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Abstract— This paper addresses the problem of online tracking
and classification of multiple objects in an image sequence.
Our proposed solution is to first track all objects in the scene
without relying on object-specific prior knowledge, which in other
systems can take the form of hand-crafted features or user-
based track initialization. We then classify the tracked objects
with a fast-learning image classifier, that is based on a shallow
convolutional neural network architecture and demonstrate that
object recognition improves when this is combined with object
state information from the tracking algorithm. We argue that
by transferring the use of prior knowledge from the detection
and tracking stages to the classification stage, we can design
a robust, general purpose object recognition system with the
ability to detect and track a variety of object types. We describe
our biologically inspired implementation, which adaptively learns
the shape and motion of tracked objects, and apply it to the
Neovision2 Tower benchmark data set, which contains multiple
object types. An experimental evaluation demonstrates that our
approach is competitive with the state-of-the-art video object
recognition systems that do make use of object-specific prior
knowledge in detection and tracking, while providing additional
practical advantages by virtue of its generality.

Index Terms— Object recognition, image classification, visual
tracking, multi-object tracking.

I. INTRODUCTION

WE REPORT on the design of an automated vision sys-
tem that can accurately locate and recognize multiple

types of objects. The goal of online object recognition systems
is to continuously detect and correctly classify the objects in
a scene as they undergo changes in motion or appearance.
Furthermore, the system should be robust to distracting or
occluding clutter. Our proposed solution to these challenges
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is an adaptive multiple object tracking (MOT) algorithm that
tracks all objects in the scene and defers any decisions on what
is an object of interest to a separate classification stage. Object
recognition then involves combining these class predictions,
with state information given by object tracking. This approach
emulates the separate what and where processing streams
in primate vision [1], and allows the tracking process to
be performed without any reliance on object-specific prior
knowledge.

An important practical consideration in the design of online
object recognition systems is the finite amount of labeled
and annotated data available for training. When scarce, this
can degrade classification performance due to overfitting and
reduce the detection probability of highly tuned object detec-
tors. Even when larger data sets are available, these may
be biased in such a way that their image statistics do not
accurately reflect the data encountered by the system at run
time [2]. In the case of classifier-based object recognition [3]
and detection [4], the use of features, which are higher-level
representations of an object than the raw image, can mitigate
these problems by providing a degree of invariance across
different data sets. In the case of tracking and object detection
algorithms, the same set of challenges can be addressed by
making the tracker and detector designs less domain-specific.
In our system this is achieved through the use of adaptive
tracking (e.g., [5], [6]) and by employing a track-before-
detect [7] approach that delays the requirement for object
specific prior knowledge from detection until recognition.

We note that there exist commercial and security video
analysis applications in which the user may not possess
specific knowledge about new, previously unseen objects. For
example, the user may not have access to information on the
appearance of a set of target objects, but may still wish to track
these targets in order to accumulate a domain-specific data set.
Moreover, it may be impractical for the user to initialize the
system on multiple targets, especially when more objects are
expected to come into view, or are stationary for long periods.
Therefore, in applications where the system requirements are
initially not well defined, a useful first step is for the system
to autonomously detect and track all (moving and stationary)
objects, including those that may, at first, not be considered
objects of interest.

Given these aims and real-world requirements, we present
a novel approach to online object recognition centered on the
idea of tracking all salient objects in the scene. We argue that
this “track everything” approach can be realized by limiting
the explicit use of prior knowledge, and demonstrate that this
can be implemented by simultaneously learning both feature
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and spatial information about each object and assigning new
measurements to system tracks. This argument is supported
by the following contributions:

• a novel object shape learning algorithm, the Shape Esti-
mating Filter (SEF), and its multi-object counterpart,
the Competitive Attentional Correlation Tracker using
Shape (CACTuS) [8];

• the integration of a feature learning (FL) algorithm with
a shape learning algorithm [9];

• CACTuS-FL: the first algorithm to automatically detect
and track multiple objects in a video sequence without
object-specific prior knowledge [10];

• an online object recognition system that employs
an ensemble of single hidden layer feedforward
networks (SLFNs) to combine state information from
the multi-object tracking algorithm (CACTuS-FL)
with the output from an image classifier, the Shallow
Convolutional Neural Network (S-CNN).

The rest of this paper is organized as follows. Key
recent advances in the areas of multi-object tracking, image
classification and object recognition systems are outlined
in Section II. An overview of our system is provided in
Section III, and this is expanded upon in Sections IV to VI.
We demonstrate and examine the efficacy of our approach
using Neovision2 benchmark data in Section VII. Finally,
Section VIII concludes the paper with a summary of our
findings.

II. RELATED WORK

We review related works in the areas of online multi-object
detection and tracking, object recognition, and benchmarks for
evaluating such systems.

A. Online Detection and Tracking

Recent state-of-the-art online multi-object trackers
(e.g. [11]–[15]) follow the tracking-by-detection approach,
where objects of interest are detected independently in
each frame and then uniquely associated with system tracks
from the previous frame. The term online implies that the
underlying algorithm may only use information collected up
to the current frame. The aforementioned examples rely on
specialised people detectors, with the exception of Urban
Tracker [15], which uses background subtraction to detect all
types of traffic under the assumption that only moving objects
are of interest. This assumption of motion can also be used
to form tracklets [16], elementary trajectory fragments, which
can clustered together (usually in an off-line manner) to form
complete tracks. Although tracking-by-detection algorithms
are state-of-the-art, one limitation stems from noisy or missed
detections, which can lead to incomplete system tracks. New
systems generally aim to mitigate this problem through more
reliable object detector design and/or better data association
techniques. For example, Breitenstein et al. [12] handled
occlusions by coupling detection confidence maps with
an association scheme based on online-learned classifiers.
Bae & Yoon [14] used tracklet confidence to resolve
unreliable detections, while their data association stage was

based on online discriminative appearance learning. Unlike
the aforementioned examples, our system relies instead on
the track-before-detect paradigm [7], which is less prone to
missing weak detections. Under this approach, the tracking
process guides the detection process in order to correlate
detections over multiple frames.

