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Denoising of Microscopy Images: A Review of the
State-of-the-Art, and a New Sparsity-Based Method
William Meiniel , Jean-Christophe Olivo-Marin , Fellow, IEEE, and Elsa D. Angelini , Senior Member, IEEE

Abstract— This paper reviews the state-of-the-art in denoising
methods for biological microscopy images and introduces a new
and original sparsity-based algorithm. The proposed method
combines total variation (TV) spatial regularization, enhance-
ment of low-frequency information, and aggregation of sparse
estimators and is able to handle simple and complex types of noise
(Gaussian, Poisson, and mixed), without any a priori model and
with a single set of parameter values. An extended comparison
is also presented, that evaluates the denoising performance of
the thirteen (including ours) state-of-the-art denoising methods
specifically designed to handle the different types of noises found
in bioimaging. Quantitative and qualitative results on synthetic
and real images show that the proposed method outperforms the
other ones on the majority of the tested scenarios.

Index Terms— Bioimaging, sparsity, image denoising, total
variation, mixed Poisson-Gaussian model.

I. INTRODUCTION

LOW-light conditions and short exposure times are cur-
rent strategic goals of research in biological imaging

for longer observations and lesser degradation of specimens,
but raise major challenges as they significantly increase
the noise influence and degrade image quality. Two dif-
ferent avenues are being investigated currently to tackle
these challenges: (1) super-resolution imaging such as STED,
PALM/STORM or SIM [1], which rely on multiple full-
field acquisition but result in computational issues for data
streaming and computational resources required for image
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reconstruction, and (2) dedicated denoising methods based on
mixed Gaussian-Poisson noise models, which are specific to
low noise levels.

This paper presents a review of a selection of 12 state-of-
the-art denoising methods together with an original sparsity-
based denoising algorithm that are benchmarked and tested
on the different types of strong and complex noise (Gaussian,
Poisson and mixed) found in microscopic images. While all the
methods have been originally designed for general denoising
purpose, most of them have been adapted afterwards to restore
images acquired with deterministic or Poisson measures as
well as with additive or multiplicative noise components. Even
if they have not been designed specifically for microscopic
imaging, the selected methods represent, in our view, the best
performing denoising options currently available, with the
additional advantage that the respective codes were made
available and are distributed by their authors. A detailed
presentation is given in Sections II and III, while results are
provided in Section IV.

In the remainder of this introduction we review in detail
noise properties in microscopic imaging. In Section II we
review 12 state-of-the-art denoising methods [2]–[13] that
we tested against our method introduced in Section III.
We present in Section IV comparative results on simulated
and real microscopic images obtained in low-light condi-
tions. Parameters used for each denoising method have been
optimized for these conditions, and are reported along with
the code sources for reproducibility. Indeed, to further pro-
mote reproducible research and build a collective know-
how, we share all the image data and denoising results
of this in extenso study with the community towards two
goals: documenting parameter optimization approaches on
shared codes for image denoising, and building up a database
of noisy and ground-truth microscopic images to further
test denoising methods on a common and shared bench-
mark (http://icy.bioimageanalysis.org/matlab/state-of-the-art-
denoising).

A. Noise Models in Microscopic Image Processing

In the context of microscopy, there are three main sources
of noise, inherent to the digital microscopy sensing apparatus.

The dark noise corresponds to the electronic noise generated
by thermal agitation of electrons. More precisely, vibrations of
silicon atoms in the camera sensor’s substrate liberate electrons
even when no incident photon is detected. High-quality sensors
have a cooler to reduce dark noise. In terms of image models,
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the dark noise follows a Poisson distribution P(λd), where λd

represents the average dark flux. This noise affects the data
model in the background, making it stochastic rather than null,
and following a Poisson distribution.

The photon noise, or shot noise, is generated from the
statistical fluctuations of the number of photons sensed at a
given exposure level. Due to the stochastic nature of photon
emissions, photon noise is inherent in all optical signals.
In terms of signal modeling, we assume an average photon flux
λp , and what is recorded is a number of photon counts that
follows a Poisson distribution with parameter λp . This noise
affects the signal model inside the structures being imaged,
making it stochastic rather than deterministic, and following a
Poisson distribution.

The readout noise is mainly generated by the non-
perfectness of the output amplifier during the process of
converting charges into voltages. In terms of image modeling,
this noise is usually described as an additive component with
a zero-mean Normal distribution.

The level of noise depends on the exposure time, experi-
mental conditions affecting the sensors such as the tempera-
ture, or other parameters like the fluorescence of the structures
being imaged in the case of fluorescence microscopy.

Three models are mainly used in microscopic image denois-
ing [14]. In general terms, we note x ∈ R

N the true image,
where N is the number of pixels in the image, and y ∈ R

N

the observation of x , corrupted by noise. We also denote by �
the domain of the image.

1) Additive White Gaussian Noise: The additive white
Gaussian noise is the standard model used in most of the image
processing literature (see [14] for instance). It represents the
readout noise in digital microscopy, modeled as an additive
random component to each true measure, with independent
temporal values drawn from a zero-mean and constant variance
Gaussian probability distribution function. Mathematically,
the model is written y = x +n, where n ∈ R

N follows a zero-
mean Gaussian distribution, n ∼ N (0, σ 2). In other words,
for each pixel coordinates s ∈ �,

P

(
y(s) = g

)
= 1√

2πσ 2
e
− (x(s)−g)2

2σ2 , (1)

where g is a gray level value and σ is the standard deviation
of the noise model.

2) Poisson Noise: Poisson noise is actually the result of
observing a deterministic signal through a detector that sam-
ples it as a Poisson process, i.e. dark noise and photon noise,
with inherent fluctuations in the measured values and signal-
dependent levels of fluctuations in the final pixel measure.
Poisson noise is the main source of fluctuations in microscopy.
The observed measures follow a discrete probability distri-
bution that expresses the probability of a given number of
events to occur in a fixed interval of time. Mathematically,
the model describing an image perturbed with Poisson noise
can be written as y(s) = P(λs), where P is a Poisson random
process of intensity parameter λs . In other words, for each
pixel coordinate s ∈ �,

P

(
y(s) = g

)
= λ

g
s e−λs

g! . (2)

The denoising process aims at estimating the underlying
intensity value λs = x(s).

The mean and variance of a Poisson law are both equal
to λs and vary across the image domain. The brighter parts
of an image have a higher mean value but also a higher
variance, and therefore higher noise level. The parameter λs

is directly linked to the quantity of photons arriving at each
pixel. In microscopy, it depends on the exposure time used to
acquire the image y, but also on the fluorescence level in case
of fluorescence microscopy.

3) Mixed Poisson-Gaussian Noise: A more realistic noise
model in microscopy [14], [15] consists in a combination of
both Poisson and Gaussian noise, which is commonly called
Mixed Poisson-Gaussian (MPG) noise. This model takes into
account the three main sources of noise (dark noise, shot
noise and readout noise). Mathematically, we write y(s) =
γP (λs) + n, where γ is a gain constant that modulates the
predominance of the contribution of the Poisson noise in the
model. P is a Poisson random process and n is a zero-mean
Gaussian random variable. In other words, assuming that the
Poisson and Gaussian random processes are independent, for
each pixel coordinate s ∈ � (cf. [16]),

P

(
y(s) = g

)
= e−λs

√
2πσ 2

×
+∞∑
p=0

λ
p
s

p! e− (γ p−g)2

2σ2 . (3)

II. STATE-OF-THE-ART DENOISING METHODS

We first present a review of a broad selection of 12 state-of-
the-art denoising methods that are tested in Section IV. While
all the methods have been designed for general denoising pur-
poses, most of them have been adapted afterwards to recover
images acquired with deterministic or Poisson measures and
with additive or multiplicative noise components. Even if they
have not been particularly designed for microscopic imaging,
they represent, in our view, the best performing denoising
options currently available. Our selection was also driven by
the availability of the codes to run them, shared or distributed
by their authors. The list of reviewed methods is summarized
in Table I, and sources for the codes in Tables II-III.

