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Single Image Super-Resolution Based on
Wiener Filter in Similarity Domain

Cristovao Cruz*”, Rakesh Mehta, Vladimir Katkovnik™, and Karen O. Egiazarian, Senior Member, IEEE

Abstract— Single image super-resolution (SISR) is an ill-posed
problem aiming at estimating a plausible high-resolution (HR)
image from a single low-resolution image. Current state-of-the-
art SISR methods are patch-based. They use either external data
or internal self-similarity to learn a prior for an HR image.
External data-based methods utilize a large number of patches
from the training data, while self-similarity-based approaches
leverage one or more similar patches from the input image.
In this paper, we propose a self-similarity-based approach that
is able to use large groups of similar patches extracted from
the input image to solve the SISR problem. We introduce a
novel prior leading to the collaborative filtering of patch groups
in a 1D similarity domain and couple it with an iterative
back-projection framework. The performance of the proposed
algorithm is evaluated on a number of SISR benchmark data
sets. Without using any external data, the proposed approach
outperforms the current non-convolutional neural network-based
methods on the tested data sets for various scaling factors.
On certain data sets, the gain is over 1 dB, when compared
with the recent method A+. For high sampling rate (x4), the
proposed method performs similarly to very recent state-of-the-
art deep convolutional network-based approaches.

Index Terms—Block matching, sparsity, single image super-
resolution.

I. INTRODUCTION

HE goal of single image super-resolution (SISR) is to

estimate the high frequency spectrum of an image from
a single band limited measurement. In other words, it means
generating a plausible high resolution image that does not
contradict the low resolution version used as input. It is a
classical problem in image processing which finds numerous
applications in medical imaging, security, surveillance and
astronomical imaging, to name few. Simple methods based on
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interpolation (e.g., bilinear, bicubic) are frequently employed
because of their computational simplicity, but due to use of low
order polynomials, they mostly yield very smooth results that
do not contain the sharp edges or fine textures, often present
in natural images.

In recent years, these shortcomings have been partially
resolved by approaches that use machine learning to generate
a low resolution (LR) to high resolution (HR) mapping from a
large number of images [29], [38]. Existing methods utilized
to learn this mapping include manifold learning [4], sparse
coding [42], convolutional neural networks (CNNs) [11], [24],
[25], and local linear regression [37], [38]. The prior learned
by these approaches has been shown to effectively capture
natural image structure, however, the improved performance
comes with some strong limitations. First, they heavily rely
on a large amount of training data, which can be very specific
for different kind of images and somehow limits the domain
of application. Second, a number of these approaches, most
markedly the CNN based ones, take a considerable amount
of training time, ranging from several hours to several days
on very sophisticated graphical processing unitss (GPUs).
Third, a separate LR-HR mapping must be learned for each
individual up-sampling factor and scale ratio, limiting its use
to applications were these are known beforehand. Finally, a
number of these approaches [37], [38], do not support non-
integer up-sampling factors.

Certain researchers have addressed the SISR problem by
exploiting the priors from the input image in various forms of
self-similarity [20], [18], [6], [13]. Freedman and Fattal [18]
observed that, although fewer in number, the input image
based search results in “more relevant patches”. Some self-
similarity based algorithms find a LR-HR pair by searching for
the most similar target patch in the down-sampled image [18],
[20], [23], [32]. Other approaches are able to use several
self-similar patches and couple them with sparsity based
approaches, such as Dong et al. [13]. Yang and Wang [44]
are also able to self-learn a model for the reconstruction
using sparse representation of image patches. Shi and Qi [30]
use a low-rank representation of non-local self-similar patches
extracted from different scales of the input image. These
approaches do not required training or any external data, but
their performance is usually inferior to approaches employing
external data, especially on natural images with complex
structures and low degree of self-similarity. Still, in all of them,
sparsity is regarded as an instrumental tool in improving the
reconstruction performance over previous attempts.
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TABLE I

WIENER FILTER IN SIMILARITY DOMAIN EFFECT ON PERFORMANCE
(Set5, X4), USING HAAR TRANSFORM AS T p. SPEEDUP
1S A FACTOR RELATIVE TO T,/,¢"*" = DCT

TR ner | DCT | Identity*

| PSNR | PSNR  Speedup
Baby 33.48 | 33.55 1.73
Bird 32.74 | 33.25 1.68
Butterfly 24.26 27.45 1.54
Head 32.57 | 32.65 1.68
‘Woman 28.67 | 30.04 1.69
Average | 30.35 | 31.39 1.66

In this work we propose Wiener filter in Similarity Domain
for Super Resolution (WSD-SR), a technique for SISR that
simultaneously considers sparsity and consistency. To achieve
this aim, we formulate the SISR problem as a minimization
of reconstruction error subject to a sparse self-similarity prior.
The core of this work lies in the design of the regular-
izer that enforces sparsity in groups of self-similar patches
extracted from the input image. This regularizer, which we
term Wiener filter in Similarity Domain (WSD), is based on
Block Matching 3D (BM3D) [7], [8], but includes particular
twists that make a considerable difference in SISR tasks. The
most significant one is the use of a 1D Wiener filter that
only operates along the dimension of similar patches. This
feature alone, mitigates the blur introduced by the regularizers
designed for denoising that make use of 3D filtering and
proved essential for the high performance of our proposed
method (see Table I).

