization for fast nearest neighbor search,” IEEE Trans. Image
Process., vol. 26, no. 11, pp. 5324–5336, Nov. 2017.

[26] X. Liu, Y. Mu, D. Zhang, B. Lang, and X. Li, “Large-scale unsupervised
hashing with shared structure learning,” IEEE Trans. Cybern., vol. 45,
no. 9, pp. 1811–1822, Sep. 2015.

[27] X. Liu, B. Du, C. Deng, M. Liu, and B. Lang, “Structure sensitive
hashing with adaptive product quantization,” IEEE Trans. Cybern.,
vol. 46, no. 10, pp. 2252–2264, Oct. 2016.

[28] Y. Guo, G. Ding, L. Liu, J. Han, and L. Shao, “Learning to hash with
optimized anchor embedding for scalable retrieval,” IEEE Trans. Image
Process., vol. 26, no. 3, pp. 1344–1354, Mar. 2017.

[29] G. Ding, J. Zhou, Y. Guo, Z. Lin, S. Zhao, and J. Han, “Large-
scale image retrieval with sparse embedded hashing,” Neurocomputing,
vol. 257, pp. 24–36, Sep. 2017.

[30] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 2475–2483.

[31] K. Lin, J. Lu, C.-S. Chen, and J. Zhou, “Learning compact
binary descriptors with unsupervised deep neural networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1183–1192.

[32] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[33] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 744–755,
Apr. 2014.

[34] X. Wang, T. Zhang, G.-J. Qi, J. Tang, and J. Wang, “Supervised
quantization for similarity search,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 2018–2026.

[35] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 769–790, Apr. 2018.

[36] H. Jain, J. Zepeda, P. Pérez, and R. Gribonval, “SuBiC: A supervised,
structured binary code for image search,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 833–842.

[37] I. S. Dhillon and S. Sra, “Generalized nonnegative matrix approxima-
tions with Bregman divergences,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2005, pp. 283–290.

[38] M. Slawski, M. Hein, and P. Lutsik, “Matrix factorization with binary
components,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2013,
pp. 3210–3218.

[39] G. Koutaki, “Binary continuous image decomposition for multi-view
display,” ACM Trans. Graph, vol. 35, no. 4, pp. 69:1–69:12, 2016.

[40] F. Shen, X. Zhou, Y. Yang, J. Song, H. T. Shen, and D. Tao, “A fast
optimization method for general binary code learning,” IEEE Trans.
Image Process., vol. 25, no. 12, pp. 5610–5621, 2016.

[41] J. J. Sylvester, “Thoughts on inverse orthogonal matrices, simultaneous
sign successions, and tessellated pavements in two or more colours, with
applications to Newton’s rule, ornamental tile-work, and the theory of
numbers,” Philos. Mag., vol. 34, no. 232, pp. 461–475, 1867.

[42] J. Hadamard, “Résolution d́une question relative aux déterminants,” Bull.
Sci. Math., vol. 17, no. 2, pp. 240–246, 1893.

[43] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Tech. Rep.,
2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/cifar.html

[44] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN data-
base: Large-scale scene recognition from abbey to zoo,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2010, pp. 3485–3492.
[Online]. Available: http://groups.csail.mit.edu/vision/SUN/

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998. [Online]. Available: http://yann.lecun.
com/exdb/mnist/

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255. [Online].
Available: http://www.image-net.org

[47] A. Sablayrolles, M. Douze, N. Usunier, and H. Jégou, “How should
we evaluate supervised hashing?” in Proc. IEEE Conf. Acoust. Speech
Signal Process. (ICASSP), Mar. 2017, pp. 1732–1736.

[48] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

[49] B. Pan, Z. Shi, X. Xu, and Y. Yang, “Hashing based hierarchical feature
representation for hyperspectral imagery classification,” Remote Sens.,
vol. 9, no. 11, p. 1094, 2017.

5392 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

[50] S. Chaidaroon and Y. Fang, “Variational deep semantic hashing for
text documents,” in Proc. Int. ACM SIGIR Conf. Res. Devel. Inf.
Retr. (SIGIR), 2017, pp. 75–84.

[51] C. Caragea, A. Silvescu, and P. Mitra, “Protein sequence classification
using feature hashing,” in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM),
Nov. 2011, pp. 538–543.

[52] A. de la Escalera, J. M. Armingol, and M. Mata, “Traffic sign recognition
and analysis for intelligent vehicles,” Image Vis. Comput., vol. 21, no. 3,
pp. 247–258, 2003.

[53] J. Krause, J. Deng, M. Stark, and F.-F. Li, “Collecting a large-scale
dataset of fine-grained cars,” in Proc. 2nd Workshop Fine-Grained Vis.
Categorization (CVPR workshop), 2013, pp. 1–2.

[54] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-
label data,” in Data Mining and Knowledge Discovery
Handbook. New York, NY, USA: Springer-Verlag, 2010,
pp. 667–685.

[55] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng,
“NUS-WIDE: A real-world Web image database from National
University of Singapore,” in Proc. ACM Conf. Image Video Retr. (CIVR),
2009, p. 48.

[56] A. Cevahir and K. Murakami, “Large-scale multi-class and hierarchical
product categorization for an E-commerce giant,” in Proc. Int. Conf.
Comput. Linguistics (COLING), 2016, pp. 525–535.

[57] X. Xu, F. Shen, Y. Yang, H. T. Shen, and X. Li, “Learning
discriminative binary codes for large-scale cross-modal retrieval,”
IEEE Trans. Image Process., vol. 26, no. 5, pp. 2494–2507,
May 2017.

[58] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-
modality search via collective matrix factorization hashing,”
IEEE Trans. Image Process., vol. 25, no. 11, pp. 5427–5440,
Jun. 2016.

[59] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming.
Princeton, NJ, USA: Princeton Univ. Press, 1962.

[60] S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic
Programming. San Francisco, CA, USA: Academic, 1977.

[61] T. Ibaraki and N. Katoh, Resource Allocation Problems:
Algorithmic Approaches. Cambridge, MA, USA: MIT Press,
1988.

Gou Koutaki received the B.E., M.E., and D.Eng.
degrees from Kumamoto University, Japan, in 2002,
2004, and 2007, respectively. He joined the Pro-
duction Engineering Research Laboratory, Hitachi,
Ltd., in 2007. He is currently an Associate Professor
with Kumamoto University. His research interests
are image processing and machine vision.

Keiichiro Shirai received the B.E., M.E., and
D.Eng. degrees from Keio University, Yokohama,
Japan, in 2001, 2003, and 2006, respectively. He is
currently an Associate Professor with Shinshu Uni-
versity, Japan. His current research interests include
signal processing, image processing, and computer
vision.

Mitsuru Ambai received the B.E., M.S., and Ph.D.
degrees in information and computer science from
Keio University in 2002, 2004, and 2007, respec-
tively. He is currently a Senior Engineer with the
Research and Development Group, Denso IT Lab-
oratory, Inc., Tokyo, Japan. His research interests
include image processing and computer vision.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