A. Total Variation-Based Methods

Total Variation (TV)-based methods have been introduced to
infer, in an optimization framework, the most probable original
noiseless image given a noisy observation and a noise model,
as well as an image model involving the nature of the measure
(deterministic or Poisson) and the spatial regularity of the
structures in the image (via TV semi-norm suited for piecewise
constant structures). We review the standard TV filter and
a subset of four TV-based denoising methods designed for
Poisson measures and complex noise models. In all reviewed
methods, the TV norm metric ‖ · ‖TV refers to the isotropic
TV semi-norm defined in [17] as

‖x‖TV =
∑
s∈�

√
(∂h x(s))2 + (∂v x(s))2, (4)

where ∂h and ∂v represent the horizontal and vertical discrete
derivative operators.
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TABLE I

REVIEW OF THE TESTED DENOISING METHODS

TABLE II

SOURCES OF CODE IMPLEMENTATION AND PARAMETER VALUES OF THE DIFFERENT DENOISING METHODS FOR THE Synth IMAGE. NOTE THAT ALL THE

In-House CODES HAVE BEEN WRITTEN IN MATLAB. IN ADDITION, CODES WITH A SYMBOL “*” ARE USING MEX FILES

TABLE III

WEBSITES FOR SOURCE CODES

1) TV-Filtering: Image filtering and denoising using TV
was introduced by Rudin et al. [2]. The proposed method
assumes that an image is composed of a small number of
piecewise constant sets, and a small number of discontinuities
and edges. The denoised image is obtained as a minimizer of
the following functional:

x̂TV = arg min
x∈RN

‖x‖TV s.t. ‖x − y‖2 ≤ ε (5)

where y is the input noisy image, x̂TV is the inferred true
image, and ε > 0 is a real constant that is proportional to the
variance of the noise in the image. Note that this approach was
designed for an additive Gaussian noise model. This denoising
technique is very popular and extremely powerful on piecewise
constant images, but suffers from the well known staircase
effect in large structures of almost but non-exactly constant
intensity values.

2) TV-ICE: Before introducing the TV-ICE model, we need
to define the TV-LSE method, that Louchet and Moisan pro-
posed in [18] to reduce the staircase effect. They reformulate
the TV optimization problem using a least square error (LSE)
criterion on a Bayesian formulation of the problem. They
define image sets Eμ, and prior probability density functions
pβ of the true image x on these sets as follows, with parameter
β > 0:

∀μ ∈ R, Eμ =
{

x ∈ R
�,

∑
s∈�

x(s) = μ|�|
}

and

pβ(x) = 1

Zβ
e−β‖x‖TV , where Zβ =

∫

E0

e−β‖x‖TV dx .

In the case of Gaussian noise, they write y = x + n, with
n ∼ N (0, σ 2

n ). In a Bayesian framework, they formulate the
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posterior density function (pdf) p(x |y) as:

p(x |y) = 1

Z
exp

(
− Eλ(x)

2σ 2
n

)
(6)

where

Eλ(x) = ‖x − y‖2
2 + λ‖x‖TV,

λ = 2βσ 2
n , and Z is a normalizing factor ensuring that

x 	→ p(x |y) is a probability density function on R
�. Here

images are modeled as finite sets of pixels with real values.
As the authors explain, regular TV filtering generates the
maximum a posteriori (MAP) estimator of this pdf, and can
introduce staircase effects in the solution with globally max-
imal probability. As an alternative, they propose to maximize
the pdf using a LSE criterion. This leads to the following LSE
estimate:

x̂LSE =

∫

R�
exp

(
− Eλ(x)

2σ 2
n

)
· x dx

∫

R�
exp

(
− Eλ(x)

2σ 2
n

)
dx

= Ex∼π(x) (7)

with the posterior distribution:

π(x) = exp

(
− Eλ(x)

2σ 2
n

)/∫

R�
exp

(
− Eλ(x)

2σ 2
n

)
dx

The authors propose an algorithmic solution to Eq (7) using
a Monte Carlo Markov Chain (MCMC) algorithm with a
Metropolis scheme. The denoised pixels are weighted averages
over pixels from multiple possible image candidates.

Louchet and Moisan proposed in [3] the TV-Iterated condi-
tional expectation (TV-ICE) as a variant of TV-LSE to improve
computational efficiency. They replace the posterior mean
(obtained via the MCMC model) by an iterated conditional
marginal mean. This leads to the definition of the following
recursion operator that converges towards its fixed point:
∀s ∈ �, p ≥ 0,

x p+1(s) = Ex∼π

[
x(s)|x (�\{s}) = x p (�\{s})]

with:

x p+1(s) −−−→
p→∞ x̂ICE(s)

where Ex∼π is defined in Eq. (7).
From an algorithmic point of view, the denoised pixels are

posterior means, conditionally to the values of all other pixels.
Both the TV-LSE and TV-ICE methods show strong perfor-

mance in terms of reducing the staircase effect and the TV-ICE
technique shows great improvement in terms of computation
time. The main drawback of these approaches is their sensi-
tivity to the noise model and level. If the noise model is not
additive Gaussian, or if the noise variance σ 2

n is very large,
denoising performance is greatly degraded for both meth-
ods. The authors have recently extended in [4] the TV-ICE
denoising framework to Poisson noise using the Poisson pdf
in the data fidelity term. We denote by x̂T V −I C E−Poisson

the estimator obtained following the TV-ICE process with
a Poisson data fidelity. Using TV regularization to infer the
posterior Poisson likelihood raises issues that have been the

focus of several works [5], [19]–[21]. Options are direct
gradient descent with TV approximation via the divergence
operator, following a log-likelihood variational approach, that
leads to computational difficulties due to the nonlinear-
ity of the model [19], the Expectation-Maximization (EM)
applied to KL-divergence which is slow and introduces
“checkboard” artefacts [5] or applying directly the split Breg-
man method [20], [21] which is complex to implement and has
a high computational cost. In this work, we chose to test the
Poisson EM-TV approach detailed below, because it offers the
best compromise between sophistication and computational
complexity.

3) Poisson EM-TV: The TV-based denoising scheme pro-
posed by Rudin et al. [2] was formulated for deter-
ministic measures corrupted with additive Gaussian noise.
The Poisson-TV variational model, derived from the negative
log likelihood function, is:

x̃P-TV = arg min
x∈RN

∑
s∈�

(
x(s) − y(s) log [x(s)]

)
+ λ‖x‖T V ,

where � is the image domain and λ is the positive regular-
ization parameter, as before. Note that in a Poisson statistics
model, x(s), y(s) > 0, ∀s ∈ �. This model is strongly
nonlinear in the data fidelity term, which leads to issues
in the computation of minimizers. Authors in [5] proposed
a formulation of the solution of the Poisson-TV regularization
problem alternating between expectation maximization (EM)
and TV regularization.