B. Recognition

Our approach to object recognition is motivated by the
success of deep learning for image classification tasks
(see [17] for a recent review). This typically involves train-
ing deep (multi-layered) hierarchical models such as Deep
Belief Networks (DBNs) [18] and Convolutional Neural
Networks (CNNs) [19]. By training complex models with
large amounts of data CNNs have set new image classi-
fication benchmarks in recent years through models such
as AlexNet [20], OverFeat [21] and VGGNet [22]. Rather
than relying on such deep architectures, however, our sys-
tem performs object recognition using a Shallow CNN [23]
that limits learning to a single layer. It has been shown to
achieve competitive results on standard image classification
data sets [24] while being fast to train (when compared
with standard deep learning approaches) and maintaining low
implementation complexity (few tuneable metaparameters).

C. Benchmark Data

The third key ingredient to our system is domain-specific
image sequence data with sufficient object class labeled exam-
ples to allow the supervised training of S-CNNs. As men-
tioned previously, most public multi-object tracking data sets,
including those collected for the recent MOT Challenge [25],
contain only a single (pedestrian) target class. This focus
on people tracking is highlighted by the latest data release,
MOT16 [26], in which ground truth object classes are grouped
into three broad categories: Target (pedestrian, cyclist, skater),
Ambiguous (lying/sitting person, reflection, distractor), Other
(car, motorbike, occluder, bicycle). An image sequence data
set that does contain multiple object types has been provided
by the DARPA Neovision2 [27] program. This data set was
collected to enable training and evaluation of Neuromorphic
Vision algorithms [28]–[31], which are a class of object recog-
nition algorithms motivated by the emergence of bio-inspired
vision sensors [32] and processing hardware (e.g., [33]).

D. Prior Knowledge

As previously discussed, in a tracking-by-detection
approach [11]–[14] object specific prior knowledge is embed-
ded into the detector model. Another common prior assump-
tion is that only moving objects are of interest, leading
to detection through background subtraction [15], or track
formation through tracklets [16]. These assumptions limit
tracking to only a specific set of objects, or only moving
objects. Furthermore, offline trackers not only make use of
prior knowledge of objects, but also incorporate knowledge
about future frames, and thus can not run on streaming video.
For object recognition using a CNN [22], [24] prior knowledge
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Fig. 1. Overview of our system for online object recognition comprising
the where (CACTuS-FL) and what (S-CNN and SLFN ensemble) processing
streams. The SLFN also combines object state information from the where
stream.

is strongly embedded into these models through the large
training data sets. Thus, there is sufficient scope within the
literature to investigate an online system design that transfers
prior knowledge from detection and tracking into recognition.

III. OVERVIEW

This section provides an overview of our online object
recognition system, shown in Figure 1, as well the notation
used in this paper.

A. Road Map

Section IV describes the generic feature extraction stage
that is used by the what and where processing streams.
The where processing stream (Section V) seeks to locate
salient objects in the scene and guide the attention of the
what processing stream (Section VI) to these objects. The
where stream is handled by the autonomous multi-object
tracking algorithm CACTuS-FL [10]. The what processing
stream relies on a S-CNN architecture [23] that is followed
by an ensemble of SLFNs [24], which combines the S-CNN
output with object state information from the where processing
stream. The S-CNN and individual SLFNs are trained offline
and then deployed in the online classification of image regions
(or patches) associated with system tracks.

B. Notation

Probability mass functions (PMFs) are denoted by capital
letters. The subscripts p, m, & s are used to denote pre-
dicted, measured and posterior PMFs respectively, while the

subscript 0 denotes a constant prior. The superscripts t and t−1
denote the current and previous time frames respectively. For
brevity, equations that operate only on the current frame do
not include superscript t . The notation for normalizing across
all bins u of a histogram to form a PMF is abbreviated to 1

�u
to avoid additional indexing variables.

IV. GENERIC FEATURE EXTRACTION

Good features are those which provide a response that
discriminates the object(s) of interest and is invariant to
changes in the scene. Here we desire a set of common features
that are good for both detection and recognition. Furthermore,
for our track everything approach every candidate object
(including clutter and stationary objects) should be tracked,
and is therefore of interest.

Our tracker, CACTuS-FL, can operate on any set of fea-
tures, including hand-crafted features [10], however, recent
experimental evidence demonstrates that convolutional filters
learned by CNNs can produce good features for online visual
tracking, enhancing state-of-the-art performance [34], [35].
Furthermore, while motion provides a strong visual cue to
the presence of salient objects, which can form an image
feature [36] or constrain appearance models [37], this type
of cue can not, by itself, detect stationary objects.

For object recognition, the orderless pooling of CNN filter
banks can also provide state-of-the-art performance [38],
despite earlier evidence to the contrary [39].

Thus, we choose a motion history image (MHI) feature [36],
as moving (as well as stationary) objects are of interest, and
a biologically inspired convolutional filter bank [40] that is
learned in a generative manner to encapsulate the entire scene.

A. Motion History Image

The MHI [36] combines object movement information over
an image sub-sequence. To meet the requirement of online
tracking we avoid the backward MHI and implement only the
forward MHI. This candidate feature is obtained from frame
differences between the current image and historical images
(through a Markov chain), which highlights the cumulative
object motion with a gradient trail that fades away.

B. Convolutional Filters

The 24 convolutional filters, shown in Figure 2,
were learned in an unsupervised manner from the first
frames of Neovision2 Tower training image sequences
010 − 024 by using a Convolutional Restricted Boltzmann
Machine (CRBM) [41]. Each greyscale filter has dimensions
of 16 × 16 pixels, which was chosen empirically [40].
In training the generative CRBM model, RGB input images
were first downsampled by a factor of two (to a size of
960×540 pixels) to match the resolution of input images used
in the online object recognition system. The training images
were pre-processed by converting to greyscale, applying
the whitening function used by Olshausen & Field [42],
subtracting the image mean and normalizing the result
by its root mean square (rms), as illustrated in Figure 3.
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Fig. 2. Bank of 24 generative filters of size 16 × 16 pixels learned
using a Convolutional Restricted Boltzmann Machine (CRBM) [41]. The
unsupervised training was carried out using the first frames of Neovision2
Tower training sequences. All training image were first converted to greyscale
and pre-processed (see main text for details).

Fig. 3. Sample RGB (top) and pre-processed (bottom) input image, showing
frame 61 from Neovision2 [27] Tower image sequence 001, which was first
downsampled to a size of 960 × 540 pixels. Image pre-processing involves
the application of the whitening function used by Olshausen & Field [42],
subtraction of the image mean and normalization of the result by its root
mean square (rms).

