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Learning Multilayer Channel Features for
Pedestrian Detection

Jiale Cao, Yanwei Pang, Senior Member, IEEE, and Xuelong Li, Fellow, IEEE

Abstract—Pedestrian detection based on the combination of
convolutional neural network (CNN) and traditional handcrafted
features (i.e., HOG+LUYV) has achieved great success. In general,
HOGHLUYV are used to generate the candidate proposals and
then CNN classifies these proposals. Despite its success, there is
still room for improvement. For example, CNN classifies these
proposals by the fully connected layer features, while proposal
scores and the features in the inner-layers of CNN are ignored.
In this paper, we propose a unifying framework called multi-
layer channel features (MCF) to overcome the drawback. It first
integrates HOG+LUYV with each layer of CNN into a multi-layer
image channels. Based on the multi-layer image channels, a multi-
stage cascade AdaBoost is then learned. The weak classifiers in
each stage of the multi-stage cascade are learned from the image
channels of corresponding layer. Experiments on Caltech data
set, INRIA data set, ETH data set, TUD-Brussels data set, and
KITTI data set are conducted. With more abundant features, an
MCF achieves the state of the art on Caltech pedestrian data set
(i.e., 10.40% miss rate). Using new and accurate annotations,
an MCF achieves 7.98% miss rate. As many non-pedestrian
detection windows can be quickly rejected by the first few stages,
it accelerates detection speed by 1.43 times. By eliminating the
highly overlapped detection windows with lower scores after the
first stage, it is 4.07 times faster than negligible performance loss.

Index Terms—Pedestrian detection, multi-layer channel fea-
tures (MCF), HOG+LUYV, CNN, NMS.

I. INTRODUCTION

EDESTRIAN detection based on Convolutional Neural

Network (i.e., CNN) has achieved great success recently
[31, [20], [27], [41], [51]. The main process of CNN based
methods can be divided into two steps: proposal extraction
and CNN classification. Firstly, the candidate proposals are
extracted by the traditional pedestrian detection algorithm
(e.g., ACF [12] and LDCF [33]). Then, these proposals
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are classified into pedestrian or non-pedestrian by the CNN
model [5], [20].

Despite its great success, it still exists some room for
improvement. 1) Most methods only use the last layer features
in CNN with softmax or SVM to classify the proposals. In
fact, the different layers in CNN represents different image
characteristic. Based on the descriptions in [23] and [52], the
first few layers can better describe the image local variance,
whereas the last few layers abstract the image global structure.
It means that each layer in CNN contains different discrimi-
native features, which can be used for learning the classifier.
2) Some methods only use the traditional methods based on
the handcrafted features (i.e., HOG+LUV [9]) to generate the
candidate proposals while ignoring the proposal scores. 3) Due
to the large amount of convolutional operations, the methods
based very deep CNN (e.g., VGG16 [42]) run very slowly on
the common CPU (e.g., about 8s). However, techniques for
speeding up CNN on CPU becomes important, because CNN
has shown its superior performance on most applications but
GPU is not always available.

Recently, researchers have done some work to solve the
above problems. Li et al. [26] proposed to train the cascaded
multiple CNN models of different resolutions. As the low
resolution CNN can early reject many background regions,
it avoids scanning the full image with high resolution CNN
and then reduces the computation cost. Though it’s based
on cascade structure, the training process of multiple CNN
models is relatively complex. Zeng et al. [53] proposed a
multi-stage contextual deep model to simulate the cascade
classifiers. However, it does not use cascade AdaBoost and
cannot reject negatives early. CCF [50] learns the AdaBoost
classifier based on one convolutional layer. It benefits from
the richer capacity in feature representation and the lower cost
in computation and storage compared with end-to-end CNN
methods. Despite the initial success, CCF employs only one
CNN layer for feature extraction. Cai et al. [S] proposed the
complexity-aware cascade to seamlessly integrate handcrafted
features and the last layer features in CNN into a unifying
detector. However, it still does not make full use of the multi-
layer features in CNN. Yang et al. [S1] exploited all the
layers for object detection. However the proposal scores are
not used for object classification and the all convolutional
layers still need to be computed. Bell er al. [1] concate-
nated the multiple layers of CNN into the fixed-size ROI
pooling. With more abundant feature abstractions, it outper-
forms fast-RCNN [18]. Though its success, it needs com-
plex operations of L2-normalized, concatenated, scaled, and
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dimension-reduced. Moreover, it ignores the scores of the
proposals.