Alternating EM inference and TV regularization, along
with a simplification of the data fidelity term with a second
order Taylor approximation, leads to the following modified
TV-filter model:

x̂P-EM-TV = arg min
x∈RN

1

2

∥∥∥∥
x − y√

y

∥∥∥∥
2

2

+ λ‖x‖TV. (8)

The proposed approach to solve the minimization problem is
based on a dual approach using a characterization of subgra-
dients of total variations as divergences of vector fields with
constrained norm, resulting in a projected gradient algorithm.
Examples on images with Poisson statistics are provided in [5]
using a weighted 
2 data-fidelity model.

4) MIDAL: The Multiplicative Image Denoising by
Augmented Lagrangian (MIDAL) algorithm proposed by [6]
was specifically designed to remove multiplicative noise com-
ponents from a piecewise-constant field. The noise is assumed
to be positive and to follow a known probability distribution
(here Gamma distribution for speckle noise) with mean 1 and
standard deviation σn . The method is designed in three steps:
Log-transform of the signal and formulation of the uncon-
strained MAP estimator with TV regularization; reformulation
as a constrained problem via variable splitting; and solving
via an augmented Lagrangian method (in their implementation
the alternating direction method of multipliers (ADMM) [22]
was used). The algorithmic formulation, along with the noise
model and the log-transform, leads to an optimization prob-
lem with guaranteed convergence and a unique solution.
The noisy image is modeled as y = nx and log-transformed
to manipulate log(y) = log(n) + log(x), which we write



3846 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 8, AUGUST 2018

y = n + x . Note that this approach is used in many techniques
that aim at denoising images corrupted with multiplicative
noise [23]–[25]. The new variable x is split into a pair of
variables (u, x). In the case where n ∼ Gamma(1, σn),
the proposed regularized MAP estimator becomes:

x̂M I D AL = exp(x̂)

(x̂, û) = arg min
x,u

L(x, u)

s.t. x = u,

with

L(x, u) = 1

σ 2
n

∑
s∈�

(
xs + eys−xs

) + λ||u||T V .

where λ is a regularization parameter. This method requires
the a priori knowledge of the noise standard deviation σn and
the authors showed that λ should decrease as the noise level
increases for optimal denoising performance.

B. Non-Local Filtering

Non-local filtering constitutes a very popular and powerful
family of denoising methods, exploiting the fusion of patches
from over the whole image instead of just filtering locally.
They are based on the assumption that real images are non-
locally repetitive (i.e. self-similar). We review here some of
the most popular non-local denoising methods, which have
generated among the best results in the case of complex non-
additive noise.

1) NLM: The original non-local means (NLM) algorithm
was introduced by Buades et al. in [7]. The denoising principle
is that, for each noisy patch, there exists, somewhere in the
same image, other patches representing the same structure,
shape or texture, that can then be aggregated altogether to
remove the noise. Formally, the denoised image is generated
via the following operation:

∀s ∈ �, x̂NLM(s) =
∑

t∈� ws,t y(t)∑
t∈� ws,t

(9)

with ws,t = exp

(
− Fs,t

h2

)
,

Fs,t =
∑
b∈N

f (y(s + b), y(t + b)) ,

where h is a filtering parameter, N is a patch (i.e. a neighbor-
hood of fixed size and centered around the pixel of interest),
and f is a similarity metric used to compare noisy patches.
In the case of additive white Gaussian noise, f is chosen as
the 
2 norm and the denoised estimate is computed as:

∀s ∈ �, x̂NLM(s) = 1

Z(s)

∑
t∈�

y(t)e
− ‖y(Ns )−y(Nt )‖2

2
h2

with Z(s) =
∑
t∈�

e
− ‖y(Ns )−y(Nt )‖2

2
h2

where Nk denotes a neighborhood of fixed size and centered
at the pixel k, and h is a parameter that controls the decay of

the weights as a function of the 
2 norm (note that we used
notations from [7]).

For microscopic images, if there are many similar cells on
a background, the NLM algorithm will perform very well [7].
However, in the case of images with only few cells, with
singular objects, or with Poisson measures, the method is less
suited, suffering from the lack of similar patches. It also has
problems with large areas separated by a sharp edge, called
the noise halo effect in [8] and observed in our results as well.

2) NLM-Poisson: Deledalle et al. have proposed in [8]
a formulation of the NLM to denoise images corrupted by
Poisson noise. They add two modifications to Eq. (9), where
x̂N L M−Poisson is defined as x̂N L M , but:

with ws,t = exp

(
− Fs,t

h2
1

− Gs,t

h2
1

)
,

Fs,t =
∑
b∈N

f
(

y(s + b), y(t + b)
)

and Gs,t =
∑
b∈N

g
(
θ̂ (s + b), θ̂(t + b)

)

with θ an a-priori estimate of the noise free image x̂
and (h1, h2) two filtering parameters. Using an image prior has
been suggested as a means of improving NLM performance
in images with very low SNR. It is typically inferred with
local convolution filters such as averaging or Gaussian filters.
The following similarity metrics are proposed:

∀s, t ∈ �

f
(

y(s), y(t)
)

= y(s) log y(s) + y(t) log y(t)

−
(

y(s) + y(t)
)

log

(
y(s) + y(t)

2

)
.

g
(
θ̂ (s), θ̂ (t)

)
=

(
θ̂ (s) − θ̂ (t)

)
log

θ̂ (s)

θ̂ (t)
.

which correspond to the Poisson likelihood ratio and the
Kullback-Leibler divergence metrics. The parameters (h1, h2)
influence greatly the denoising performance. The authors pro-
pose a method for tuning them using a Poisson unbiased risk
estimator (PURE) criterion and its optimization via Newton’s
gradient descent. These parameters end up being mainly
influenced by the level of noise in the image. This approach
suffers from two limitations: first, the parameter tuning phase
makes the method quite slow to run; second, the noise variance
parameter of the method is estimated automatically, and hence
the user cannot enforce manually the level of regularization,
which is needed for most methods in case of strong noise
variance.

3) NLPCA: Building up on non-local (NL) patch aggre-
gation and Poisson likelihood measures, Salmon et al. have
proposed in [9] to denoise groups of patches via joint opti-
mization of dictionaries and projection coefficients, which
constitute the principal component analysis (PCA) part of the
NLPCA denoising method. The algorithm is decomposed into
five steps: aggregation of patches for all pixels, clustering
of patches, denoising of patches in individual clusters via
dictionary decomposition, fusion of denoised patches within
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clusters and backprojection of denoised patches to form the
denoised image. Denote by Y ∈ R

N×P the collection of N
overlapping patches (size

√
P × √

P) of the noisy image y.
Y is organized so that Yi,: denotes the ith patch in a row-
vector form. The first step of the method consists in clustering
patches into K clusters using some K-means type of algorithm
(e.g. Poisson K-means), that enable working with an a priori
fixed small dictionary size within each cluster Y k of size
Nk (in their work they use l = 4 elements per dictionary
and K = 14 clusters). The second step of the method is to
define dictionaries Vk ∈ R

l×P and corresponding projection
coefficients Uk ∈ R

Nk ×l in an exponential form so that
positivity of the denoised estimates x̂k of patches in the kth

cluster is guaranteed. Using the Poisson likelihood, the kth
PCA-based partial estimator x̂k ∈ R

Nk is obtained via the
following optimization:

x̂k = exp(U∗
k V ∗

k ),

with (U∗
k , V ∗

k ) ∈ arg min
(U,V )∈RN×l×Rl×P

L(Uk, Vk),

where L(Uk, Vk) =
Nk∑

i=1

P∑
j=1

exp(Uk Vk)i, j − Y k
i, j (Uk Vk)i, j

Finally, the denoised image x̂ is obtained by fusing all
the partial estimators for a given pixel (averaging is used
in the implementation of the authors). They also investigated
a refined version called NLSPCA, where S stands for sparse,
adding a 
1 penalty term on the coefficients U in the loss
function L(U, V ). This method requires two parameters: num-
ber of patch clusters and number of dictionary elements per
cluster. This method was designed specifically for low-photon
counting statistics and ends up being very sensitive to the
quality of the patch clustering step. This observation led the
authors to recommend to perform this clustering on a pre-
denoised version of the image in case of high noise. Results
can suffer from smoothing artifacts as illustrated in our results
on synthetic images.