The whitening function applies a combined whitening and
low-pass filter with frequency response of the form f e−( f/ f0)

4
,

where f0 is a cutoff frequency of 200 cycles/image. During
the online application of these filters, each new input image
also undergoes these pre-processing steps.

V. WHERE: OBJECT DETECTION AND TRACKING

Multiple object tracking algorithms are required to maintain
temporally consistent trajectories (state information) for all
objects and to uniquely associate new observations with each
trajectory. An additional requirement in our design is that
tracks are able to self-initialize by automatically converging
onto regions of temporally consistent and spatially correlated
local saliency. To this end, we couple the track-before-detect
paradigm with an adaptive tracking approach (e.g. [5], [6]),

so that a state model, which recursively learns both object
shape and motion, is able to guide future detections. The
unique identities of multiple objects are preserved by correctly
associating multiple sub-trackers with new observations. This
is accomplished by operating these sub-trackers in competition
with one another across the scene.

A. Feature Selection

We first address the problem of autonomous single object
detection. Typical object detectors in visual tracking use
application-specific knowledge such as hard-coding a fixed set
of features that describe a particular object or type of object.
By contrast, this paper follows the adaptive method proposed
by Collins et al. [43], which frames the online selection of a
subset of features (from a larger set) as an evolving “object
versus local background” two-class classification problem.
This discriminant tracking approach is analogous to the center-
surround mechanisms for attention and saliency that are found
in biological vision [44] and enable automatic track initiation.

Every candidate feature n ∈ 1, . . . , 25 (the MHI feature
and the 24 convolutional features from Section IV) is used
to compute a feature map Zt

n (i), which is a representation
of the image at frame t in terms of the feature response at
each pixel position i . Following [43], discriminative features
are selected based on the separation of their class-conditioned
feature response distributions Ft

n (u) and Bt
n (u), which are

1D histograms extracted for each feature from the object
foreground and local background regions, respectively. Here
u ∈ 1, . . . , 64 is an index into a histogram of feature response
values. In order to extract the object feature response distribu-
tion we use the learned object image from the previous frame
I t−1
s , defined by Eqn. (23), as a pixel weighting mask:

Ft
n(u) =

∑
i I t−1

s (i) δ
(
Zt

n (i) − u
)

�u
, (1)

where δ is the Kronecker delta function. The local background
feature response distribution Bt

n is extracted in a similar way,
using a weighting mask 1 − I t−1

s over an appropriately sized
local image patch. Using the learned image I t−1

s to precisely
identify object pixels leads to a more precise extraction of the
feature response distributions than with a bounding box (as
used in [43]), reducing background pollution in the feature
learning process [9]. This, in turn, provides stronger detections
for the tracking process. This feedback between tracking and
feature selection is illustrated in Figure 1.

A detection map L̂n(i) is computed for each fea-
ture by back-projecting its Likelihood Ratio Ln(u) =
Ft

n (u) /Bt
n (u) into its feature map and normalizing: L̂n(i) =

Ln
(
u = Zt

n (i)
)
/ max(Ln

(
u = Zt

n (i)
)
), see [43] for the orig-

inal formulation and [9] for an illustrated example. Online
feature selection then involves choosing the most discriminable
set of N detection maps, with N = 6 chosen empirically,
as similar values (4 − 8) yielded comparable tracking perfor-
mance. By considering the feature response in each pixel of a
local image region (i.e. object, local background, or both) as
a discrete random variable zt

n , we use Maximum Marginal
Diversity (MMD) [45] to approximate the infomax space:
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the subset of N features that maximizes its own mutual
information with the class label random variable c. When
applied to feature selection in discriminant tracking [44], [46]
MMD involves scoring each feature by its mutual information
I(zt

n; c) with the object (c = 1) and local background (c = 0)
class labels:

I(zt
n; c) =

1∑

c=0

p(c = c)R[p(zt
n = u|c = c)||p(zt

n = u)] ,

(2)

where R[p(u)||q(u)] = ∑
u∈U p(u)log2

p(u)
q(u) is the Kullback-

Leibler divergence between two distributions p and q . Here
the class-conditioned feature response distributions p(zt

n =
u|c = 1) and p(zt

n = u|c = 0) are given by Ft
n(u) and Bt

n(u),
respectively, while p(zt

n = u) corresponds to the combined
object and local background regions.

The most discriminative detection maps are selected by
choosing the N highest scores given by Eqn. (2), and these
are summed pixel-wise in a weighted average to produce a
fused detection map I t

m that serves as input to the tracking
algorithm:

I t
m (i) =

N∑

n=1

wn L̂n (i) . (3)

The weights in Eqn. (3) are given by wn = I(zt
n; c)×B , where

the similarity score B is the Bhattacharyya coefficient [47]:

B =
∑

u

√
Ft

n,m (u) Ft−1
n,s (u), (4)

which rewards temporal consistency between the object feature
response Ft

n,m measured in the current frame according to
Eqn. (1) and an object feature response learned up to the pre-
vious frame Ft−1

n,s . The learned posterior feature response Ft
n,s

is updated at each frame by

Ft
n,s (u) = Ft−1

n,s (u) Ft
n,m (u)

�u
. (5)

B. Shape Estimating Filters

We next address the problem of adaptively learning an
object state model, which includes a probabilistic represen-
tation of its shape. The proposed solution is a single object
tracker called the Shape Estimating Filter (SEF) [8], which
combines spatiotemporal information from past frames with
new measurements to recursively estimate the object position,
velocity and shape. A SEF autonomously correlates recurring
saliency from each new fused detection map into shape and
trajectory estimates.

Assuming that only a single object is present in an image,
the 2D PMF I (i) is used to describe the probability that a
given pixel i = (i1, i2) belongs to that object. The PMF
I (i) can then be factored into 2D PMFs for shape S( j)
and position X (x). Here X (x) represents the probability
that the object center of mass has position x = (x1, x2),
while S( j) is proportional to the probability that the pixel
j = ( j1, j2) is part of the object. The vectors i , j and x
are considered 2D random variables operating on the set of

Fig. 4. The hierarchical state model of the Shape Estimating Filter (SEF) [8].
Predictions are propagated from the top-down and new observations from the
bottom-up. Predictions and observations are combined at each layer to provide
an approximate Bayesian update of the state model.

integers. The relationship between image, position and shape
random variables is given by i = x + j , which can be
expressed as x = i − j , or as j = i − x. This relationship
allows the shape of an object to be decoupled from its position
in the image.