In this paper, we propose a unifying framework, which is
called Multi-layer Channel Features (MCF). Firstly, it inte-
grates handcrafted image channels (i.e., HOG+LUV) and each
layer of CNN into the multi-layer image channels. HOG+LUV
image channels are set as the first layer, which contains 10
image channels. The layers in CNN correspond to the remain-
ing layers, respectively. Secondly, zero-order, one-order, and
high-order features are extracted to generate a large number
of candidate feature pools in each layer. Finally, a multi-stage
cascade AdaBoost is used to select the discriminative features
and efficiently classify object and background. The weak
classifiers in each stage of multi-stage cascade are learned
based on the candidate features from corresponding layer.
To further accelerate detection speed, the highly overlapped
detection windows with lower scores are eliminated after the
first stage. Overall, the contributions of this paper and the
merits of the proposed methods (MCF) can be summarized as
follows:

1) The unifying framework MCF is proposed. MCF seam-
lessly integrates HOG+LUV image channels and each
layer of CNN into a unifying multi-layer image chan-
nels. Due to the diverse characteristic of different layers,
these layers can provide more rich feature abstractions.

2) Multi-stage cascade AdaBoost is learned from multi-
layer image channels. It can achieve better performance
with more abundant feature abstractions and quickly
reject many detection windows by the first few stages.

3) The highly overlapped detection windows with lower
scores are eliminated after the first stage. Thus, it can
further reduce the computation cost of CNN operations.
With very little performance loss, it’s 4.07 times faster.
Finally, it’s possible that MCF with very deep CNN
(e.g., VGGI16 [42]) can run at 0.54 fps on the common
CPU, while it achieves 11.05% miss rate on original
Caltech pedestrian set.

4) Experiments on Caltech dataset [11], INRIA dataset [8],
ETH dataset [13], TUD-Brussels dataset [49], and
KITTI dataset [16] are conducted. MCF achieves
the state-of-the-art performance on Caltech pedestrian
dataset (the log-average miss rate is 10.40%), which
outperforms CompACT-Deep [5] by 1.35%. Using new
and more accurate annotations [56] of the test set, MCF
achieves 7.98% miss rate, which is superior to other
methods.

The rest of the paper is organized as follows. Firstly, we give

a review about pedestrian detection. Then, our methods are
introduced in Section III. Section IV shows the experimental
results. Finally, we conclude this paper in Section V.

II. RELATED WORK

Because object detection is a necessary step in many
machine vision systems [24], [25], [29]-[31], [48], a lot of
pedestrian detection methods and general object detection
methods were developed.

According to whether or not CNN is used, pedestrian detec-
tion can be divided into two main manners: the handcrafted
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channels based methods and CNN based methods. Handcrafted
channels based methods are relatively simple and efficient,
whereas CNN based methods are much more effective but
inefficient. We firstly give a review about the handcrafted
channels based methods and then introduce some methods
based on CNN.

Haar features based cascade AdaBoost detector is one of the
most famous object detection methods [46], [37], [38]. It can
quickly reject a large number of non-object detection windows
by the early stages of the cascade. Dalal and Triggs [8]
proposed to use the Histogram of Oriented Gradients (HOG)
to describe the image local variance. It can work very well
with a linear SVM. To handle pose variations of objects,
Felzenszwalb et al. [15] proposed the Deformable Part Model
(DPM) based on HOG features, which is a mixture of six
deformable part models and one root model.

By integrating cascade AdaBoost [46], [4] and HOG fea-
tures [8], Dollér et al. [9] proposed Integral Channel Features
(ICF). Firstly, it extracts the local sum features from HOG
channels and LUV color channels (i.e., HOG+LUYV). Then,
cascade AdaBoost [4], [59] is used to learn the classifier. To
further speedup the detection, Dollér et al. [12] then proposed
Aggregated Channel Features (ACF), which downsamples the
image channels by a factor of 4.

Following ICF [9], SquaresChnFtrs [2], InformedHaar [54],
LDCEF [33], Filtered Channel Features (FCF) [55], and NNNF
[6] have been also proposed. They all employ the same image
channels (i.e., HOG+LUV) as ICFE. In SquaresChnFtrs [2], the
pixel sums of local square regions in each channel are used
for learning the classifier. InformedHaar [54] incorporates the
statistical pedestrian model into the design of simple haar-
like features. Inspired by [19], Nam et al. [33] proposed to
calculate the decorrelated channels by convolving the PCA-
like [36] filters with HOG+LUV image channels. Recently,
Zhang et al. [55] proposed to put the above different types of
channel features into a unifying framework (i.e., FCF). FCF
generates the candidate feature pool by convolving a filter
bank (RandomFilters, Checkerboards, etc.) with HOG+LUV
image channels. It’s found that using the simple Checkerboards
filters could achieve very good performance. Based on the
appearance constancy and shape symmetry, Cao et al. [6]
proposed NNNF features.

Recently, deep Convolutional Neural Network (CNN) based
methods have also achieved great success in object detection
[22], [17], [11, [40], [18], [57], [28], [39], [58]. Generally
speaking, it firstly generates the candidate object proposals
[71, [45], [21], [14] and then uses the trained CNN model
[22], [17] to classify these proposals. Hosang er al. [20]
generalized CNN model for pedestrian detection after using
the handcrafted features based methods to extract the candidate
pedestrian proposals. To eliminate the hard negative propos-
als in the background, Tian et al. [43] proposed to jointly
optimize pedestrian detection with semantic tasks. Recently,
Tian et al. [44] proposed to learn deep strong part models
to handle the problem of pedestrian occlusion. Li et al. [27]
proposed the scale-aware fast-RCNN by incorporating a large
scale sub-network and a small scale sub-network into a uni-
fying architecture.
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Fig. 1. The basic architecture of MCF. It can be divided into three steps:
multi-layer channel generation, feature extraction, and multi-stage cascade
AdaBoost classifier.