4) PNL Wiener: The Wiener filter [26] is a very popular tool
for image restoration in the presence of noise. It was derived as
the optimal linear filter solution to the linear minimum mean-
squared-error (LMMSE) problem. In the presence of white
Gaussian noise, its expression is very simple while leading to
high-quality denoising performance. Bindilatti et al. [10], [27]
have proposed to adapt the Wiener filter for images with
Poisson statistics, exploiting a non-local weighted parameter
estimation. The Poisson Non-local Wiener estimator (PNLW)
is obtained as follows:

∀s ∈ �, x̂ P N LW (s) = ȳ(s) +
(

σ 2
y (s) − ȳ(s)

σ 2
y (s)

)β

× (y(s) − ȳ(s))

where ȳ(s) = ∑
t∈Ns

ws,t y(t) and σ 2
y = (∑

t∈Ns
ws,t y(t)2

)−(∑
t∈Ns

ws,t y(t)
)2 are non-local estimators of the mean and

variance of y, Ns is a search region centered on the pixel s,
and β is a parameter introduced to control a priori the
denoising strength. The non-local weights ws,t are obtained

using the Kullback-Leibler distance dK L as:

ws,t = 1

Ws
ex p

(− ∑
q∈N dK L(λNt (q), λNs (q))

γ λ(s)2

)

where λ are the approximate pixel-wise Poisson parameter val-
ues, obtained via non-local denoising of y in [27], N is a patch
neighborhood, and corresponding patch values of λ centered
at pixel s are denoted λNs . Ws is a normalization parameter,
so that the ws,t sum up to 1, and γ is a method parameter
controling the rate of decay of the weights. The two parameters
of the method are empirically tuned in [10] and [27].

C. Sparse Filtering

1) Analysis K-SVD: Introduced in [28] and [29], the
K-Singular Value Decomposition (K-SVD) method exploits
the theory of dictionary learning to denoise images. The prin-
ciple is the following: extract a large number (Npatches = 1000
in this paper) of fixed size patches (n patches = 5 × 5 pixels
in their implementation) of the noisy image y, stored in a
matrix Y . Then, denoise each patch using sparse coding [30]
on a given dictionary D. Finally, average the overlapping
patches to get a denoised estimator x̂K SV D . Several algorithms
have been developed following the same workflow, with dif-
ferent dictionary constructions or optimization methods in the
sparse coding step (see for instance [31] or [32] in the context
of Poisson data). In this work, we propose to study the
Analysis K-SVD method [11], which improves the original
K-SVD method by including both backward greedy (BG) and
optimized backward greedy (OPG) algorithms, and a penalty
function to take into account some prior information given on
the data, like TV sparsity for example.

Given a training set Y of patches obtained from the noisy
image y, and an initial dictionary D0, the method constructs a
dictionary D adapted to the image, and a denoised estimator
x̂ A−K SV D of the true image x . The algorithm uses an iterative
scheme, each iteration containing two steps: first, find for
each patch Yi which rows of the current dictionary Dcurrent

represent it in the sparsest way, and second, update each row
of Dcurrent to represent in the sparsest way each of the patches
associated to it. Once convergence is reached, overlapping
patches are aggregated to reconstruct x̂ A−K SV D . Although this
technique shows high performances for large sets of images,
and has the versatility to be adapted to different types of
noise and different regularization constraints, it is not really
adapted to routine work in biological microscopy. Indeed,
the learning step is extremely long, almost 4 minutes for one
image and 1000 patches only in the training set, which is not
compatible with real life experiments. In addition, quality of
the results depends strongly on the training set, hence limiting
capacity in the case of extremely noisy data.

2) Wavelet Soft-Thresholding: Wavelet soft-thresholding for
denoising was introduced by [12], exploiting wavelet functions
to decompose a noisy image into subbands at various scales
and making the assumption that the noise is mainly encoded
in the smaller coefficients. Formally, if (W,W−1) denote the
wavelet transform direct and inverse operators (i.e. analysis
and synthesis), then the denoised estimate x̂WST of the noisy
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observation y is obtained as:

x̂WST = W−1 (D [W(y)]) (10)

where D is the soft-thresholding operator defined as:

D[w] = sign(w) max(|w| − λwav, 0) (11)

with λwav the threshold parameter which is typically set based
on a priori knowledge of the noise standard deviation σn and
the dimension N of the image. Examples include the universal
VisuShrink threshold [33], or the more evolved SureShrink
procedure [34]. We used the SureShrink procedure in our
experiments. This method is straightforward to implement and
extremely fast. Results provided by wavelet soft-thresholding
are often of good quality, but suffer from major artifacts,
in particular around edges of piecewise constant structures,
where oscillations tend to appear.

3) BM3D: Also exploiting non-local patches, the Block-
Matching and 3D Filtering (BM3D) method was introduced
by Dabov et al. in [13] and remains the most used method,
often serving as state-of-the-art for all imaging modalities.
The method is decomposed into three steps, pixel-wise: group-
ing similar patches from the original noisy image in stacks,
denoising patch stacks in some transform domain (process
called collaborative filtering), and aggregation of denoised
patches to form the denoised image via weighted-averaging.
The pipeline is actually run twice: a first time to estimate a
pre-denoised image using wavelet transform and hard thresh-
olding on noisy patches as collaborative filtering and a second
time using Wiener filtering on both noisy and pre-denoised
patches as collaborative filtering. The method involves several
parameters that control the build up of stacks of similar
patches and the thresholds of wavelet coefficients. As reported
in [35], empirical optimal value for the wavelet threshold
is quite insensitive to noise level but parameters controlling
the patch stacks have optimal values that are greatly variable
across noise levels. Note that other methods have been devel-
oped recently following the multi-layer structure approach of
BM3D, combining it for instance with connected random fields
(see [36]).

D. Variance Stabilizing Transforms

As an alternative to process the signal directly as a
Poisson signal, it is possible to use a variance-stabilizing
transform (VST) to transform the observed signal. Indeed,
for Poisson signals, the variance of y(s) is proportional to
the intensity λs . It is possible to stabilize the variance of y,
noted σy via a transformation z = T (y) such that σz is
asymptotically constant (e.g. σz=1), irrespective of the values
of λs .

The most used form of VST transform is: T (y) = b ×
sign(y +c)×|y +c|1/2, where c ∈ R controls the convergence
rate of z toward a Normal distribution with a stable variance
as λs becomes large [37]. The most popular VST is the
Anscombe transform for which c = √

3/8, and has been
used in recent works like [36]. In addition, some work has
been done to adapt the Anscombe transform to the case where
an image is perturbed with a mixed Poisson-Gaussian noise
model [38]. In both cases, the inverse transform required after

denoising the transformed version is a source of instabilities
and artefacts that have a major impact on the quality of the
denoising process, and tend to oversmooth images in the case
of low photon acquisitions [39].