In order to describe the object motion across a sequence of
images in an adaptive manner, 2D random variables are used
to model acceleration a and velocity v. These variables are
described by the PMFs A(a) and V (v), respectively. Assuming
a simplified Euler motion (non-rotational point-mass) for the
object and that �t = t − (t − 1) = 1 leads to the following
relationships: vt = vt−1+at and xt = xt−1+vt . Rearranging,
this gives: vt = xt − xt−1 and at = vt − vt−1.

To handle deformable objects, the 2D PMF R(r) is defined
as the change in shape from one frame to the next, which is
described by the random variable relationship r = j t − j t−1.

These random variable relationships are used to build the
SEF algorithm, using the operations of convolution ⊗ and
cross-correlation ⊗̂, as illustrated in Figure 4. The SEF state-
space hierarchy provides a framework for combining top-down
predictions with bottom-up sensory measurements through a
Bayesian update process.

Predictions are made by traversing down the state model
hierarchy (starting in the top left of Figure 4) according to:

vt = vt−1 + a ⇒ V t
p = V t−1

s ⊗ A0, (6)

xt = xt−1 + vt ⇒ Xt
p = Xt−1

s ⊗ V t
p, (7)

j t = j t−1 + r ⇒ St
p = St−1

s ⊗ R0, (8)

i t = j t + xt ⇒ I t
p = St

p ⊗ Xt
p, (9)

where A0 and R0 are 2D Gaussian priors.
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Given I t
m, measurements are made by traversing up the state

model hierarchy (starting at the bottom of Figure 4) according
to:

xt = i t − j t ⇒ Xt
m = I t

m⊗̂St
p, (10)

vt = xt − xt−1 ⇒ V t
m = Xt

m⊗̂Xt−1
s , (11)

j t = i t − xt ⇒ St
m = I t

m⊗̂Xt
s. (12)

An approximate Bayesian update scheme is used to com-
bine top-down predictions with bottom-up observations. The
posterior PMFs of position, velocity and shape are described
by:

Xt
s (x) = Xt

m (x) Xt
p (x)

�x
, (13)

V t
s (v) = V t

m (v) V t
p (v)

�v
, (14)

St
s ( j) = St

m ( j) St
p ( j)

� j
. (15)

C. Competitive Attention Correlation Tracking Using Shape

Finally, we address the problem of automatically associating
new measurements to multiple system tracks. The proposed
solution, which extends the work of Strens and Gregory [48],
operates multiple SEFs simultaneously in a competitive atten-
tional framework designed to enforce the tracking of multiple
objects. Under this scheme, the SEFs track everything in the
scene, including parts of the background or sources of clutter,
so that every new measurement is assigned to the SEF that
best describes that measurement [10].

For each frame t , the multi-object tracking algorithm oper-
ates k = 1, .., K individual SEFs. The bottom-up input of
each SEF k is modulated by an association term βk(i), so
that Eqn. (3) becomes

I k
m (i) = βk(i)

N∑

n=1

wn L̂n (i) . (16)

As shown in Figure 5, top-down modulation provides each
SEF with a spatial area of attention to collect new measure-
ments. The term βk(i) is computed from learned predictions
about the expected image:

βk (i) = I k
p (i)

∑K
j=1 I j

p (i)
. (17)

This selective attentional mechanism modifies the bottom-up
input to each SEF, enabling individual SEFs to selectively
ignore pixels that are strongly claimed by another SEF, where
0 ≤ βk (i) ≤ 1 describes the strength of the claim of pixel at
location i by SEF k.

By assuming a 2D Gaussian prior shape S0, an additional
attentional mechanism is introduced by replacing Eqn. (10)
with

Xk
m (x) = I k

m (i) ⊗̂(Sk
p ( j) S0 ( j)). (18)

This introduces a self-centering capability to the system [49],
which reduces the problem of model drift [50] that affects
correlation trackers [6].

Fig. 5. The selective attentional mechanism of CACTuS-FL, for SEF
k = 33, which is tracking a cyclist, in frame 61 of Neovision2 Tower
image sequence 001. The I k

m (i) fused detection map from Eqn. (3) (top)
is modulated by the spatial area of attention βk (i) to form the bottom-up
input for the SEF (bottom).

In order to encourage SEFs to track multiple objects,
Eqn. (13) is modified by a winner-take-more competitive
mechanism [48]. Under this scheme, which has the inherent
assumption that different objects tend to occupy different
positions, K separate SEFs compete over position x to track
every object in the scene. Each SEF k competes against all
SEFs for its own share of the total association probability∑K

l=1 Cl(x) = 1 at each position x. The individual association
probability Ck , which is shown for a single SEF in Figure 6,
is computed using the predicted position Xk

p(x) according to

Ck (x) = Xk
p (x)

∑K
l=1 Xl

p (x)
. (19)

The update of position Xk
s (x) for each SEF k in Eqn. (13) is

then modified to include this spatial attention modulation for
each SEF

Xk
s (x) = Xk

m (x) Xk
p (x) Ck (x)

�x
. (20)

An example of Xk
s (x) is shown for a single SEF in Figure 6.

This mechanism enables the SEF that best describes the
position state estimate for a particular object to converge on
a region corresponding to that object and exclude other SEFs
from that region. This competition encourages SEFs to track
different objects, rather than all SEFs converging on the most
salient object in the scene.

The shape of the object is observed using the rela-
tionship j = i − x. First, the best estimate of the
object location in the current fused detection map I k

m (i) is
extracted from the posterior position PMF Xk

s (x) according to
Xk

smax (x) = δ
(
argmax1

(
Xk

s (x)
) − x

)
, where argmax1 returns
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Fig. 6. The association probability Ck(x) (top) and the posterior position
PMF Xk

s (x) (bottom) for SEF k = 33, which is tracking a cyclist, in frame
61 of Neovision2 Tower image sequence 001.

one maximum. Next, the PMF Xk
smax (x) is used to extract the

observed shape Sk
m ( j) from I k

m (i) using:

Sk
m ( j) = I k

m (i) ⊗̂Xk
smax (x) . (21)

The process used to update shape has been adapted from [6]
as a way to mitigate model drift. First, the degree of
match ρ is computed as the L2 normalized cross-correlation
at j = (0, 0) of the measured and predicted shapes,
ρ = Ŝm ((0, 0)) ⊗̂ Ŝp ((0, 0)), where 0 ≤ ρ ≤ 1 is a scalar.