Despite the success of CNN based pedestrian detection,
it still exists some room for improvement. Firstly, the score
information of the candidate proposals can be used to boost the
detection performance. Secondly, each layer in CNN contains
some discriminative features, which can be used for learn-
ing the classifier to reject non-pedestrian detection windows
early. Cai et al. [5] proposed to seamlessly integrate CNN
and handcrafted features. Though it uses the proposal score
information, it still ignores the features of the inner layers in
CNN. Sermanet et al. [41] proposed to concatenate the first
layer and the second layer together. Bell er al. [1] proposed
to use skip pooling to integrate multiple layers. It’s called
skip-layer connections. Despite its success, there is still some
problems: 1) It ignores the proposal scores; 2) The proposals
need to pass through the whole CNN before classification;
3) The skip-layer operations in [1] is relatively complex.

III. OUR METHODS
A. Multi-Layer Channel Features (MCF)

The layers in CNN represent the different and diverse image
characteristic. Based on the description in [23] and the visual-
ization in [52], it can be concluded that the image channels in
the first few layers can better describe the image local variance
and the image channels in the last few layers can abstract
the image global structure. Meanwhile, the handcrafted image
channels (e.g., HOG+4LUV) can be also able to describe the
image variations very well. HOG channels can describe the
image local edge directions and variances. LUV channels
capture the image color information. Compared to the layers in
CNN, the handcrafted image channels are very simple and the
computation is relatively efficient. In this paper, we integrate
HOG+LUYV and the layers of CNN to construct Multi-layer
Channel Features (MCF).

First of all, we give an overview about our proposed
Multi-layer Channel Features (i.e., MCF). Fig. 1 shows the
basic architecture of MCF. It can be divided into three parts:
1) Firstly, multi-layer image channels from L1 to LN are
generated. The traditional handcrafted image channels (i.e.,
HOG+LUV) are used for the first layer (i.e., L1). The convolu-
tional layers from C1 to C(N-1) in CNN construct the remain-
ing layers from L2 to LN. In each layer, there are multiple
image channels. 2) The second step is feature extraction. Zero-
order, one-order, and high-order features can be calculated in
the image channels of each layer. 3) Finally, the multi-stage
cascade AdaBoost is learned from the candidate features of
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Fig. 2. Test process of basic MCF. As a large number of negative detection
windows can be rejected by first few stages, the number of detection windows
after several stages is small. Please note that three down arrows at each stage
mean that each weak classifier in each stage can reject the windows (i.e.,
SoftCascade [4]).

TABLE I

MULTI-LAYER IMAGE CHANNELS. THE FIRST LAYER 1S HOG+LUYV,
AND THE REMAINING LAYERS ARE THE CONVOLUTIONAL
LAYERS(i.e., C1 TO C5) IN VGGI16

Layer Ll L2 L3 [ 4 [ s | L6
HOG VGG16
Name
LUV Cl C2 c3 c4 Cs
Size | 128 x64 | 64x32 | 32x16 | 16 x8 | 8x4 | 4x 2
Num 10 64 128 256 512 | 512

each layer one after another. The weak classifiers in each stage
of multi-stage cascade are learned from the candidate features
of corresponding layer. For example, the weak classifiers in
Stage 2 (i.e., S2) are learned from candidate features F2 of
Layer 2 (i.e., L2).

Fig. 2 shows the test process of MCF. Given the input
image, the image channels in L1 (i.e., HOG+LUYV) are firstly
computed. Detection windows are generated by scanning the
input image. These detection windows are classified by S1
using the weak classifiers learned from L1. Some detection
windows will be rejected by S1. For the detection windows
accepted by S1, the image channels in L2 are computed.
Then the accepted detection windows are classified by S2
using the weak classifiers learned from L2. The above process
is repeated from L1 to LN. Finally, the detection windows
accepted by all the stages (i.e., S1 to SN) will be merged by
NMS. The merged detection windows are the final pedestrian
windows. As a large number of negative detection windows
can be rejected by the first few stages, the number of detection
windows after several stages is small. Thus, it can reduce
the computation cost and accelerate detection speed. Please
note that three down arrows at each stage mean that each
weak classifier in each stage can reject the windows (i.e.,
SoftCascade [4]).