III. PROPOSED FUSION OF SPARSE

RECONSTRUCTIONS (FSR) DENOISING ALGORITHM

In the context of this work, which is centered on cellular
bioimaging, we make the assumption that these images are
piecewise constant (e.g. images consisting of cells with nuclei,
cytoplasm and small objects, on a uniform background).
The TV semi-norm (see Eq.(4)) is well suited for such images,
with minimal values on constant-intensity areas. Based on
the work in [40], we propose a method that combines three
denoising strategies: local averaging (via an operator denoted
H(y(s))), TV-filtering to generate partial estimators x̂k , and
a linear minimal error estimator for global TV optimization.
Aggregation of noisy (or partial) estimators has been stud-
ied in many image denoising (or enhancement) approaches.
Beyond naive averaging, the linear minimum mean-squared-
error (LMMSE) estimator has optimal properties when work-
ing with correlated random observations or independent noisy
observations with a white Gaussian additive noise model,
but relies on the inference of covariance parameters between
observations and the ground-truth signal. Therefore LMMSE
performance is greatly affected by the type and level of the
actual noise corrupting the observation, and is non-practical
when working with spatially-varying noise. It has however
raised interest in the context of non-local patch-based denois-
ing [10], [13], [41]–[43]. In [43], LMMSE is used to aggregate
multiple estimators of a pixel value from denoised patches,
while taking into account the fact that estimators have different
reliability levels (denoising confidence), depending on the
similarity of patches inferred on the noisy image. In our case,
all the estimators have the same a priori confidence, but this
confidence varies in space, hence the choice to use spatially
varying weigths αk(s) for the linear combination operator.

We first formulate our general denoising estimator as:

x̂∗(s) = α0(s) × H(y(s)) + F({x̂k(s)}k>0) (12)

If we set F to be linear (i.e. F({x̂k(s)}k) = ∑
k>0 αk(s) ×

x̂k(s)) and using the same weights on all partial estimators,
we can further simplify our estimator to:

x̂∗(s) = α0(s) × H(y(s)) + α1(s) × x̂mean(s)

where ∀s ∈ �, x̂mean(s) = 1

R

R∑
k=1

x̂k(s).

Further simplifying Eq. (12), we set α0(s) = α(s)
and α1(s) = 1 − α(s) with α(s) ∈ [0, 1], which leads to:

x̂∗(s) = α(s) × H(y(s)) + (1 − α(s)) × x̂mean(s)

The choice of α(s) is made so as to get ‖x̂∗(s)‖T V closer
to the ground-truth TV than ‖x̂mean‖T V via the following
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computation, developed here in 1D for the sake of simplic-
ity of notations:

‖x̂∗(s)‖1D
T V

=
∣∣∣ ∂α(s) × H(y(s)) + α(s) × ∂H(y(s))

+ ∂(1 − α(s)) × x̂mean(s) + (1 − α(s)) × ∂ x̂mean(s)
∣∣∣

=
∣∣∣ ∂ x̂mean(s) + α(s) × (∂H(y(s)) − ∂ x̂mean(s))

+ ∂α(s) × (H(y(s)) − x̂mean(s))
∣∣∣

The first term corresponds to ‖x̂mean‖T V . Three assumptions
are used to get ‖x̂∗(s)‖T V closer to the ground-truth TV than
‖x̂mean‖T V : (1) x̂mean(s) is an approximation of the ground-
truth with equal or higher contrast; (2) α(s) is close to a Dirac
function with non-zero values only at true edge locations;
(3) H(y(s)) generates an approximation of the ground-truth
with reduced contrast. Under these assumptions, the second
term decreases the first term by a factor α(s) which is non-
zero only at edges, while the third term cancels where α(s)
is non-zero thanks to the contrast difference ∂H(y(s)) <
∂ x̂mean(s) and the Dirac derivative having opposite signs
across edges. Assumptions are met if we use respectively
(1) TV-regularized CS-based reconstructions from the noisy
observation to generate the x̂k(s); (2) a local-averaging filter
for H; (3) α(s) = x̂∗

std(s) = √
x̂var(s)/‖

√
x̂var(s)‖∞, with x̂var,

called the variance map, defined as: ∀s ∈ �,

x̂var(s) = 1

R

R∑
k=1

(x̂k(s) − x̂mean(s))
2

Regarding the choice (1), we exploit the denoising capac-
ity of the Compressed Sensing (CS) framework [44]–[46]
when passing a noisy observation through a Fourier-based
sensing operator  defined as a random partial Fourier
transform and using TV-regularization. If we denote F =
( 1√

N
exp

[−2iπpq
N

]
)0≤p,q≤N−1, the discrete Fourier transform

matrix, then the sensing operator is written  = �F , where
� ∈ {0, 1}M×N is a selection matrix, and M is the number of
coefficients selected among the total N pixels of the image.
We need to define the sampling rate τ = M

N ∈ [0, 1] as an
input parameter (see [47] for a detailed study of the suitable
methods of selection of coefficients in the Fourier domain).
A denoised estimator x̂ of the true signal x can be obtained
from the noisy observation y by solving the following convex
optimization problem:

x̂ = argmin
x∈CN

‖x‖TV s.t. ‖x − ỹ‖2 ≤ ε (13)

where ỹ = y is the collection of subsampled Fourier coeffi-
cients of the noisy image y, and ε is a scalar input parameter
related to the energy of the corrupting noise (discussed below).
Note that, following the work of [44] and [48], the CS
framework guarantees convergence to a stable and accurate
estimate x̂ of x under the assumption of an additive noise
model. One strength of the proposed method is to exploit
multiple estimators to yield high-quality results for various
types of noise.

Fig. 1. Generation of partial estimators. From a noisy image y, a given
number of low-sampled measurement vectors yk are generated, by taking the
Fourier transform (FT) of y and selecting a subset of the Fourier coefficients
(k ). Then, each yk is used to produce an estimator x̂k of the original signal
through a convex optimization reconstruction scheme. Finally, all the x̂k are
combined into an estimator x̂ using one of the proposed fusion techniques.

Fig. 2. Illustration of the visual quality of the partial estimators x̂k and
their fusion with our method. The left image is a corrupted version of the
Synth image using mixed Poisson-Gaussian noise (see Fig.3). The middle
image shows one of the x̂k obtained by solving Eq. (15). The right image is
obtained from R = 3 reconstructions, using the LWC fusion method. (a) y,
PSNR: 13.7. (b) x̂k , PSNR: 27.9. (c) x̂LWC , PSNR: 29.3.

This leads to our proposed Linear Weighted Combina-
tion (LWC) denoised estimator defined as, ∀s ∈ �:

x̂LW C(s) = x̂∗
std(s) × H(y(s)) + (1 − x̂∗

std(s)) × x̂mean(s)

(14)

where y is the noisy observation and H is the median filter.
We now detail the generation of the multiple partial esti-

mators x̂k and introduce two alternative fusion strategies,
implemented for comparison purpose and to test if the general
denoising concept introduced in Eq. (12) can be extended to
alternative weighting strategies.