Next the parameter α is computed as α(ρ, λ) = H (ρ−λ)ρ2,
where H (x) is the unit step function and the threshold λ
acts as the vigilance parameter [51] to ensure that very poor
observations are not introduced into memory, see [6] for
details.

This controls the degree by which the posterior shape
Sk

s ( j) is influenced by new observations Sk
m ( j), or prior

expectations Sk
p ( j), and thus Eqn. (15) is replaced with

Sk
s ( j) = (Sk

m ( j))α(Sk
p ( j))(1−α). (22)

A high degree of match results in a large update of the shape
Sk

s ( j), while a low degree of match leads to a small update.
The resulting posterior shape is shown for a single SEF in
Figure 7.

Rather than combining the predicted and measured images,
the posterior image I k

s (i), is computed according to a maxi-
mum a posteriori approach based on the shape and position:

I k
s (i) = Sk

s ( j) ⊗ Xk
smax (x) . (23)

The posterior image, which is shown for a single SEF in
Figure 7, then provides top-down guidance for new detections
according to Eqn. (1) in the object detection stage.

Fig. 7. The posterior image I k
s (i), for SEF k = 33, which is tracking

a cyclist, in frame 61 of Neovision2 Tower image sequence 001. The inset
shows the corresponding posterior shape Sk

s ( j).

D. Tracking Output

Each SEF k outputs the posterior image I k
s of the object

that it is tracking. This learned image is then parameterized
by calculating its ellipse of second order moments [52]. The
2σ length and width along the ellipse major and minor axis,
respectively, are used to define an oriented output bounding
box for each object, in every frame.

VI. WHAT: OBJECT RECOGNITION

This section describes the S-CNN and SLFN ensemble clas-
sification algorithms, detailing their supervised offline training
and application to online object recognition.

While a variety of image classifiers could act as the what
processing stream, S-CNNs and SLFNs, in which only the
output layer weights are learned, have the advantage of being
fast to train (on the order of minutes on standard PCs) and
hence are well suited to tasks that require frequent domain-
specific re-training.

A. Shallow Convolutional Neural Network

1) S-CNN Offline Training: Here we summarise our
application-specific S-CNN implementation, while an in depth
description of the algorithm may be found in [23]. The net-
work architecture consists of five layers: an input image pixel
layer, three hidden unit layers, and an output layer. Only the
weights that project to the final layer are learned. The S-CNN
can be divided into two conceptual stages: a convolutional
filtering and pooling stage formed by the first two hidden
layers, which extract translation and scale invariant features,
and a classification stage consisting of the third hidden layer
and the output layer.

Stage 1 (Convolutional Filtering and Pooling): Each
domain-specific S-CNN is trained on a single batch of image
patches of size 61×61 pixels. The bank of 24 visual processing
filters shown in Figure 2, which serve as generic object detec-
tors in the where processing stream, are reused here as the first
layer of convolutional filters. Following [23], the first hidden
layer units are obtained by applying a termwise nonlinear
function g1(u) = u2. The first hidden layer activations are
average-pooled and down-sampled by applying a uniform low
pass filter with a pooling size of 18 × 18 pixels and stride
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of 6 pixels. Finally a termwise nonlinear function of form
g2(u) = u0.25 is applied to obtain the image features.

Stage 2 (Classificationv): The features from the second
hidden layer are concatenated and linearly projected onto
12000 hidden units using a fully-connected set of real-
valued input weights, which is set only once during training
following the method of [53]. Applying the termwise
squaring function g1(u) to every mapped feature yields the
third hidden layer activations. Output labels can then be
predicted by linearly mapping these activations using a set
of fully-connected output weights obtained as in [23], and
described further below.

In order to train the S-CNN, pre-processed (see Section III)
61 × 61 pixel image patches are extracted from its train-
ing image sequences. Using the Neovision2 Tower training
videos, this involves extracting image patches from 15 image
sequences (010 − 024) based on the positions of the ground
truth bounding boxes. To simulate the effect of object tracking
during training, the centre of each patch includes positional
Gaussian random jitter about the object ground truth location,
with a standard deviation of 10 pixels in both the x and y axis
directions. In each patch, the pixels outside a central circular
spatial attention region of radius 30 pixels are set to 0.
Additional patches are randomly extracted from background
regions in each training image to provide training examples
for a background Clutter class. The training examples are
then randomly shuffled and the class abundances are balanced
so that the number of training examples is uniformly spread
among four classes: Car, Person, Cyclist and Clutter.

Given that the convolutional filters, the pooling parameters
and the classifier input weights are fixed, the offline training
algorithm only involves finding the set of optimal output
weights. These are obtained by forming a set of linear equa-
tions from a single batch of training class labels and output
layer activations and solving for the output weights using least
squares regression as in [23].

2) S-CNN Online Object Recognition: In online processing,
raw pixel image patches, which are centered on the position
of each SEF, are presented as input to the trained S-CNN in
the form of an input vector xtest. Following the matrix notation
of [23], the S-CNN output for each patch is the predicted label
vector ytest whose length corresponds to the number of classes:

ytest = Wout g1(Win g2(WPool g1(WFilterxtest))), (24)

where the convolution matrices WFilter and WPool apply
convolutional filtering and pooling, respectively, the matrix
Win corresponds to the fully-connected input weights, and
the matrix Wout corresponds to the fully-connected output
weights. If the S-CNN were used on its own, without applying
the SLFN, the predicted class would be given by the index of
the maximum value in ytest.

B. Single Hidden Layer Feedforward Network Ensemble

1) SLFN Offline Training: We next train SLFNs to predict
the ground truth class label associated with each SEF by
combining object state (where stream) information and the
corresponding S-CNN (what stream) output unit activations.

To reduce the potential for over fitting, an ensemble [54] of
seven small SLFNs are trained separately. Each SLFN employs
the same type of architecture as the S-CNN classification
stage. The input features of the first six SLFNs are linearly
mapped onto 320 hidden units using a fixed set of fully-
connected input weights that are set randomly only once in
training [24]. Using the same approach, the seventh SLFN
instead maps the vector form of the 71 × 71 pixel posterior
shape (e.g. see Figure 7) onto a layer of 12800 hidden units.
In all SLFN instances, a termwise logistic sigmoid function
g(u) = 1/(1 + exp(−u)) is applied to each hidden unit, and
these activations are mapped to the output units using an
optimal set of fully-connected output weights that is learned
during training. As was done for the S-CNN, the optimal
output weights for each SLFN are obtained in one shot using
least squares regression.