II. CONTRIBUTION AND STRUCTURE OF THE PAPER

The main characteristics of the proposed approach are as

follows:

1) No external data or training required: the proposed
approach exploits the image self-similarity, therefore, it
does not require any external data to learn an image
prior, nor does it need any training stage;

2) Supports non-integer scaling factors: the image can be
scaled by any factor and aspect ratio;

3) No border pruning effect: The proposed approach rep-
resents the complete image in the high resolution space
without any border pruning effect, unlike most of the
dictionary based algorithms [38], [47].

4) Excellent performance: it competes with the state-of-
the-art approaches in both computational complexity and
estimation quality as will be demonstrated in section VI.

The previous conference publication of the proposed

approach was done in [15]. The algorithm in this paper follows
the general structure of [15], but introduces a novel regularizer
that proved crucial for obtaining significantly improved per-
formance. The distinctive features of the developed algorithm
are:

o 1D Wiener filtering along similarity domain;
o Reuse of grouping information;
« Adaptive search window size;
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o lterative procedure guided by input dependent heuristics;
o Improved parameter tuning.

An extensive simulation study demonstrates the advanced
performance of the developed algorithm as compared with [15]
and some state-of-the-art methods in the field.

The paper is organized as follows. In Section III we provide
an overview of modern single image super-resolution methods.
In Section IV we formulate the problem and present the
framework we used to solve it. Section V contains the main
contribution of this paper and provides a detailed exposition
and analysis of the novel regularizer to be employed within
the presented framework. Section VI provides an experimental
analysis of our proposal and comparison against several other
SISR methods, both quantitative and qualitative. Section VII
analyses possible variations of the proposed approach that
could lead to further improvements. Finally, Section VIII
provides a summary of the work.

III. RELATED WORK

The SISR algorithms can be broadly divided into two main
classes: the methods that rely solely on observed data and
those that additionally use external data. Both of these classes
can be further divided into the following categories: learning-
based and reconstruction-based. However, we are going to
present below the related work in a simplified division of the
methods that only accounts for use, or lack of use, of external
data without any aim to be considered as an extensive review
of the field.

A. Approaches Using External Data

This type of approaches use a set of HR images and their
down-sampled LR versions to learn dictionaries, regression
functions or end-to-end mapping between the two. Initial
dictionary-based techniques created a correspondence map
between features of LR patches and a single HR patch [19].
Searching in this type of dictionaries was performed using
approximate nearest neighbours (ANN), as exhaustive search
would be prohibitively expensive. Still, dictionaries quickly
grew in size with the amount of used training data.
Chang er al. [4] proposed the use of locally linear embedding
(LLE) to better generalize over the training data and therefore
require smaller dictionaries. Image patches were assumed
to live in a low dimensional manifold which allowed the
estimation of high resolution patches as a linear combination
of multiple nearby patches. Yang et al. [42] also tackled
to problem of growing dictionary sizes, but using sparse
coding. In this case, a technique to obtain a sparse “compact
dictionary” from the training data is proposed. This dictionary
is then used to find a sparse activation vector for a given
LR patch. The HR estimate is finally obtained by multiplying
the activation vector by the HR dictionary. Yang et al. [43],
Zeyde et al. [47] build on this approach and propose methods
to learn more compact dictionaries. Ahmed and Shah [1] learns
multiple dictionaries, each containing features along a different
direction. The high-resolution patch is reconstructed using the
dictionary that yields the lowest sparse reconstruction error.
Kim and Kim [26] does away with the expensive search
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procedure by using a new feature transform that is able to
perform simultaneous feature extraction and nearest neighbour
identification. Dictionaries can also be leveraged together with
regression based techniques to compute projection matrices
that, when applied to the LR patches, produce a HR result.
The papers by Timofte er al. [37]-[39] are examples of such
an approach where for each dictionary atom, a projection
matrix that uses only the nearest atoms is computed. Recon-
struction is performed by finding the nearest neighbour of the
LR patch and employing the corresponding projection matrix.
Zhang et al. [48] follows a similar approach but also learns
the clustering function, reducing the required amount of anchor
points. Other approaches do not build dictionaries out of the
training data, but chose to learn simple operators, with the
advantage of creating more computationally efficient solutions.
Tang and Shao [36] learns two small matrices that are used
on image patches as left and right multiplication operator
and allow fast recovery of the high resolution image. The
global nature of these matrices, however, fails to capture small
details and complex textures. Choi and Kim [5] learns instead
multiple local linear mappings and a global regressor, which
are applied in sequence to enforce both local and global
consistency, resulting in better representation of local structure.
Sun et al. [35] learns a prior and applies it using a conventional
image restoration approach. Finally, neural networks have
also been explored to solve this problem, in various ways.
Sidike et al. [31] uses a neural network to learn a regressor
that tries to follow edges. Zeng et al. [46] proposes the use
of coupled deep autoencoder (CDA) to learn both efficient
representations for low and high resolution patches as well as
a mapping function between them. However, a more common
use of this type of computational model is to leverage massive
amounts of training data and learn a direct low to high
resolution image mapping [12], [24], [25], [27]. Of these
approaches, only Liu er al. [27] tries to include domain
expertise in the design phase, and despite the fact that testing is
relatively inexpensive, training can take days even on powerful
computers.

Although these approaches learn a strong prior from the
large amount of training data, they require a long time
to train the models. Furthermore, a separate dictionary is
trained for each up-sampling factor, which limits the available
up-sampling factors during the test time.