A. Generation of Multiple Sparsity-Based Partial Estimators

The proposed aggregation of CS-based partial estimators is
composed of three steps (see Fig.1), with generated estimators
illustrated in Fig. 2:

1) Generation of Random Measurements Vectors in the
Fourier Domain: In the case of microscopic images, informa-
tion concerning details of the structures is located in the high-
frequency Fourier coefficients which are much more degraded
by noise than the low-frequency coefficients which encode
structural information of the objects inside the image [49].
The generation of random sampling patterns in the Fourier
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domain and its impact on the reconstruction has been studied
extensively in [47] and [50] in the context of Compressed
Sensing. In this paper, we consider a dense low-pass sampling
(selection of all the coefficients with frequency ν < νc),
completed with a random sampling of high-frequency coef-
ficients, with an overall sampling rate of τ ∈ [0, 1] (see [51]).
From the single noisy observation y, we generate R sets of
measures via linear operation: yk = k y, where k = �kF is
constructed by zeroing through random measurement matrices
�k most coefficients in the 2D Fourier transform matrix F .
The influence and the setting of the three parameters τ ,
νc and R are studied in [52]. We emphasize here that the
total quantity of samples used is not exactly R × τ , as the
information in the central disk with radius νc is redundant.
In this paper, we used R = 3, τ = 0.2, νc = 0.3, for a total
sampling rate of ∼ 35%.

2) Reconstruction of Partial Estimators Through Convex
Optimization: We solve the following TV-based convex opti-
mization problems to recover R partial estimators x̂k from the
measurement vectors yk :

x̂k = arg min
x∈RN

‖x‖TV s.t. ‖k x − yk‖2 ≤ ε (15)

where ε is a noise-dependent parameter defined in [48] as:
ε = γεσn

√
τ N + 2

√
2τ N . In this formula, σn represents the

standard deviation of the additive Gaussian component of the
noise, which we obtain using the cumulant method [53] on a
uniform region of the noisy image (e.g. the background) and γε

is a gain that we introduce to handle specific image types
(see below Section IV). We used the NESTA algorithm [48] to
solve the optimization problem, based on the recommendations
made in the comparative study done in [54].

B. Alternative Fusions Of Sparse Reconstructions (FSR)

The partial estimators obtained by solving (15) are
already denoised versions of the initial image y, as illus-
trated on Fig. 2. Qualitatively, these estimates are differ-
ent random draws of the same density law, corresponding
to TV-constrained estimations of the ground-truth image.
We detail here two alternative fusion approaches to use
in Eq. (12) with α0 = 0 for comparison and generalization
purposes.

1) Exponentially Weighted Aggregate: In [55] Exponen-
tially Weighted Aggregate (EWA) is an aggregation method
that was designed to reach optimal average risk, in the context
of non-parametric statistical regression. It has been used for
image denoising in [56] to fuse “weakly” denoised patches
into a single one. Using the formulation from [56], for each
partial estimator x̂k , we denote rk(s) = |y(s) − x̂k(s)|2 − σ 2

n
the risk of the estimator x̂k at pixel s, assuming a zero-mean
additive white Gaussian noise with standard deviation σn .

The EWA aggregator is defined as:

∀s ∈ �, x̂EWA(s) =
R∑

k=1

θk(s)x̂k(s)

with

θk(s) = exp(−|rk(s)|/β)πk(s)∑R
i=1 exp(−|ri (s)|/β)πi (s)

where β > 0 is typically called a temperature parameter
and {πi(s)}i=1,.,R is drafted from a probability distribution
function π(s) and is used to put prior weights on the estima-
tors. In our work we define π as a uniform random distribution
and β = 0.01. This aggregator considers the partial estimators
x̂k as independent observations of the same true image x , and
aggregates them using exponential weights. Note that, as rk

decreases, the corresponding weight θk increases, which meets
the MSE-minimization objective.

2) Fourier Burst Accumulation: In [57], the authors propose
a new image deblurring method based on what they call
Fourier burst accumulation. In the context of burst mode
acquisition of multiple image frames with a camera, they
reconstruct a single deblurred image by aggregating a burst
of images via taking what is less blurred of each frame to
build an image that is sharper and less noisy than all the
images in the burst. To do so, they compute a weighted average
of the Fourier coefficients of the images in the burst set.
Their working assumption is that the partial estimators are
non-noisy but blurred and that the blurring kernels are all
positive and with unit norm, leading to no amplification of
spectral values. In our context, the partial estimators x̂k are
derived by sacrificing some high-frequency components and
using TV spatial regularization. We can therefore make the
same assumptions. Formally, the FBA aggregator is defined
as:

∀s ∈ �, x̂FBA(s) = F−1

(
R∑

k=1

wk(ζ ) ◦ F(x̂k)(ζ )

)
(s),

(16)

wk(ζ ) =
∣∣F(x̂k)(ζ )

∣∣p

∑R
l=1

∣∣F(x̂l)(ζ )
∣∣p (17)

where p is a non-negative integer, F represents the Fourier
transform operator and ζ the frequency index. The weight wk

controls the contribution, at each frequency, of reconstruction
k in the final reconstruction x̂F B A. This method prioritizes,
among all reconstructions, the one that contains most infor-
mation at a given frequency. The parameter p emphasizes
the predominance of the highest Fourier coefficient value.
The authors suggest to set its value in the interval [7 .. 30],
where the reconstruction error becomes minimal in terms of
Mean Squared Error (MSE). In our work, we empirically
identified p = 15 as the value leading to optimal results.

IV. EXPERIMENTS AND RESULTS

A. Experimental Set Up

1) Dataset: We performed three sets of experiments to
compare the state-of-the-art and proposed denoising methods,
using the following images, illustrated in Fig.3:

1) (Pure) We generated a bi-color flat image (values 0.25
and 0.75, of size 100 × 100) corrupted with mixed
Poisson-Gaussian noise, to evaluate the denoising power
of each method on pure noise fields, before testing them
on more complex images. We display the reconstructed
images in Fig. 4 for λ = 9 and σ = 0.15.

2) (Synth.) We used a synthetic cell image [58], composed
of a constant background and several cells (containing a
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Fig. 3. Images used for the evaluation of the denoising methods: (a, d) Pure.,
(b, e) Synth., (c, f) Hela. The synthetic images are illustrated with realistic
mixed Poisson-Gaussian noise with parameters λ = 9 and σ = 0.15. (a) MPG
noise. (b) MPG noise. (c) Short exp. (d) Clean. (e) Clean. (f) Long exp.

cytoplasm, nucleus and several intracellular objects). For
visibility, we display on Figures a zoom on a single of
these cells. Matrix size is (256 × 256) pixels. We tested
each method on the Synth cell image in the case of white
Gaussian noise, pure Poisson noise and mixed Poisson-
Gaussian noise, for several noise levels (0.05 ≤ σ ≤ 0.2
and 6 ≤ λ ≤ 100). We compare in Fig. 5 denoising
performance for all methods, when varying the noise
level using mixed Poisson-Gaussian noise. We display
in Fig. 6 the reconstructed images for λ = 9 and σ =
0.15, corresponding to the visual characteristics of the
noisy Hela acquisition.

3) (Hela) We imaged, with a confocal microscope, a HeLa
cell image labeled with a Cell Tracker CMFDA dye.
This marker is strong enough, and the laser weak
enough, to avoid photobleaching in this experiment.
Because of the different sources of noise present dur-
ing the acquisition process, these images are corrupted
with mixed Poisson-Gaussian noise, which decreases as
we increase exposure time. To obtain a noisy realistic
test image, i.e. a very noisy observation dominated by
photon noise, we first acquired an image with a short
exposure time (0.1 second). To obtain a ground truth
noise-free image, we then acquired a second image with
a long time exposure (10 seconds), using the fact that the
accumulation of a large number of photons results in a
high quality image with almost no noise, at the expense
however of the sample integrity (see results on Fig. 7,
and find additional results on other HeLa cell images
in the supplementary files).