1) Multi-Layer Image Channels: Row 1 in Fig. 1 shows the
multi-layer image Channels. It consists of N layers. In each
layer, there are multiple image channels. Table I shows the
specific parameters of multi-layer image channels based on
HOG+LUV and VGGI16. It contains six layers from L1 to
L6. L1 is the handcrafted image channels (i.e., HOG+LUV).
L2-L6 are five convolutional layers (i.e., C1-C5) in VGG16.
Please note that the convolutional layers mean the last con-
volutional layers in each convolutional block of CNN. Row 3
shows the image size in each layer. The image size in L1 is
128 x 64. The sizes of L2-L6 are 64 x 32, 32 x 16, 16 x 8,
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Fig. 3. Feature extraction in multi-layer image channels. (a) feature extraction
in L1 (HOG+LUYV), where one-order (ACF) and high-order features (NNNF)
are used. (b) feature extraction in L2-LN (the layers of CNN), where zero-
order features are extracted. Zero-order feature means that a single pixel value
in each channel is used as a feature.

8 x 4, and 4 x 2, respectively. Row 4 shows the number of
the channels in each layer. L1 contains 10 image channels.
L2-L6 each have 64, 128, 256, 512, and 512 image channels,
respectively. In Table I, all the convolutional layers in CNN
(i.e., C1 to C5) are used for constructing the multi-layer image
channels. In fact, only part convolutional layers in CNN can
also construct the multi-layer image channels. For example,
a five-layer image channels can be generated by HOG+LUV
and C2-C5 of VGGI16, where C1 of VGG16 is not used.

The different image channels of CNN have different char-
acteristic. LeCun ef al. [23] summarized that CNN exploits
the property that many natural signals are compositional hier-
archies: in images, local combinations of edges form motifs,
motifs assemble into parts, and parts form objects. In [1] and
[41], the inner layers of CNN have been explored to improve
the detection performance. They uses the skip-layers to extract
the information at multiple scales. Thus, multi-layer image
channels are complementary and can provide more abundant
feature abstractions.

2) Feature Extraction: Features can be divided into three
classes: zero-order feature, one-order feature, and high-order
feature. In zero-order feature extraction, a single pixel itself
is used as a feature and no neighboring pixels are used. One-
order feature is defined as the pixel sums or averages in the
local or non-local regions in each channel. High-order feature
is defined by the difference of the sums or averages of two
or more different regions. For L1 (i.e., HOG+LUYV), there are
many successful methods for feature extraction, including ICF
[9], ACF [12], SquaresChnFtrs [2], InformedHaar [54], LDCF
[33], FCF [55], and NNNF [6]. ICF, ACF, and SquaresChnFtrs
can be seen as one-order features. InformedHaar, LDCF, FCF,
and NNNF are high-order features. Among these featues, ACF
has the fastest detection speed, and NNNF has the best trade-
off between detection speed and detection performance. Due
to the simplicity and effectiveness, ACF and NNNF are used
for feature exaction in L1. The number of image channels from
CNN is relatively large. For example, the fourth convolutional
layer (i.e., C4) in VGGI16 has 512 image channels (see
Table I). To reduce the computation cost and avoid a very
large number of candidate features, only zero-order feature
is used. It means that each pixel value in image channels
of each layer is used as the candidate feature. The specific
feature extraction in multi-layer image channels can be seen
in Fig. 3.

3) Multi-Stage Cascade AdaBoost: Cascade AdaBoost is
a popular method for object detection. Based on multi-layer
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image channels, we propose the multi-stage cascade AdaBoost
for pedestrian detection. Rows 2-4 in Fig. 1 give the specific
explanations about multi-stage cascade. The features in Si
are learned from the candidate features Fi of Li, where i=1,
2, ..., N. Firstly, k; weak classifiers in S1 are learned from the
candidate features F1 extracted from L1. Based on the hard
negative samples and positive samples, kp weak classifiers in
S2 are then learned from F2. The remaining stages are trained
in the same manner. Finally, multi-stage (i.e., N-stage) cascade
AdaBoost classifier can be obtained. This strong classifier
H (x) can be expressed as the following equation:

ko ki
H(x) = Za{h{(x)+...+Za{h{(x)+-'~

j=1 j=1
kN . . N ki . .

+ 2 oy =2, > alhito. (D)
j=1 i=1 j=I

where x represents the samples (windows), h{ (x) represents
the j-th weak classifier in Stage i, and aij represents the weight
of hlj (x). ki1, kp, ..., ky are the number of weak classifiers
in each stage, respectively. It is an open and challenging
problem to set the optimal values of ki, k>, ..., ky because
it is infeasible to use maximum accepted false positive rates
for choosing the number of weak classifiers. The reason is
that the false positive rate in a layer may be zero in the
HOG+HLUV+CNN framework. In this paper, one simple and
empirical structure is used as follows:

ki = Nau/2,
ky =ks=...=ky =Nau/Q2 x (N — 1)), (2)

where N4 represents the number of the total weak classifiers.
As kj is larger than ky, k3, ..., ky, Stage 1 learned from the
handcrafted channels can reject a large number of detection
windows. Based on SoftCascade [4], the reject thresholds are
set after each weak classifier of each stage. It means that each
weak classifier in each stage can reject the detection windows.