B. Approaches Based Only on Observed Data

This type of approaches rely on image priors to generate
an HR image having only access to the LR observation.
Early techniques of this sort are still heavily used due
to their computational simplicity, but the low order signal
models that they employ fail to generate the missing high
frequency components, resulting in over-smoothed estimates.
Haris et al. [22] manages to partially solve this problem by
using linear interpolators that operate only along the edge
direction. Wei and Dragotti [41] explores the use finite rate of
innovation (FRI) to enhance linear up-scaling techniques with
piece-wise polynomial estimates. Other solutions use separate
models for the low-frequency and high-frequency components,
the smooth areas and the textures and edges [10], [45].
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An alternative approach to image modeling draws from the
concept of self-similarity, the idea that natural images exhibit
high degree of repetitive behavior. Ebrahimi and Vrscay [14]
proposed a super-resolution algorithm by exploiting the self-
similarity and the fractal characteristic of the image at dif-
ferent scales, where the non-local means [3] is used to
perform the weighting of patches. Freedman and Fattal [18]
extended the idea by imposing a limit on the search space
and, thereby, reduced the complexity. They also incorporated
incremental up-sampling to obtain the desired image size.
Suetake et al. [34] utilized the self-similarity to generate an
example code-book to estimate the missing high-frequency
band and combined it with a framework similar to [19].
Glasner et al. [20] used self-examples within and across mul-
tiple image scales to regularize the otherwise ill-posed clas-
sical super-resolution scheme. Singh et al. [33] proposed an
approach for super-resolving the image in the noisy scenarios.
Egiazarian and Katkovnik [15], introduced the sparse coding in
the transform domain to collectively restore the local structure
in the high resolution image. Dong et al. [13] also employs
self-similarity to model each pixel as a linear combination
of its non-local neighbors. Cui et al. [6] utilized the self-
similarity with a cascaded network to incrementally increase
the image resolution. Recently, Huang et al. [23] improved the
search strategy by considering affine transformations, instead
of translations, for the best patch match. Further, various
search strategies have been proposed to improve the LR-HR
pair based on textural pattern [32], optical flow [49] and
geometry [17].

IV. FRAMEWORK FOR ITERATIVE SISR

A linear ill-posed inverse problem, typical for image restora-
tion, in particular, for image deblurring and super-resolution,
is considered here for the noiseless case:

y=Hx ey

where y € R”, x € R", m < n, H is a known linear operator.

The problem is to solve (1) with respect to x provided
some prior information on x. In terms of super-resolution, the
operations in R™ and R” can be treated as operations with low-
and high-resolution images, respectively. Iterative algorithms
to estimate x from (1) usually include both up-sampling and
down-sampling operations along with some prior information
on these variables.

In this work we solve this inverse problem using a general
approach similar to one introduced in Danielyan et al. [9]
for image deblurring, but focusing on the specific problem
of SISR.

The sparse reconstruction of x can be formulated as the
following constrained optimization:

min ||0]]o, — Hx 2<82,
min [[0]lo, 11y~ Hx|l3 <
x=V0, 6=ox. 2)

Here ® € R"™*" and W € R"*™ are analysis and syntheses
matrices, @ € R™ is a spectrum vector, and ¢ is a parameter
controlling the accuracy of the equation (1). For the super-
resolution problem m < n. Recall that [p-pseudo norm,
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[|€]]o, is calculated as a number of non-zero elements of 6
and ||.||> denotes the [, norm.

Sparse reconstruction of x means minimization of ||@]|g
corresponding to a sparse representation for x provided equa-
tions linking the image with the spectrum and the inequality
defining the accuracy of the observation fitting. While the
straightforward minimization (2) is possible, our approach
is essentially different. Following Danielyan et al. [9], we
apply the multiple-criteria Nash equilibrium technique using
the following two cost functions:

1 1
16, x) = Iy - Hx|3 + e w3, (3)

1
L8, x) = §||0—<1>XII%+10||0||0- (4)

The first summand in Jj corresponds to the given observations
and the second one is penalization of the equation x = W#.
The criterion J> enables the sparsity of the spectrum 6 for
x provided the restriction §# = ®x. The Nash equilibrium
for (3)-(4) is a consensus of restrictions imposed by Ji, J>.
It is defined as a fixed point (6, x*) such that:

*

x* = argmin J; (0, x), 5)
X
0% = arg n}gin J (0, x™). 6)

The equilibrium (#*, x*) means that any deviation from
this fixed point results in increasing of at least one of the
criteria.

The iterative algorithm looking for the fixed point has the
following typical iterative form [16]:

xkt = arg min Jp (6%, x), 7
X

0" ! = arg moin L0, x* 1. (8)

We modify this procedure by replacing the minimization
of J; on x by a gradient descent step corresponding to the
gradient

oJy/ox = izHT(y—Hx)— l(x—nlra). 9)
€ Y

Accompanied by minimization of J, on 6 it gives the
following iterations for the solution of the problem at
hand:

okt = gk
+a(HT H)* [SLZHT(y — Hi% - l(xk — ik)},

' (10)

okt — argmoin Jo(0, xk+1), (11

FhHL gkt (12)

Here (1) stands for the Moore-Penrose pseudo-inverse. The
matrix (H” H)" is a typical factor used for acceleration of
the gradient iterations.