2) Parameterization of the Methods: We summarize
in Table II the code sources and parameterization details for
each method. When possible, we used the code provided by
the authors for the state-of-the-art methods. We list in Table III
the websites used to retrieve the codes, when available. For the
synthetic images, we used the ground-truth noise information
to set a priori input noise parameters. For the real microscopic
image, since we do not know the actual characteristics of the

Fig. 4. Comparison of the denoising methods on the Pure. image, with
values rescaled to [0, 1]. The image y is corrupted with a mixed Poisson-
Gaussian noise of parameters λ = 9 and σ = 0.15. (a) Ground truth.
(b) Noisy. PSNR: 10.81. SSIM: 0.255. (c) TV. PSNR: 23.82. SSIM: 0.916.
Comp. time: 1.3s. (d) TV-ICE. PSNR: 12.40. SSIM: 0.410. Comp. time: 1.7s.
(e) TV-MAP Poisson. PSNR: 19.65. SSIM: 0.908. Comp. time: 0.55s.
(f) Poisson EM-TV. PSNR: 25.87. SSIM: 0.975. Comp. time: 0.56s.
(g) MIDAL. PSNR: 15.48. SSIM: 0.886. Comp. time: 0.36s. (h) NLM. PSNR:
21.36. SSIM: 0.889. Comp. time: 1.0s. (i) NLM-Poisson. PSNR: 15.35.
SSIM: 0.744. Comp. time: 0.24s. (j) NLPCA. PSNR: 17.54. SSIM: 0.725.
Comp. time: 1.2s. (k) PNLW. PSNR: 17.62. SSIM: 0.655. Comp. time: 1.8s.
(l) Analysis K-SVD. PSNR: 13.60. SSIM: 0.574. Comp. time: 277s.
(m) Wavelet thresh. PSNR: 21.74. SSIM: 0.943. Comp. time: 5.3s.
(n) BM3D. PSNR: 23.52. SSIM: 0.974. Comp. time: 0.18s. (o) FSR-
Mean. PSNR: 32.52. SSIM: 0.996. Comp. time: 1.8s. (p) FSR-EWA.
PSNR: 32.93. SSIM: 0.997. Comp. time: 1.9s. (q) FSR-FBA. PSNR: 32.65.
SSIM: 0.996. Comp. time: 2.1s. (r) FSR-LWC. PSNR: 22.11. SSIM: 0.884.
Comp. time: 1.9s.

noise, we estimated the noise variance inside a patch in the
background of the image using the cumulant approach [53].
For each method, we optimized the different parameters
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Fig. 5. Box plots of the PSNR and SSIM measures obtained with each
denoising method, over 16 levels of mixed Poisson-Gaussian noise (0.05 ≤
σ ≤ 0.2 and 6 ≤ λ ≤ 100). Each box plot emcompasses the PSNR or SSIM
values over all noise levels. Blue rectangles englobe 50% of the measures,
black tails represent first and last quartiles, horizontal red bars indicate the
mean values, and red crosses represent outliers. (a) PSNR values. (b) SSIM
values.

in order to reconstruct the best image with respect to the
PSNR metric. The optimized parameters vary with the type
of image and with the noise model. We report in Table II
the parameter values tuned on the Synth image perturbed with
white Gaussian noise with σ = 0.1.

3) Denoising Performance Metrics: We evaluate and com-
pare denoising performance on two criteria: visual quality
and computation performance. Visual quality is evaluated via
measuring PSNR which is the most commonly used metric
in the image denoising literature and SSIM [59] which is advo-
cated to better reflect the human eye perception. Computation
times are reported running the denoising experiments on a PC
workstation 2.93 GHz Quad-core CPU with 8GB of RAM. All
codes were implemented in Matlab©, some (indicated with a
* in Table II) exploiting compiled mex files.

B. Results

Visual results for the three types of images are summarized
in Fig. 4 for the Pure noise image, in Fig. 6 for the Synth
cell image both corrupted with mixed Poisson Gaussian noise
(σ = 0.15, λ = 9) and in Fig. 7 for the experimental
Hela image. Comments on the visual results are gathered
in Table IV. Several artifacts seen on the Pure and Synth
images replicate findings in [42], including the rare patch
effect at edges and presence of patch borders in flat regions
of the image.

Fig. 6. Comparison of the denoising methods on the Synth. cell image
- zoom on a single cell, with values rescaled to [0, 1]. The image y
is corrupted with a mixed Poisson-Gaussian noise of parameters λ = 9
and σ = 0.15. (a) Ground truth. (b) Noisy. PSNR: 13.71. SSIM: 0.112.
(c) TV. PSNR: 23.79. SSIM: 0.770. Comp. time: 1.1s. (d) TV-ICE. PSNR:
16.85. SSIM: 0.337. Comp. time: 10.6s. (e) TV-MAP Poisson. PSNR:
15.09. SSIM: 0.296. Comp. time: 2.3s. (f) Poisson EM-TV. PSNR: 26.01.
SSIM: 0.903. Comp. time: 2.4s. (g) MIDAL. PSNR: 15.22. SSIM: 0.493.
Comp. time: 0.7s. (h) NLM. PSNR: 24.44. SSIM: 0.777. Comp. time: 15.3s.
(i) NLM-Poisson. PSNR: 21.26. SSIM: 0.626. Comp. time: 44.2s. (j) NLPCA.
PSNR: 23.47. SSIM: 0.652. Comp. time: 15.9s. (k) PNLW. PSNR: 16.81.
SSIM: 0.191. Comp. time: 27.9s. (l) Analysis K-SVD. PSNR: 17.47. SSIM:
0.378. Comp. time: 480s. (m) Wavelet thresh. PSNR: 25.97. SSIM: 0.651.
Comp. time: 5.0s. (n) BM3D. PSNR: 25.67. SSIM: 0.795. Comp. time: 1.2s.
(o) FSR-Mean. PSNR: 28.13. SSIM: 0.925. Comp. time: 14.2s. (p) FSR-EWA.
PSNR: 28.63. SSIM: 0.927. Comp. time: 16.8s. (q) FSR-FBA. PSNR: 27.93.
SSIM: 0.888. Comp. time: 14.3s. (r) FSR-LWC. PSNR: 29.30. SSIM: 0.911.
Comp. time: 14.3s.
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Fig. 7. Comparison of the denoising methods on the Hela. image, with values
rescaled to [0, 1]. (a) Long exposure. (b) Short exposure. PSNR: 17.72. SSIM:
0.094. (c) TV. PSNR: 29.99. SSIM: 0.832. Comp. time: 4.9s. (d) TV-ICE.
PSNR: 24.95. SSIM: 0.391. Comp. time: 62.7s. (e) TV-MAP Poisson. PSNR:
19.92. SSIM: 0.337. Comp. time: 11.1s. (f) Poisson EM-TV. PSNR: 30.53.
SSIM: 0.753. Comp. time: 16.4s. (g) MIDAL. PSNR: 18.88. SSIM: 0.309.
Comp. time: 10.4s. (h) NLM. PSNR: 27.56. SSIM: 0.804. Comp. time: 73.6s.
(i) NLM-Poisson. PSNR: 28.46. SSIM: 0.571. Comp. time: 11.1s. (j) NLPCA.
PSNR: 30.19. SSIM: 0.793. Comp. time: 46.7s. (k) PNLW. PSNR: 24.30.
SSIM: 0.254. Comp. time: 82.8s. (l) Analysis K-SVD. PSNR: 26.62. SSIM:
0.473. Comp. time: 1208s. (m) Wavelet thresh. PSNR: 25.45. SSIM: 0.394.
Comp. time: 4.8s. (n) BM3D. PSNR: 30.63. SSIM: 0.827. Comp. time: 3.5s
(o) FSR-Mean. PSNR: 31.07. SSIM: 0.837. Comp. time: 33.1s. (p) FSR-EWA.
PSNR: 31.05. SSIM: 0.831. Comp. time: 35.5s (q) FSR-FBA. PSNR: 29.73.
SSIM: 0.638. Comp. time: 33.3s. (r) FSR-LWC. PSNR: 31.13. SSIM: 0.842.
Comp. time: 33.3s