The advantages about the multi-stage cascade AdaBoost
structure can be concluded as the following: 1) Firstly, it avoids
learning the classifier from a very large feature pooling (e.g.,
more than one million); 2) Secondly, it makes full use of
the information from multi-layer image channels. Thus, it can
enrich the feature abstraction. 3) Finally, many non-pedestrian
detection windows can be quickly rejected by the features in
the first few layers. Thus, it reduces the computation cost of the
remaining layers in CNN and accelerates the detection speed.
4) Our training process is very simple. In [26], it needs to
train multiple different CNN models and then integrates them
in the cascade structure. MCF only needs to learn one strong
classifier by SoftCascade [4].

B. Elimination of Highly Overlapped Windows

Pedestrian detection is a multiple instance problem. Gen-
erally, the adjacent area around the pedestrian exists many
positive detection windows. Many of these positive detection
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Fig. 4.  Test process of MCF-f where the technique of NMS is used to
eliminate highly overlapped detection windows with lower scores.

windows around pedestrians highly overlap. Though multi-
stage cascade AdaBoost structure can reject many non-
pedestrian detection windows, it cannot reject the positive
detection windows around pedestrians. When the cascade clas-
sifier based on very deep CNN (e.g., VGG16), the computation
cost of these positive detection windows are large.

In fact, there is no need to put all the highly overlapped
windows accepted by the first stage into the remaining stages.
Detection windows accepted by the first stage each have a clas-
sification score. The highly overlapped windows with lower
scores can be eliminated after the first stage. To eliminate
these highly overlapped windows with lower scores, Non-
Maximum Suppression (i.e., NMS) is used after the first stage.
The overlap ratio O(wq, wy) of detection windows can be
defined in the following:

area(w; N wy)

3)

0w, w2) = area(w; U wy)’
where w; and w; are two detection windows. If
O (w1, w2) > 0, it means that w| and w; highly overlap. Then
the detection window with lower score will be eliminated.
Instead of the standard threshold 6 = 0.5, a larger threshold
is used here. Experimental results show that § = 0.8 can
accelerate the detection speed with little performance loss.
Fig. 4 shows the specific test process of MCF by eliminating
highly overlapped detection windows. This fast version of
MCEF by eliminating the highly overlapped detection windows
is called MCF-f.

IV. EXPERIMENTS

The challenging Caltech pedestrian detection dataset [10],
[11], the classical INRIA dataset [8], ETH dataset [13], TUD-
Brussels dataset [49], and KITTI dataset [16] are employed
for the evaluation.

Caltech dataset [10], [11] consists of 11 videos. The first 6
videos are used for training and the remaining videos are used
for testing. The raw training images are formed by sampling
one image per 30 frames. It results in 4250 images for training,
where there are 1631 positive samples. The corresponding
training data is called Caltech. To enlarge the training samples,
Caltech10x is used. It samples one image per 3 frames in
the training videos. As a result, there are 42,782 images in
which there are 16,376 positive samples. Please note that the
test data is same as [10] and [11] whenever the Caltech or
Caltech10x is used. It contains 4024 images in which there
are 1014 pedestrians.
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INRIA dataset [8] consists of 1237 pedestrians used for
training and 288 pedestrian images used for evaluation. By
translation and flip, there are 22,666 positive samples for
training. There are also 1218 negative images for training.
ETH dataset [13] contains three different sequences (i.e.,
“BAHNHOF”, “JELMOLI”, and “SUNNY DAY”), where
there are totally 1804 test images. TUD-Brussels dataset [49]
is captured from a driving car in the urban environment, which
contains 508 image pairs with 1326 annotated pedestrians.
In KITTI dataset [16], pedestrian detection is a subtask of
object detection. For pedestrian detection, it consists of 7481
training images and 7518 test images. For the evaluation on
Caltech [10], [11], INRIA [8], ETH [13], and TUD-Brussels
[49] datasets, miss rate is used. For the evaluation on KITTI
dataset [16], average precision is used.

The first layer in MCF is HOG+LUV image channels [9],
which contains one normalized gradient magnitude channel,
six histograms of oriented gradient channels, and three color
channels. Two popular CNN models (i.e., AlexNet [22] and
VGG16 [42]) are used for constructing the remaining layers
in MCF. Instead of using original input size 227 x 227 or
224 x 224, we use the size 128 x 64 for pedestrian detection.
For AlexNet, stride 4 in the first convolutional layer is replaced
by stride 2. The input size 6 x 6 in the first fully-connected
layer is replaced by the size 8 x 4. For VGGI16, the input
size 7 x 7 of the first fully-connected layer is replaced by the
size 4 x 2. The other initial parameters follow the pre-trained
models on ImageNet. The final parameters in AlexNet and
VGG16 are fine-tuned on the pedestrian dataset.

Feature extraction in L1 (i.e., HOG+LUV) is ACF [12]
or NNNF [6]. ACF is used in Section IV-A to demonstrate
the effectiveness of the proposed MCFE. To achieve the better
detecion performance and compare with some state-of-the-art
methods, the better NNNF is used in Sections IV-B, IV-C,
IV-D, and IV-E. Feature extraction in the remaining layers
(i.e., the layers of CNN) is zero-order feature (single pixel).
The final classifier consists of 4096 decision trees, unless noted
otherwise. The decision tree number of each stage are k; =
2048, ko = k3 = ... = ky = 2048/(N — 1), respectively.
N is the number of the layers in MCFE.