The optimization on @ in (11) gives as a solution the hard-
thresholding (HT) with the threshold equal to /279, where
79 denotes the threshold parameter such that:

0" = Th 5, (®xY). (13)
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This thresholded spectrum combined the with the equality
% = Wk defines the filter with input xk, output % and
threshold parameter zg:

it = Fi (x5, ). (14)

Then the algorithm can be written in the following compact
form

xk+1 — J'Ek

+a(HT H)* [HT(y - H:Z")gi2 - yl(ik - xk)i|,
(15)

= A ). (16)

The first line of this algorithm defines an update of the
super-resolution image x**! obtained from the low resolution
residue y — HX*. Note, that (HT H)*HT e R™™ is an
up-sampling operator (matrix), which we will denote by
U e R™™:

U=(H"H)"HT. (17)

The last summand (% — x*)/y in (15) is the scaled dif-
ference between the image estimate after and before filtering.
Experiments show that this summand is negligible. Dropping
this term, replacing a /&2 by a and exchanging the order of the
operations (15) and (16) we arrive to the simplified version of
the algorithm:

= A6 ),
x* =& +aU(y — HFY).

(18)
19)

The filter F; is completely defined by the used analy-
sis and synthesis operators ® € R™*" and ¥ e R™"™.
In particular, if the BM3D block-matching is used for design
of the analysis and synthesis operators, the filter F; is the
BM3D HT algorithm (see Danielyan et al. [9]).

We replaced this BM3D HT algorithm by our proposed
regularizer WSD, which uses the BM3D grouping but is
especially tailored for super-resolution problems.

The algorithm takes now the final form, which is used in
our demonstrative experiments:

(20)
21

i = wsD(x* !, ok,
xk = # +aU(y — HFY).

This proposed iterative algorithm is termed WSD-SR, and
formally described in Procedure 1.

Note, that (20) defines the regularizing stage of the super-
resolution algorithm. The analysis and synthesis transforms
used in WSD are data dependent and, as a result, vary from
iteration-to-iteration, as in BM3D. The parameter 7y is also
changing throughout the iterations, in order to account for the
need to reduce the strength of the regularizer in the later stages
of the iterative procedure.

V. PROPOSED REGULARIZER

The proposed regularizer, WSD, is highly influenced by
the BM3D collaborative filtering scheme that explores self-
similarity of natural images [8].
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Fig. 1.

Algorithm 1 WSD-SR Algorithm
Input: y: low resolution input
Input: H: sampling operator
Input: K: number of iterations
QOutput: High resolution estimate
1. U= (HT"H)"HT {up-sampling matrix}
2: 2% = Uy {initial estimate}
3: for k=1 to K do
4 7F = WSD(zF1, 7k)
5
6
7

2* =aU(y — HZ%) + z*
: end for

. return ¥

As shown in Fig. 1 and further described in Procedure 2,
WSD operates in two sequential stages, both filtering groups of
similar patches, as measured using the Euclidean distance. The
result of each stage is created by placing the filtered patches
back in their original locations and performing simple average
for pixels with more than one estimate. The two stages employ
different filters on the patch groups. The first stage, which is
producing a pilot estimate used by the second stage, uses HT in
the 3D transform domain. The second stage on the other hand,
which is generating the final result, uses the result of the first
stage to estimate an empirical Wiener filter in the 1D transform
domain, operating only along the inter-patch dimension, which
we call the similarity domain. This filter is then applied to the
original input data.

The use of the 1D Wiener filter in the second stage sets this
approach apart from both Egiazarian and Katkovnik [15] and
Wang et al. [40]. It allowed to not only achieve much sharper
results and clearer details, but also reduce the computational
cost. Furthermore, the employed grouping procedure includes

WSD block diagram.

two particular design elements that further improved the sys-
tem’s performance and reduced its computational complexity:
reuse of block match results and adaptive search window
size. Finally, as described in the previous section, WSD is
applied iteratively in what we term WSD-SR. This requires
the modulation of the filtering strength in such a way that it
is successively decreased as the steady-state is approached, in
a sort of simulated annealing fashion [21]. We present input
dependent heuristics for the selection of both the minimum
number of iterations and the filter strength curve.

Overall, the main features of our proposal are:

1) Wiener filter in similarity domain;

2) stateful operation with grouping information reuse;

3) adaptive search window size;

4) input dependent iterative procedure parameters.

These design decisions, as well as the parameters selection
are studied in this section. Empirical evidence is presented for
each decision, both in terms of reconstruction quality (PSNR)
and computational complexity (speed-up factor). The tests
were conducted on Set5 [2] using a scale factor of 4, and
sampling operator H set to bicubic interpolation with anti-
aliasing filter. In all tables, only the feature under analysis
changes between the different columns and the column marked
with a * reflects the final design.

A. Wiener Filter in Similarity Domain

The original work on collaborative filtering [8] addresses
the problem of image denoising, hence, exploits not only the
correlation between similar patches but also between pixels of
the same patch. It does so by performing 3D Wiener filtering
on groups of similar patches. The spectrum of each group
is computed by a separable 3D transform composed of a
2D spatial transform T>p and a 1D transform 77p along the
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Algorithm 2 WSD Algorithm
Input: z: filter input
Input: 7: filter strength
Input: KP"°*: pilot recompute period
Input: k: current iteration
Output: z: estimate
{Compute match table for pilot estimation. }
. if £ =0 then
m/* < HTBlockMatch (z)
else
mht < m
end if

ht
previous

: {Pilot estimation. }

. if & mod KP¥°t = () then

g"* + Group (z,m")