The training procedure for the first six SLFNs relies on
a set of 10 features, comprising the softmax of the S-CNN
output vector from Eqn. (24) (6 features), and state variables
in the form of predicted object bounding box width, length
and absolute inclination angle (about the x-axis), as well
as the energy of the posterior position PMF:

∑
x(Xk

s (x))2,
which measures the degree to which a SEF has collapsed (or
latched) onto its object. Before training the SLFN, each state
variable is pre-processed by subtracting the training sample
mean and then normalizing by the rms of the entire mean-
subtracted training sample, and these parameters are saved
and also used in online pre-processing. Six SLFNs are then
trained using a 65 dimension input feature vector that is
formed by multiplying pairs of features, for all unique pairwise
combinations plus the individual unpaired features themselves.

In order to accumulate training examples, CACTuS-FL
and the S-CNN are applied the Neovision2 Tower training
sequences 001, 010, 013, 014, and 017, for which we added
unique object IDs by hand to the original ground truth data.
This allows optimal associations to be made between SEF
bounding boxes and ground truth bounding boxes using the
Munkres algorithm [55]. This mapping procedure is used to
assign true class labels to each tracked object, which produces
the required set of training labels. The first six SLFNs are
trained by applying a bagging technique that randomly divides
the data among six separate sets. In the case of the posterior
shape based (seventh) SLFN, all of the training data is used
in a single batch.

2) SLFN Online Object Recognition: During online
processing, given the vector fc

test of input features appropriate
for each trained SLFN c = 1, . . . , 7, the output unit vec-
tor y′c

test is given by:

y′c
test = W′c

out g(W′
in

c ftest
c), (25)

where the matrices W′
in

c and W′c
out correspond to each of

SLFN input and trained output weights, respectively. Finally,
a softmax function is applied to each output vector, and the
SLFNs are used in an ensemble by combining their output
through an element-wise sum:

y′
ensemble =

7∑

c=1

softmax(y′c
test). (26)
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The class predicted by the online object recognition system is
given by the index of the maximum value in y′

ensemble.

VII. EXPERIMENTAL EVALUATION

This section describes the data used in our experiments
together with a summary of previous evaluations of the main
system components. The section also details our experimental
parameters, highlighting any use of prior knowledge, as well
as explaining the performance evaluation metrics. The system
performance is then compared against existing online object
recognition benchmark results [28], while the impact of the
main components (CACTuS-FL, S-CNN, SLFN ensemble) on
its performance is also investigated.

A. Previous Experiments

We summarise previous experimental results for key compo-
nents of our online object recognition system: generic feature
extraction, CACTuS-FL and the S-CNN, using separate visual
tracking and image classification benchmarks.

1) Generic Feature Extraction: The choice of convolutional
filter bank and individual filter size were made based on exper-
iments [40] using the Neovision2 Tower training sequence 001,
where the multi-object tracking performance for all object
classes was evaluated in terms of the best Recall (60.37%)
and tracking precision MOTP (43.44%).

2) Where–CACTuS-FL: CACTuS-FL was evaluated using
8 videos from the VOT2013 single object tracking bench-
mark [56]. In these experiments [10] the robustness of the
tracker was measured by the number of tracking failures.
CACTuS-FL incurred 4 tracking failures, as compared to
the well known TLD algorithm [57] that had 39 tracking
failures, and the state-of-the-art LGT algorithm [58] that had
2.75 tracking failures. A qualitative evaluation on multi-object
tracking using soccer videos was also presented.

3) What–S-CNN: The S-CNN was previously evalu-
ated [23] on the MNIST [59], NORB [60], SVHN [61]
and CIFAR-10 [62] benchmark data sets, achieving image
classification error rates of 0.37%, 2.21%, 3.96% and 24.14%,
respectively. In the case of MNIST and NORB, this repre-
sents state-of-art image classification accuracy if excluding
techniques that perform training set data augmentation [63].
Furthermore, the experiments showed that S-CNNs are robust
in the sense that the same network metaparameters can be
applied across different data sets to yield similar performance
to that obtained by tuning the metaparameters for each data set.

B. Online Object Recognition Experiments

While the key aspects of our online object recognition
system have been tested separately, testing the integrated
system requires a MOT data set with multiple target classes.
As outlined in Section II, existing MOT datasets only exercise
tracking of a single class, and often provide pre-computed
detections [25], [26]. By contrast, we require a multi-object,
multi-class benchmark and this is provided by Neovi-
sion2 [27]. This set of challenging image sequences, captured
under varying environmental conditions, contains numerous
targets, including stationary objects, which can undergo
occlusions by neighbouring objects or background clutter.

1) Benchmark Data: The Neovision2 Tower data set con-
sists of 50 training and 50 test videos captured from an
elevated camera. In both Tower training and test sets the
camera is rotated by 90◦ after the first 24 videos, and, given
that this changes the ground sample distance (pixel/m), we
limit our study to videos 001 − 024 in both the training and
test sets.

Each image sequence was recorded at 29.97 frames/s and
has 871 annotated frames, with ground truth data consisting
of a class label and oriented bounding box coordinates for
each object of interest. Five target object classes are present
in the Tower data domain (Car, Truck, Bus, Person, Cyclist)
and, through random sampling of the background, we include
a sixth Clutter class in order to identify SEFs that are tracking
background objects. Due to the scarcity of Truck and Bus
training examples, however, we avoid training and testing on
the (few) videos that do contain these object types, which
leaves the following four classes: Car, Person, Cyclist, Clutter.
Following these criteria and also simply excluding any video
found to have clearly incorrect ground truth annotations, we
select 12 Neovision2 Tower test set videos: 001, 002, 009, 010,
012, 013, 017, 018, 019, 021, 022, 023. This set of videos,
which contains 82139 ground truth objects across 10452 image
frames, was tested only once.

C. Experimental Parameters

1) Prior Knowledge: While the majority of architectural
decisions and run time parameter settings for our system
were chosen empirically based on previous experiments
[6], [10], [23], some were tuned for the Neovision2 Tower
training data set. These system parameters constitute domain-
specific prior knowledge and are listed in Table I, which
outlines the reason behind each choice.