A. Self-Comparison of MCF

In this section, some intermediate experimental results on
original Caltech training set are reported to show how to setup
the effective and efficient MCF. Some specific experimental
setups are as follows. HOG+LUYV are used for the first layer.
The convolutional layers in CNN (i.e., AlexNet or VGG16)
correspond to the remaining layers. Feature extraction in
HOG+LUYV is ACF. Feature extraction in the layers of CNN is
just zero-order feature (single pixel). To speed up the training,
negative samples are generated by five round trainings of
original ACF [12], where the number of trees in each round are
32,128, 512, 1024, and 2048, respectively. Finally, multi-stage
cascade which consists of 4096 level-2 decision trees is learned
based on these negative samples and positive samples. The first
stage contains the first 2048 decision trees. The remaining
stages equally split the remaining 2048 decision trees. For
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TABLE II

Miss RATES (MR) oF MCF BASED ON HOG+LUV AND THE DIFFERENT
LAYERS IN CNN. ./ MEANS THAT THE CORRESPONDING LAYER IS
USED. HOG+LUYV 1s ALWAYS USED FOR THE FIRST LAYER. THE
LAYERS IN ALEXNET OR VGG16 ARE USED
FOR THE REMAINING LAYERS
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TABLE III

Miss RATES (MR) oF MCF* BASED ON HOG+LUYV AND THE DIFFERENT
LAYERS IN CNN. ./ MEANS THAT THE CORRESPONDING LAYER IS
USED. HOG+LUYV 1S ALWAYS USED FOR THE FIRST LAYER. THE
LAYERS IN ALEXNET OR VGG16 ARE USED
FOR THE REMAINING LAYERS

Name 1OG AlexNet MR (%) AMR %)  Name 0O AlexNet MR (%) A MR (%)
LUV CI C2 C3 C4 G5 LUV ClI C2 C3 C4 G5
MCF2 v 2008 N/A MCF2* 30.04 N/A
MCE3 o/ v 1843 1.65 MCE3* 24.10 5.94
MCF4 o/ v v v 1740 2.68 MCF4%* 2234 7.70
MCE5 o/ v v v V1801 2.07 MCES* 19.80 10.24
MCF-6 v v v v v v 1129 2.79 MCF-6* v vV V v v v 112 12.75
Name OC VGGl6 MR (%) AMR %)  Name 110G VGGG MR (%) A MR (%)
LUV ClI C2 C3 C4 G5 LUV ClI C2 C3 C4 G5
MCF2 J 1852 N/A MCF2* 34.08 N/A
MCF3 o/ v 1114 1.38 MCE-3* 29.22 4.86
MCF4 o/ v v 1540 3.12 MCE4* 23.81 1027
MCE5  / v v v 1478 374 MCES* 17.42 16.66
MCF-6 o 1431 421 MCE6* v 1431 19.77
TABLE IV

example, HOG+LUV and C2 to C5 of CNN construct a
five-layer image channels. Then, the corresponding five-stage
cascade can be learned. The first stage S1 has 2048 weak
classifiers. The remaining stages (i.e., S2-S5) each have 512
weak classifiers. Miss Rates are log-averaged over the range
of FPPI = [1072,10°], where FPPI represents False Positive
Per Image.

Table II shows Miss Rates (MR) of MCF based on
HOG-+LUYV and the different layers in CNN. The results based
on AlexNet and VGG16 are both shown here. ./ means that
the corresponding layer is used for MCF. HOG+LUV image
channels are always used for the first layer. The layers of
CNN (i.e., Cl1, C2, ..., or C5) are used for the remaining
layers. MCF-N means that there are N layers in MCF. For
example, MCF-3 in Row 3 are generated by HOG+LUYV,
C4 and C5 of AlexNet. The first layer is HOG4LUV image
channels. The second layer is the fourth convolutional layer
(i.e., C4) of AlexNet. The last layer is the fifth layer (i.e.,
C5) of AlexNet. Based on multi-layer image channels, the
corresponding multi-stage cascade is learned. There are the
following observations from Table II: 1) Compared to MCF-2,
MCF-N (N>2) usually achieves the better performance. For
example, the miss rate of MCF-6 based on VGG16 in the
last row is lower than that of MCF-2 by 4.21%; 2) Generally,
with the increase of the layer number, the miss rate of MCF
becomes lower and the detection performance becomes better.
The above observations demonstrate that the middle layers in
CNN can enrich the feature abstraction. It means that each
layer in CNN contains some discriminative features, which
can be used for classification.