" < HardThresholding (¢"*, 75)
Fpilot « Aggregate (§t)

mPiet < WienerBlockMatch (ZP*°?)
. else .

jpil()t — ‘igil;fious

mpilOt — mgﬁ:ﬁious

: end if

R A A ol S

—_ o om m s e e
e A S A el

. {Filter the input image using pilot information. }
. gpzlot P GI'Ollp (jpzlot,m;?zlot)

: W < EstimateWiener (g"°!, 7y)

. nglener — Group (x,mpzlot)

o gPeneT «+— WienerFilter (g*me" W)

. T+ Aggregate (gwiener)

NN NN =
O R O~ S ©

: {Store information for future reuse.}
. ht ht
. mprevious «—m

— i,pilot

. apilot
— mpilot

Y
RN

previous
pilot
previous

NN
o ®

: return T

(9%
(=]

similarity dimension. However, when dealing with the problem
of noiseless super-resolution, employing a 3D Wiener filter
results in spatial smoothing, which is further exacerbated by
the iterative nature of the algorithm. In order to avoid this
problem we use Top = [, which means performing 1D
Wiener filtering along the inter-patch similarity dimension.
More specifically, given a match table m, a pilot estimate
#Piot "and an operation x (:, m) that extracts from x the patches
addressed by m as columns, a 1D empirical Wiener filter W
of strength 7,74 1s estimated as follows:

gpilot — fpilot(:,m) (22)
Gpilot — gpilotTlD (23)
|Gpilot|2
W = (Grior 2+ 2 ) (24)
theta

The filter is applied by performing point-wise multiplication
with the spectrum of the group of similar patches extracted
from the input image x, using the same match table m that
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TABLE II

MATCH TABLE REUSE EFFECT ON PERFORMANCE (Set5, X4). Kpilot — 5,
SPEEDUPIS A FACTOR RELATIVE TO MATCH TABLE REUSE: DISABLED

Match table reuse | Disabled | Enabled*

| PSNR | PSNR  Speedup
Baby 33.50 33.55 2.82
Bird 33.12 33.25 3.01
Butterfly 27.25 27.45 3.23
Head 32.66 32.65 2.92
‘Woman 29.98 30.04 3.14
Average | 31.30 | 31.39 3.02

was used to estimate the Wiener coefficients W:

wiener

=x(:,m) (25)
Gwiener — gwiener TID (26)
Gwiener - W. x Gwiener (27)
gwiener — Tl—g Gwiener (28)

The resulting filtered group of patches g“¢"¢" is ready to
be aggregated.

These operations are presented in Procedure 2 using sym-
bolic names. There, the Group() operation stands for x(:, m),
EstimateWiener() stands for equations (23)-(24) and Wiener-
Filter() stands for equations (26)-(28).

Besides dramatically improving the reconstruction quality,
this feature significantly reduces the computational complexity
of WSD when compared to a 3D transform based approach,
as suggested by the empirical evidence in Table 1.

B. Grouping Information Reuse

In the proposed approach, we apply collaborative filtering
iteratively on the input image. However, because the structure
of the image does not change significantly between iterations,
the set of similar patches remains fairly constant. Therefore,
we decided to perform block matching sparsely and reuse the
match tables. We observed that in doing so, we not only gain
in terms of reduced computational complexity, but also in
terms of reconstruction quality. We speculate that the improved
performance stems from the fact that by using a set of similar
patches for several iterations we avoid oscillations between
local minima, and by revising it sporadically, we allow for
small structural changes that reflect the contribution of the
estimated high frequencies.

Each iteration of the collaborative filter typically requires
the execution of the grouping procedure twice, the first time
to generate the grouping for HT and the second one to
generate the grouping for Wiener filtering. We observed that
this iterative procedure is fairly robust to small changes on
the grouping used for the HT stage, to the point that optimal
results are achieved when that match table is computed only
once. The same is not true for the Wiener stage’s match
table, which still needs to be computed every few iterations,
K Pilot in Procedure 2. Table II presents the empirical evidence
concerning these observations.
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Fig. 2. Three types of search strategies. Global, local and incremental. Red blocks indicate the reference patches. Green patches denote the matching patches
for the reference patch at the top of the butterfly. Yellow patches denote the matching results corresponding to the reference at the bottom of the butterfly.

(a) Global. (b) Local. (c) Incremental.

C. Adaptive Search Window Size

A straightforward solution to define the search window size
for block matching would be to use the whole image as the
search space. In doing so, we would be in the situation of
global self-similarity and guarantee the selection of all the
available patches meeting the similarity constraint. There are,
however, two drawbacks to this solution. First, it incurs a
significant computational overhead as the complexity grows
quadratically with the radius of the search window. Second,
it inevitably results in the inclusion of certain patches that,
although close to the reference patch in the Euclidean space,
represent very different structures in the image. This effect
can be observed in Fig. 2a, specifically on the top patch,
where global self-similarity results in the selection of patches
which do not lie on the butterfly and have very differ-
ent surrounding structure compared to the reference patch.
An alternative solution would be limit the search window to
a small neighborhood of the reference patch. However, if the
search window is too small, it might happen that not enough
similar patches can be found, as exemplified in Fig. 2b. In our
proposal we use an incremental approach that starts with a
small search window and enlarges it just enough to find a full
group of patches which exhibit an Euclidean distance to the
reference patch smaller that a preset value. Fig. 2¢ shows an
example where this incremental strategy finds similar patches
from the local region for both reference blocks.