2) System Initialization: CACTuS-FL is initialized in the
first frame of an image sequence by positioning the SEFs
at regular intervals in a 14 × 8 rectangular grid across the
scene. The position, shape and velocity PMFs for each SEF
are initialized using isotropic 2D Gaussian distributions.

D. Performance Evaluation Metrics

The Neovision2 object recognition performance metrics [64]
are based on the degree of spatial overlap dt,i,k between each
ground truth bounding box region rGT

t,i and every candidate
bounding box region rS E F

t,k output by the kth SEF:

dt,i,k = rGT
t,i ∩ rS E F

t,k

rGT
t,i ∪ rS E F

t,k

, (27)

where t refers to the image frame and i is the ground truth
index.

To evaluate the online object recognition performance we
use the publicly available Neovision2 evaluation tool [64].
This uses the Munkres algorithm [55] to find optimal SEF
to ground truth bounding box associations in each frame for
a spatial overlap threshold of Td = 0.2. For each image
sequence s, the system performance in detecting each tar-
get object class o (i.e. Car, Person, Cyclist) is measured
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TABLE I

PRIOR KNOWLEDGE

using the Normalized Multiple Object Thresholded Detection
Accuracy (NMOTDA):

NMOTDAs,o = 1 −
∑

t (FNt,o + FPt,o)
∑

t GTt,o
, (28)

where in each frame t , GTt,o, FNt,o and FNt,o are the
number of ground truth objects, false negatives, and false
positives, respectively, of object class o. NMOTDA is reported
as a number in the range (−∞, 1]. The NMOTDAs,o scores
are then aggregated across all image sequences to yield the
Weighted Normalized Multiple Object Thresholded Detection
Accuracy (WNMOTDA):

WNMOTDAo =
∑

s NMOTDAs,o × GTs,o
∑

s GTs,o
, (29)

where the weight GTs,o is the total number of ground
truth objects belonging to class o that are present in image
sequence s. Average NMOTDA and Average WNMOTDA are
also calculated for all object types according to Eqn. (28) and
Eqn. (29), respectively, by ignoring the object class label o.

In sequences for which we have added ground truth object
IDs, such as 001, we also apply the CLEAR MOT multi-
object tracking metrics [65]. Following the implementation
of [66], the optimal mapping between SEFs and ground truths
is found across all frames in terms of the total spatial overlap.
The associated ground truth and SEF pairs are then identified
as matches j ≡ (i, k) when dt, j exceeds a user-defined
threshold Td , which can be varied between 0 and 1. Figure 8
illustrates some examples of matched SEF/ground truth pairs
for Td = 0.2. This procedure is used to assign ground truth
class labels to SEFs for the purpose of generating SLFN
training data.

E. Results

Table II lists the training and validation classification accu-
racies obtained by applying the S-CNN to image patches
extracted around clutter and randomly jittered ground truth
object positions. The un-jittered validation set accuracies
obtained here on training video 001 are comparable to the
range of accuracies (96.77% − 100%) obtained by a deep
CNN [31] on Neovision2 Tower data. The validation results in
Table II indicate that the classification accuracy of the S-CNN
degrades considerably, especially for the Person class, when
random position jitter is applied to the image patches, despite
the fact that the same approach was used for the training
patches.

Fig. 8. Neovision2 Tower image sequence 001 frame 61 showing SEF output
from the current frame and CLEAR MOT [65] tracks up to and including this
frame. CACTuS-FL SEF tracks are shown as grey dots and those identified as
SEF and ground truth matches are shown as white dots. Ground truth bounding
boxes are indicated by shaded grey rectangles, which are centered on every
car, person or cyclist in the scene. Bounding boxes estimated by CACTuS-FL
in the current frame, which are computed by parameterizing the object shape
learned by each SEF, are shown in green, red, magenta and cyan for SEFs
classified as Clutter, Car, Cyclist and Person, respectively. The top plot shows
all bounding boxes, while the bottom plot shows only those bounding boxes
that have not been classified as Clutter.

TABLE II

S-CNN CLASSIFICATION ACCURACY FOR TOWER TRAINING (010 − 024)
AND VALIDATION (001) SEQUENCE IMAGE PATCHES

In order to gain some intuition into the impact of track-
ing and classification accuracy on NMOTDA, we attempt to
decouple the two effects in Figure 9, which shows validation
results from Tower training sequence 001. Starting with perfect
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Fig. 9. NMOTDA scores for Neovision2 Tower training sequence 001,
used here for validation. The top plot shows NMOTDA for each class,
the bottom plot shows the Average NMOTDA scores for all classes. Black
markers correspond to taking the ground truth position and class label data as
system outputs (e.g. perfect object tracking and classification). Blue markers
correspond to perfect tracking and S-CNN based classification. Cyan markers
correspond to perfect tracking, but here the S-CNN has random jitter applied
to its input image patch positions. Green markers show the case when position
jitter is also applied to the ground truth bounding box to simulate the effect
of imperfect tracking. In all cases mentioned thus far, the number of SEFs
operating in a frame is equal to the number of ground truths in that frame.
Magenta markers correspond to tracking using CACTuS-FL and classification
using the S-CNN, and in this case 112 SEFs operate in each frame, with the
vast majority tracking background clutter objects.

tracking and classification, NMOTDA is made progressively
worse by first classifying using the S-CNN, by next adding
position jitter in its input images patches, and finally by also
adding position jitter to the bounding boxes. Aside from object
tracking accuracy, a second key aspect is that none of these
four simulated tests incorporate clutter-tracking SEFs, which
would provide additional false positives. CACTuS-FL and the
S-CNN have the lowest score in Figure 9 for this very
reason: operating 112 SEFs across the scene means that the
vast majority of SEFs track clutter sources. The S-CNN on its
own, with a typical Clutter class accuracy of ∼ 97.6% (see
Table II), would then yield ∼ 2.5 false positives per frame and
thus reduce the NMOTDA score.

Fig. 10. Neovision2 Tower test WNMOTDA scores, computed across
12 videos. Black markers indicate perfect tracking and classification, magenta
markers indicate results from CACTuS-FL & S-CNN, and red markers indicate
results from CACTuS-FL & S-CNN + SLFN ensemble. The top plot shows
the individual class WNMOTDA, while the bottom plot shows the Average
WNMOTDA for all classes.