In the captions of the reconstructed synthetic images,
we report the PSNR and SSIM values obtained for each
method as well as computation times. We highlight in bold

the best PSNR and SSIM values obtained with our method,
and the fastest method among all, which is MIDAL for Synth.
and BM3D for Pure and Hela.

We report in Fig. 5 results from testing on the Synth. image
the robustness of denoising performance over 16 different
levels of mixed Poisson-Gaussian noise (0.05 ≤ σ ≤ 0.2 and
6 ≤ λ ≤ 100), with noise-level specific optimized parameters
(for the state of the art methods) or keeping parameters fixed
(our proposed method). We observe that our proposed method
(with various fusion operators) always compares well with the
best-performing state-of-the-art method, in terms of PSNR and
SSIM, over all noise levels, is robust to noise level (i.e. smaller
variations of performance metrics) and have no outlier cases.
We can see that TV and Poisson EM-TV methods return the
best maxima (corresponding to low noise level cases) but
that the performance is not consistent over stronger noise
levels. The FSR-LWC method returns the best average PSNR
value. Finally, the Poisson EM-TV method returns high SSIM
values, but a large variability in terms of PSNR, due to strong
localized artefacts, that affect PSNR measures but not SSIM.

Results obtained on the Pure image (cf. Fig.4) enable to
clearly capture visual characteristics of individual denoising
methods. Images have been rescaled to [0, 1], so that the
ground-truth appears black and white instead of grey (true
values being 0.25 and 0.75). Consequently, the loss of contrast
present in some results is due to the presence of few outliers
that control the overall rescaling. We decided to emphasize
the presence of such outliers, observed in many methods,
via such rescaling. As expected, the TV filter gives very
satisfactory results on this type of pure-noise images, as we
enforced the regularization parameter to obtain a TV-sparse
result. Similarly, wavelet-based images, using Haar wavelets,
return close to state-of-the-art results. On the other hand,
the non-local methods fail to denoise this image, as there is
no texture to exploit here. Overall, this figure provides visual
evidence on how each non-local denoising method deals with
noise and suffers from generated artefactual structures.

Regarding the Synth image, some methods like NLM,
NLPCA, PNLW, KSVD, wavelet thresholding, and BM3D
fail to return a good quality image. Our proposed method
performs well with all fusion operators, with a visual quality
comparable to TV and Poisson EM-TV. MIDAL and TV-ICE
have intermediate quality, with contrast between structures
poorly recovered. The TV results show some clear staircase
artefacts, not present in Poisson EM-TV results nor with our
method. Our method returns the highest PSNR value with
EWA fusion operator, and runs in about ∼14s while Poisson
EM-TV runs in 2.4s. But Poisson EM-TV requires the setting
of a maximum number of iterations which is empirical and
requires manual adjustment when performing tests on various
types and level of noises.

On the Hela image, all methods return interpretable images,
but TV-ICE, NLM and wavelet thresholding have the lowest
visual quality, with clear loss of structural details. Other
methods are all comparable and again our proposed method
returns the highest PSNR value but this time with the LWC
fusion operator. In terms of computation time, BM3D is the
fastest algorithm with ∼4s, while our method runs in ∼30s.



3854 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 8, AUGUST 2018

TABLE IV

HIGHLIGHTS OF VISUAL RESULTS OBTAINED WITH THE TESTED DENOISING METHODS

More generally, methods that have been designed specif-
ically for Poisson noise, such as NLM-Poisson, NLPCA
and PNLW, perform poorly on images corrupted with mixed
Poisson-Gaussian noise. This observation confirms the fact
that such methods make strong assumption on the noise
model, and that the mathematical approach chosen to solve the
denoising problem is then less robust to other types of noise.
However, these methods have the particularity of being non-
local, and give good results on biological images that contain
textures.

V. DISCUSSION AND CONCLUSION

In this work, we have introduced a sparsity-based denois-
ing method, combining partial reconstructions via dedicated
fusion operators, which surpassed 12 state-of-the-art denoising
methods in terms of PSNR in three sets of experiments
on microscopic images corrupted with high and complex
noise. Our proposed method systematically provided excellent
quantitative and qualitative results both on synthetic and real
images, with the advantages on being based on a single set
of parameter values and a simple additive noise model to
set a parameter that weights TV regularization versus data
fidelity in the CS cost metric. Our method shares several
attributes with the tested state-of-the-art methods. The use
of multiple sparsity-based reconstructions is akin to wavelet-
thresholding, which combines a low-pass approximation of
the noisy observation with filtered high-pass sparse details.
Indeed, our Fourier sampling scheme ensures the presence
of a low-pass approximation, enriched during the aggregation
procedure with denoised details reconstructed via CS and
TV-regularization. We do not exploit a multi-scale structure
in our proposed method, since we are able to gather multiple
versions of the details at the initial resolution, but this could be
envisaged easily via the exploitation of multiple values of the
cutoff frequency νc in a future extension. Denoising power

in our method relies on the use of TV regularization, as in
many of the best-performing denoising methods tested in this
work. The proposed FSR method is not limited to images with
patch redundancies across the field of view (as for NLM and
BM3D), but it does exploit redundant spatial information from
multiple overlapping sub-samplings of the Fourier domain
during fusion. It does not rely on an a priori model of the
type of noise that corrupts the observation, as required by
some specialized methods tested.

Finally, we tested the concept of using an a priori estimate
of denoised image to guide the denoising in the EWA fusion
operator. Such oracle is used in the NLM-Poisson method
which is based on Stein’s unbiased risk estimate (SURE)
minimization [60]. Single parameterization and robustness
to noise types are highly relevant in the field of micro-
scopic imaging, as such images are perturbed with highly
variable levels and types of mixed Poisson-Gaussian noise
which are complex to model a priori or via a Poisson
likelihood term to optimize. Another benefit of our approach
is the use of only a subset of the samples in the Fourier
domain (typically 35%), which could lead to great potentials
in data compression or data sub-sampling during acquisition.
The proposed FSR method is highly adaptive and can be
optimized in the future via investigations of alternative fusion
strategies, Fourier sampling strategies and more sophisticated
exploitation of the variance map. Finally, to facilitate the
work of the community and build a collective know-how,
we share all the image data and denoising results of this in
extenso study with the community (http://icy.bioimageanalysis.
org/matlab/state-of-the-art-denoising) toward two goals: docu-
menting parameter optimization approaches on shared codes
for some of the denoising techniques, and build-up a
database of synthetic and real microscopic images with
ground-truth to further test denoising methods on a shared
benchmark.
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