We tested the three different definitions of the search space
here discussed, aiming to find 32 similar patches, resulting
in Table III. It can can be observed that for some images,
the use of global search results in a drop of performance,
while the use of incremental search never compromises the
reconstruction quality.

D. Iterative Procedure Parameters

The iterative nature of the proposed solution introduces
the need to select two global parameters that significantly
affect the overall system performance: the total number
of iterations and the collaborative filter strength curve, 7.

TABLE III

SEARCH STRATEGY EFFECT ON PERFORMANCE (Set5 X4). RUN-TIME
Is A FACTOR RELATIVE TO SEARCH STRATEGY: GLOBAL

Search Strategy | Global | Local |  Incremental*

| PSNR | PSNR  Speedup | PSNR  Speedup
Baby 33.55 33.55 19.82 33.55 20.24
Bird 32.79 33.25 6.73 33.25 6.70
Butterfly 26.97 27.06 5.37 27.45 4.89
Head 32.57 32.66 6.14 32.65 6.15
‘Woman 29.77 29.92 6.19 30.04 6.11
Average ‘ 31.13 ‘ 31.29 10.01 ‘ 31.39 9.78

We use an inverse square filter strength curve, with fixed
starting and end point, as described in the following equation:

. (K —k)?

Tg = Yk——— T Vs (29)
K
Here K is the total number of iterations, k is the current
iteration and s is the scale factor. This curve will lead
to slower convergence when more iterations are used and
vice-versa, allowing the number of iterations to be adjusted
freely.

In order to devise a rule for the selection of the number
of iterations, we studied the convergence of the method by
reconstruction various images of Set5 using a different number
of iterations. Figure 3 shows the results for the bird and
butterfly images. These two images have a very different type
of content, and the reconstruction of the sharp edges presented
by the butterfly image requires a much slower variation of the
filtering strength, and therefore many more iterations, than the
reconstruction of the more smooth bird image. We speculate
that this behavior stems from the low pass nature of the
employed sampling operator H and devised a heuristic that
uses this known operator to compute the required number of
iterations for a particular image. This heuristic is presented
together with other implementation details in VI-B, more
specifically equation (30).
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Fig. 3.  Evolution of algorithm for different images. (a) The PSNR is
computed for different number of iterations for two images (bird and butterfly)
from Set5. The algorithm progresses quickly for bird while for butterfly
it requires more iterations. (b) Bird image has uniform regions and green
textured regions, hence also evolves quickly. (c) Butterfly image has sharp
edges which results in slow progression.

VI. EXPERIMENTS

We evaluate the performance of the proposed WSD-SR on
three different datasets and three scaling factors. First, we pro-
vide details on the datasets, performance evaluation procedure
and algorithm implementation. Next, the selected parameters
of the proposed method are presented. Then, the performance
of the proposed approach is compared with the state-of-the-art
techniques, both quantitatively and qualitatively.

All the experiments were conducted on a computer with
an Intel Core 17-4870HQ@2.5GHz, 16GB of RAM and an
NVIDIA GeForce GT 750M. The WSD-SR implementation
used to generate these results can be accessed in the website:
http://www.cs.tut.fi/sgn/imaging/sr/wsd/.

A. Experimental Setup

1) Datasets: Following the recent work on SISR, we test
our approach on three publicly available datasets. Set5 [2] and
Setl4 [47] containing 5 and 14 images, respectively. These
two datasets have been extensively used by researchers to
test super-resolution algorithms, but are quite limited in both
the amount and type of images, containing mostly objects
and people. For a more thorough analysis we also test the
proposed algorithm on the Urbanl00 dataset proposed by [23]
which contains 100 images, including buildings and real world
structures.

2) Performance Evaluation: In order to evaluate the perfor-
mance of the proposed method we use a similar approach
as Timofte er al. [38]. Color images are converted to the
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TABLE IV
PROPOSED WSD-SR PARAMETERS

NPt maz (8,4 x (s — 1))
N%t 32
N Sé 12

HT stage parameters h

=r N%:;"az 12ht

Nstep Nl -1
Tiﬁ 2D-DCT
yaga 1D-Haar
Nwiener O5N{7‘t

Nuwiener 32
Nzuoiener 12
Nwiener 48

max

Wiener stage parameters

N:éé;ner Niwiener —1
Twzener I
lelg"i”” 1D-Haar
a 1.75
Yk 12
Global parameters Vs 2/3
B 40/+/s
Bo 20
Kpilot 5

YCbCr domain and only the luminance channel (Y) is
processed and evaluated. The color components, are taken
into account for display purposes alone, for which a bicubic
interpolation is performed. The evaluation of a method’s
performance using a scaling factor of s on an image Zzorig,
comprises the following steps:

1) Set z to the luminance channel of z,,;z, which on color
images corresponds to the Y component of the YCbCr
color transform;

2) Remove columns (on the right) and rows (on the bottom)
from z as needed to obtain an image which size is a
multiple of s on both width and height, designated zg;;

3) Quantize z4, using 8 bit resolution.

4) Generate a low resolution image for processing by
down-sampling zg; by a factor of s, using bicubic
interpolation and an anti-aliasing filter, obtaining z;,;

5) Quantize z;- using 8 bit resolution;

6) Super resolve z;-, obtaining y;

7) Quantize y using 8 bit resolution;

8) Remove a border of s pixels from both zg, and
y obtaining Zgt_trimmed and yrrimmed:

9) Compute the peak signal to noise ratio (PSNR) of
Virimmed USINg as reference zgs srimmed-

We note that the trimming operations 2 and 8 are done in
order to allow for fair comparison with other methods. The
proposed method can use any positive real scaling factor and
does not generate artefacts at the borders. The quantization
operations 3, 5 and 7 are used in order to effectively simulate
a realistic scenario where images are usually transmitted and
displayed with 8 bit resolution.