In Table III, miss rates of MCF-N versions with incremental
layers from C1 to CS5 instead of adding from C5 to C1 are
also shown. In order to distinguish with Table II, they are
represented by MCF-N*. Please note that MCF-6* and MCF-6
are the same. With the incremental layers, the miss rate of
MCF becomes lower. For example, the miss rate of MCF-6*

Miss RATES OF MCF-6 AND MCF-ALL. MCF-ALL MEANS
ALL THE CONVOLUTIONAL LAYERS IN EACH
CONVOLUTIONAL BLOCKS ARE USED

HOG+LUV and AlexNet
MCF-6 MCEF-All
17.29% 17.45%

HOG+LUV and VGG16
MCEF-6 MCEF-All
14.31% 14.52%

based on HOG+LUYV and C1-C5 of VGG16 is 19.77% lower
than that of MCF-2* based on HOG+4LUYV and C1 of VGG16.
When all the convolutional layers are used, it also achieves the
best performance. It also demonstrates that each layer in CNN
contains some discriminative features which can contribute to
the performance.

Generally, MCF-6 means that MCF is constructed by the last
convolutional layer in each convolutional block. In Table IV,
MCEF-6 is compared with MCF-All. MCF-All is constructed by
all the convolutional layers in each convolutional block. It can
be seen that MCF-6 and MCF-AIl have the similar detection
performance. The reason is that the different convolutional
layers in the same convolutional block have the similar char-
acteristic. In the following section, MCF-6 is used.

Table V shows the average number and the ratio of detection
windows rejected by each stage in MCF-6. MCF-6 is based
on HOGHLUYV and all the five convolutional layers in CNN.
Thus, the multi-stage cascade AdaBoost in MCF has six stages
from S1 to S6. ‘*’ means that the average number of detection
windows accepted by stage 1, instead of that rejected by
stage 1, is shown. As the weak classifiers in S1 are both
learned from HOG+LUYV, the number of detection windows
accepted by S1 are same (i.e., 159). Among the 159 accepted
detection windows, about 71.0% and 76.1% detection windows
are rejected by the cascade based on AlexNet and that based on
VGG16, respectively. Overall, the multi-stage cascade based
on VGGI16 can reject more detection windows. Specifically,
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TABLE V

REJECTED NUMBER AND REJECTED RATIO BY THE STAGES IN MCF-6
ARE SHOWN. ‘*” MEANS THAT THE AVERAGE NUMBER OF DETECTION
WINDOWS ACCEPTED BY STAGE 1 ARE SHOWN

HOG+LUV and AlexNet HOG+LUV and VGG16

Stage

Number Ratio Number Ratio

S1 159* N/A 159%* N/A
S2 35 22.0% 23 14.5%
S3 35 22.0% 21 13.2%
S4 21 13.2% 33 20.8%
S5 14 8.8% 29 18.2%
S6 8 5.0% 15 9.4%
Total 113 71.0% 121 76.1%

TABLE VI

Miss RATES (MR) AND DETECTION TIME OF MCF-2 AND MCF-6.
MCF-2 1S BASED ON HOG+LUYV AND C5 OF CNN. MCF-6 18
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TABLE VII

Miss RATES AND DETECTION TIME VARY WITH #. MCF USED
HERE IS BASED ON HOG+LUV AND ALEXNET

0 MCF-2 MCF-6
MR (%) Time () MR (%) Time (s)
INF 20.08 2.99 17.29 2.30
0.50 23.70 0.44 21.65 0.34
0.80 20.97 1.15 18.06 0.86
0.85 20.30 1.76 17.34 1.35
0.90 19.82 2.03 17.32 1.57
TABLE VIII

Miss RATE (MR) AND DETECTION TIME OF MCF-2, MCF-6, AND
MCEF-6-f. MCF-2 1S BASED ON HOG+LUYV AND C5 IN CNN. MCF-6
1S BASED ON HOG+LUV AND C1-C5 IN CNN. MCF-6-f
IS THE FAST VERSION OF MCF-6

HOG+LUYV and AlexNet

BASED ON HOG+LUV AND C1-C5 OF CNN MCF-2 MCF-6 MCF-6-f
MR (%) 20.08 17.29 18.06
HOG+LUV and AlexNet HOG+LUV and VGG16 Time (s) 2.99 2.30 0.86
MCF-2 MCE-6 MCF-2 MCF-6 HOG+LUV and VGG16
MR (%) 20.08 17.29 18.52 1431 MCF-2 MCF-6 MCF-6-f
Time (s) 2.99 2.30 7.69 5.37 MR (%) 18.52 1431 14.89
Time (s) 7.69 5.37 1.89

the first two stage stages (i.e., S2 and S3) based on AlexNet
reject more detection windows than that based on VGGI16.
The middle two stages (i.e., S4 and S5) based on VGG16 can
reject more detection windows than that based on AlexNet.