This inherent challenge posed by tracking everything moti-
vates the need for a SLFN ensemble. The Tower test results
in Figure 10 illustrate this point, where the inclusion of the
SLFN ensemble greatly improves both the overall and class-
wise performance. The marked improvement is due to a large
reduction in false positives while the number of false negatives
tends to remain about the same. Together, the S-CNN and
SLFN ensemble fulfil the dual roles of (1) object detection:
rejecting Clutter objects while retaining target objects, and
(2) object recognition: correctly classifying the target objects
(Car, Person, Cyclist), as illustrated by Figure 8.

Table III compares the total numbers of detections, false
negatives, and true positives with the total numbers of ground
truth objects in our Tower test set of 12 videos. This indicates,
for instance, that when considering all objects classes together,
the total Recall is ∼ 41%, while the number of false positives
per frame is ∼ 2.09. In Figure 11 we compare WNMOTDA
with data points that we have extracted from the figures
in [28]. Here Teams A, B and C rely on Neuromorphic Vision
algorithms, whereas those denoted as Baseline are the results
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TABLE III

TOWER TEST SET RESULTS ACROSS ALL 10452 FRAMES: GROUND
TRUTHS, DETECTIONS, FALSE NEGATIVES, FALSE POSITIVES

Fig. 11. WNMOTDA published by other teams [28] (Baseline and
Teams A−C) and WNMOTDA obtained with our system (CACTuS-FL &
S-CNN + SLFN ensemble) across 12 Neovision2 Tower test sequences
(in red). The top plot shows our WNMOTDA scores for individual classes
(red symbols), while the vertical coloured bands indicate the approximate
range of individual class scores obtained by the competing teams. The bottom
plot shows the WNMOTDA detection scores, which are obtained by treating
all objects (Car, Person, Cyclist) as a single class. Our approach achieves state-
of-the-art performance for Car and Cyclist, and comparable performance for
Person. The NMOTDA score for Person is reduced in cases when a single
SEF tracks a group of people walking together, see text for details.

of a computer vision algorithm. Our system is competitive with
the state-of-the-art [30] (Team A) in terms of the detection
score (Average WNMOTDA), which demonstrates the efficacy
of our track everything approach. We also achieve the top
scores for Cars and Cyclists, although it should be noted that
this is on a reduced 12 video test set.

F. Discussion
1) Prior Knowledge: We have shown that accurate online

object recognition can be implemented by using a general-
purpose multi-object tracking system that is able to detect and
track all salient objects. For this to work, the use of object
specific knowledge should be avoided. We have identified
in Table I five sources of domain-specific prior knowledge
used by CACTuS-FL: the size of convolutional filters, the
SEF shape size, the total number of SEFs, the scale of the
second order moment ellipse used to define bounding boxes,
and the image patch size. However, none of these parameters
were tuned for specific object classes, and therefore do not
constitute object specific prior knowledge.

Team A [30] achieved state-of-the-art performance using an
approach similar to ours, where salient objects are detected and
prior knowledge is mostly embedded into the object classifier.
The saliency mechanism consists of fusing multiple saliency
channels that are created from several individual feature
response maps. However, prior knowledge is embedded into
some of these saliency channels using the Targeted Contrast
Enhancement (TCE) algorithm to create feature response maps
that allow them to “easily detect objects with [specified]
colors, … e.g. finding all red cars on the road.” Another
point of difference is that Team A do not perform tracking,
only detection and classification. Instead they embed motion
processing as another saliency channel, which detects pixels
that appear to be moving in comparison to a (stationary or
registered) background scene.

The primary difference between our approach and tradi-
tional tracking-by-detection approaches is that prior knowl-
edge of the objects of interest is removed from detection and
tracking, and only used for recognition.

2) Advantages: The advantage is that all objects are tracked
and ‘explained away’, including sources of clutter. This han-
dling of distracting and occluding clutter improves tracking
robustness [10]. For instance, when a person (target) walks
behind a lamppost (clutter), the SEF tracking the lamppost
learns that it is not moving and the competitive attentional
mechanisms in CACTuS-FL allow the SEF tracking the person
to ignore the observations from the lamppost.

3) Limitations: One limitation in our current approach is
that the tracking system does not know what the extent of
a single object is; it simply associates a consistent set of
observations (in shape, position and velocity) with a single
SEF. For example, people walking together in a group (thus
having the same position and velocity) can be efficiently
described in the state-space of a single SEF, and thus be
considered a single object. This occurs in the Neovision2
Tower test data set video 023. Here a single SEF tracks a
crowd of people and the classifier labels the track a ‘Person’.
However, the bounding box of the crowd is larger than the
ground-truth box of any individual person, thus failing the
spatial overlap requirement dt, j > Td from Eqn. (27). This
results in both one false positive for the SEF tracking the
crowd and many false negatives for the individual people
within the crowd, and thus a poor NMOTA score of −0.26
for the video (see supplemental material). This video is a
key contributor to the low WNMOTA for the Person class in
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Figure 11. Furthermore, without this video the overall Average
WNMOTA score would be 0.17 rather than its present value
of 0.14.

4) Integrating What and Where: In our architecture low
level processing is performed with a common set of convolu-
tional filters (see Figure 2), resulting in a shared set of features
for the separate what and where processing streams. The what
processing stream is performed by the S-CNN, while the where
processing stream is performed using CACTuS-FL. By para-
meterizing elements of the CACTuS-FL state information, it is
possible to efficiently re-integrate the what and where process-
ing stream, using the SLFN ensemble. The benefit of the
integration is a gain in Average WNMOTDA of 0.4 as shown
in Figure 10. This improvement in recognition performance
may provide insight into the function of neurons that integrate
both the what and where processing streams in the primate
visual cortex [67]. Knowing where an object is (tracking) may
help recognise what an object is (classification).

VIII. CONCLUSION

We have presented a system for online object recognition
that can autonomously locate and recognize multiple types of
objects using biologically inspired what and where processing
streams. Our overall approach may be characterized as a shift
of the use of object-specific prior knowledge out of the where
stream and into the what stream. This enables the where
stream, which is implemented as a general purpose multi-
object tracking algorithm, to locate every salient object in the
scene, including sources of occluding or distracting clutter.
Online recognition of localized objects is then handled by
re-integration of the what and where processing streams. This
takes the form of a SLFN ensemble that combines object-
tracking state information with class label estimate information
from the S-CNN to provide robust object recognition outputs,
the performance of which is comparable to the state-of-the-art.
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