B. Parameters

The WSD-SRparameters, affecting both WSD and the back
projection scheme used throughout these experiments are
presented in Table IV, where s stands for the scale factor.
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TABLE V
THE COMPARISON OF PERFORMANCE ON Set5, Setl4 AND Urbanl00

Dataset Factor  Bicubic A+ SelfEx ARFL+ NBSRF VDSR DRCN WSD-SR-DCT WSD-SR
2 33.68 36.58  36.57 36.58 36.76 37.53 37.63 36.54 37.21
Set5 3 30.41 32.60 32.63 32.46 32.75 33.67 33.83 32.69 33.50
4 28.43 30.30  30.31 30.15 30.44 31.35 31.54 30.39 31.39
2 30.24 32.29  32.37 32.26 32.44 33.05 33.06 32.39 32.83
Setl4 3 27.54 29.13  29.24 29.04 29.25 29.78 29.77 29.26 29.72
4 26.00 27.32 2747 27.23 27.41 28.02 28.02 27.43 27.98
2 26.88 29.24  29.56 29.13 29.45 30.77 30.76 29.39 30.29
Urban100 3 24.46 26.05  26.45 25.87 26.18 27.14 27.15 26.18 26.95
4 23.14 24.34  24.79 24.19 24.44 25.19 25.14 24.46 25.16

Block size Np is an important factor involved in the collabo-
rative filtering which depends on the up-sampling factor. The
initial radius of the search window, Ny, is set to 12 for both
steps. However, the HT step uses only local search, while the
Wiener filter stage uses adaptive window size. This difference
is evident in the maximum search radius Ng,,, . The maximum
number of used similar matches, N,, is the same for both
stages. The regular grid used to select the reference blocks
has step size, Nyep, defined such that there is 1 pixel overlap
between adjacent blocks. Finally, the used transforms reflect
the main goal of this work, that is, to perform the Wiener
filter only along the similarity domain. The total number of
iterations is computed using the following heuristic:

lly — HUy|3

K = By * + Bo (30)

where U is the up-sampling operator matrix, and m the
dimensionality of y, both as defined in section IV. This will
lead to the use of more iterations in images that are more
affected by the sampling procedure. There is however an upper
bound of 400 iterations.

C. Comparison With State-of-the-Art

The performance of the proposed approach is compared
with several other methods on the already mentioned datasets,
using three up-sampling factors s = 2,3,4. The results of
the proposed approach are compared with the classic bicubic
interpolation, the regression based method A+ (aplus) [38],
the random forest based methods ARFL+ (arflplus) [29]
and NBSRF (NBSRF) [28], the CNN based methods VDSR
(VDSR) [24] and DRCN (DRCN) [25] and finally the only
self similarity based method on this list, SelfEx (SelfEx) [23].
Furthermore, to highlight the importance of using 1D Wiener
in the second stage, we also present the quantitative results
achieved by our proposal when Tz“;)ie"” = 2D-DCT, desig-
nated WSD-SR-DCT in Table V. PSNR is used as the evalu-
ation metric and the experimental procedure earlier explained
is used for all methods, with the notable exception of VDSR
and DRCN for which the PSNR was computed on the pub-
licly available results (only steps 7 to 9 of the experimental
procedure).

1) Quantitative Analysis: Table V shows the quantitative
results of these methods. It can be observed that the proposed
approach outperforms all but the more recent CNN based

methods: VDSR and DRCN. Note that these two methods
used external data and reportedly require 4 hours and 6 days
to generate the necessary models, contrary to our approach
that relies solely on the image data. Comparing to the only
other self-similarity based method, SelfEx [23], the proposed
method shows considerable better performance, implying that
the collaborative processing of the mutually similar patches
provides a much stronger prior than the single most similar
patch from the input image. We also note that for high
up-sampling factors of Urbanl00, the performance of the
proposed method is in par with even the CNN based methods,
showing that this approach is especially suited for images with
a high number of edges and marked self-similarity. It also
confirms that hypothesis that the self-similarity based priors,
although less in number, are very powerful, and can compete
with dictionaries learned over millions of patches. Finally we
note that the use of Wiener filter in similarity domain shows a
significant performance improvement over the use of Wiener
filter in 3D transform domain, which further supports our
hypothesis that this specific feature is indeed crucial for the
overall performance of the proposed approach.

2) Qualitative Analysis: So far we evaluated the proposed
approach on a benchmark used for SISR performance assess-
ment. Here we extend our analysis by providing a discussion
on the visual quality of the results obtained by various
methods. The analysis is conducted on results obtained with
up-scaling factor of 4.

First we analyze a patch image ppt of Set/4, in Fig. 4.
The background helps to notice the differences in sharpness
that results from the different techniques. It can be observed
that WSD-SR estimates the high frequencies better than other
approaches, even the CNN based ones, resulting in much
sharper letters.

Finally, we consider a patch from image 004 of Urbanl00 in
Fig. 5. The images in the Urban dataset exhibit a high degree
of self-similarity and the proposed approach works particularly
well on these kind of images. To illustrate, we consider a patch
which consists of repetitive structure. It can be observed that
the proposed approach yields much sharper results than the
others.

D. Comparison With Varying Number of Iterations

We investigate the effect of having a fixed number of
iterations on the performance of the proposed approach, when
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Fig. 4. Visual comparison with other approaches on the ppt image of Set/4, scale factor 4.

compared with other approaches, as opposed to using the
estimation method presented in Section V-D. Figure 6 shows
the average PSNR on Ser5 using an up-sampling factor of 4.
We can see that with a few dozen iterations our method
outperforms most of the other approaches, most notably
the self-similarity based SelfEx. With a further increase in

number of iterations it is even capable of achieving similar
results as the state of the art convolutional network based
approach VDSR.

Next, we plot the computation time against the number of
iterations in Fig. 7. We also show the computation time of
the other approaches in a way that allows easy comparison.
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Note however that the number of iterations is only rele-
vant to WSD-SR. All other approaches were executed in
their canonical state, using the publicly available codes.
As expected, for WSD-SR the computation time increases
linearly with the number of iterations. It can be observed that
the proposed approach is generally slower than the dictionary
based methods. Note also that even at 400 iterations, the
proposed approach still performs faster than the only method
for which we can’t match the reconstruction performance,
DRCN. Compared to the self-similarity based approach [23],
the proposed algorithm is able to achieve comparable results
much faster, and about 1dB better at the break even point.
In WSD-SR, the number of iterations can provide a trade-
off between the performance and the processing time of the
algorithm.

VII. DISCUSSION

Here we study a few variations of WSD-SR. First we
propose and evaluate it’s extension to color images. Second,

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

Visual comparison with other approaches on the 004 image of Urbanl00, scale factor 4.

we analyze the method’s performance under the assumption
that a block match oracle is available, in order to assess the
existence of potential for better results.

A. Color Image Channels

Following the established custom, all the tests and compar-
isons so far have been conducted using only the luminance
information from the input images. Despite the fact that this
channel contains most of the relevant information, we believe
that some gain might come from making use of the Color
channels in the reconstruction process. Our method is easily
extended to such scenarios, and we devised and tested two new
profiles in order to verify this hypothesis. The first profile,
termed Y-YCbCr follows a similar approach as presented
in [7], where the block matching is performed in the Y channel
and the filtering applied to all the Y, Cb and Cr channels. The
second profile, Y-RGB also performs the block matching in
the Y channel, but does the filtering on all channels of the
RGB domain. We show in Table VI the results of processing
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WSD-SR PERFORMANCE WHEN ORACLE PROVIDES MATCHES

TABLE VII

Without Oracle

With Oracle

Baby 33.55 34.53
Bird 33.25 34.92
Butterfly 27.45 29.26
Head 32.65 33.28
Woman 30.04 31.70
Average 31.39 32.74
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methods were run with their canonical configurations.

WSD-SR PERFORMANCE WHEN COLOR INFORMATION IS USED

TABLE VI

The average computation time on Set5, for a scale factor of 4.
The variable number of iterations is only meaningful for WSD-SR. All other

Y-Y Y-YCbCr  Y-RGB
Baby 33.55 33.55 33.59
Bird 33.25 33.31 33.52
Butterfly — 27.45 27.45 27.90
Head 32.65 32.65 32.64
Woman 30.04 30.04 30.07
Average  31.39 31.40 31.55

Set5 with these profiles. We add a third profile in the table,
named Y-Y that corresponds to the one we have been using
so far that uses only information from the Y channel for both
matching and filtering and that super resolves the chrominance
channels with a simple bicubic interpolator.

Despite the fact that the Y-RGB profile does not filter the
Y channel, it is possible to see that, even when measured as
the PSNR of the Y channel alone, the method’s performance
improves considerably on the bird and butterfly images.

B. Oracles

We performed a final experiment which we believe shows
the potential of this technique to achieve even better results.
This experiment was conducted with the use of oracles, more
specifically an oracle for the block match table. This match

table was extracted from the ground truth and used on all
iterations, while all other parameters of the method remained
as previously defined. In essence we are substituting the block
matching procedure with an external entity, the oracle, that
provides the best possible match table. The results from this
experiment, conducted on Set5 using a scale factor of 4, can
be observed in Table VII. As one can see, also here, there
is potential for much better results if the block matching
procedure is somehow improved.

VIII. CONCLUSION

Our previous algorithm employing iterative back-projection
for SISR [15] made use of a collaborative filter designed for
denoising applications, BM3D, which uses a 3D Wiener filter
in groups of similar patches. In this work, we have shown
that 1D Wiener filtering along the similarity domain is more
effective for the specific problem of SISR and results in much
sharper reconstructions. Our novel collaborative filter, WSD,
is able to achieve state-of-the-art results when coupled with
iterative back-projection, a combination we termed WSD-SR.
Furthermore, the use of self-similarity prior leads to a solution
that does not need training and relies only on the input image.

The summary of our findings is:

o 1D Wiener filtering along similarity domain is more
effective than 3D Wiener filtering for the task of SISR;

o Local self-similarity produces more relevant patches than
global self-similarity;

o The patches extracted from input image can provide
strong prior for SISR.

We demonstrated empirically that the proposed approach
works well not only on images with substantial self-similarity
but also on natural images with more complex textures.
We have also shown that there is still potential within
this framework, more specifically, the performance can be
improved by: (1) taking advantage of the color information
and (2) improving the block matching strategy.
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