As multi-stage cascade can reject many detection windows
by the first few stages, MCF can accelerate the detection speed.
Table VI compares the detection time and detection perfor-
mance between MCF-2 and MCF-6. MCF-2 uses HOG+LUV
and C5 in CNN to construct two-layer image channels. Then
two-stage cascade is learned. MCF-6 uses HOG+LUV and
all the five convolutional layers from C1 to C5 in CNN to
construct six-layer image channels. Then six-stage cascade
is learned. The detection time means the average execution
time per image on the test dataset, which is tested on the
common CPU (i.e., Intel Core i7-3700). No matter the CNN
model is AlexNet or VGG16, MCF-6 have the better detection
performance and the faster detection speed. For example,
based on VGG16, the miss rates of MCF-2 and MCF-6 are
18.52% and 14.31%, respectively. The detection times of
MCF-2 and MCF-6 are 7.69s and 5.37s, respectively. Thus, the
miss rate of MCF-6 is lower than that of MCF-2 by 4.21%,
while the speed of MCF-6 is 1.43 times faster than that of
MCEF-2. The reasons can be explained as the following: 1) As
MCEF-6 uses all the layers in CNN to learn the classifier, it can
learn more abundant features. Thus, it has a better detection
performance. 2) MCF-2 needs to calculate all the layers of
CNN (.e., CI to C5) before classifying the detection windows
accepted by S1. MCF-6 just needs to calculate the first i
layers of CNN before classifying the detection windows by
Si (i=2,3,...,6). In Table V, MCF-6 rejects 66.7% detection
windows before S6. Thus, MCF-6 has faster detection speed
than MCF-2.

Though the speed of MCF-6 is faster than that of MCF-2,
it’s still very slow. To further accelerate the detection speed,

the highly overlapped detection windows with lower scores
accepted by the first stage (i.e., S1) are eliminated by NMS.
As stated in section III-B, the threshold € is an important
factor to balance detection speed and detection performance.
Table VII shows that miss rates and detection time vary with
6. MCF-2 and MCF-6 based on HOG+LUV and AlexNet
in Table VI are used for the baseline (i.e., § =INF). When
6 = 0.5, the detection speed is very fast, but the detection
performance drops rapidly. For example, the detection speed
of MCF-6 with § = 0.5 is 6.76 times faster than original
MCEF, while the miss rate of MCF-6 with § = 0.5 is higher
than original MCF by 4.36%. Thus, it’s not a good choice.
When 6 = 0.9, the detection performance is almost no loss,
while the detection speed is not significantly improved. Thus,
the trade-off choice is & = 0.8. With little performance loss
(e.g., 0.77%), MCF-6 is 2.67 times faster than original MCFE.
In the following section, MCF with 8 = 0.8 are called MCF-{.

Table VIII summarizes MCF-2, MCF-6 and MCEF-6-f.
MCEF-6-f is the fast version of MCF-6, where the highly
overlapped detection windows are eliminated after the first
stage. There are the following observations: 1) MCF-6 and
MCEF-6-f both have the lower miss rates. Specifically, MCF-6
and MCF-6-f based on AlexNet have lower miss rates
than MCF-2 by 2.79% and 2.02%, respectively. MCF-6 and
MCF-6-f based on VGG16 have lower miss rates than MCF-2
by 4.21% and 3.63%, respectively. 2) MCF-6 and MCF-6-f
is faster than MCF-2. For example, detection time of MCF-2
based VGG16 is 7.69s and that of MCF-6-f based on VGG16
is 1.89s. It means that detection speed of MCF-6-f is 4.07
times faster than that of MCF-2. 3) With little performance
loss, MCF-6-f has faster detection speed than MCF-6. The
loss of MCF-6-f based on AlexNet is 0.77%, and the loss of
MCF-6-f based on VGG16 is 0.58%.
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Fig. 6. Miss rates and FPS on Caltech pedestrian dataset are shown. Detection
time of the methods are all tested on the common CPU (i.e., Intel Core
i7-3700).

B. Comparison With the State-of-the-Art on Caltech Dataset

In this section, MCF based on HOG+LUV and all the
five convolutional layers (i.e., C1-C5) in VGG16 is compared
to some state-of-the-art methods. The features extracted in
the first layer (i.e., HOG+LUV) are NNNF [6] which is
one of the state-of-the-art features. The features extracted
in the remaining five layers (i.e., C1-C5) are zero-order
feature (single pixel). Caltech10x is used for training the final
classifier. To speedup the training process, negative samples
are accumulated by five rounds of original NNNF, where the
number of the trees in each round is 32, 128, 512, 2048,
and 4096, respectively. The resulting classifier contains 4096
level-4 decision trees. S1 contains 2048 decision trees. S2-S6
each have 409 decision trees. Zhang et al. [56] provided a
new, high quality ground truth for the training and test sets.
The new annotations of Caltech10x is also used for training
MCE. Original Caltech test set and new Caltech test set are
both used for the evaluations.

Fig. 5 compares MCF with some state-of-the-art methods on
the original annotations of the test set. ACF [12], LDCF [33],
Checkerboards [55], CCF+CF [50], NNNF [6], DeepParts
[44], and CompACT-Deep [5] are used. ACF [12] are trained
on INRIA dataset [8]. The other methods are trained based
on Caltech10x dataset. MCF achieves the state-of-the-art per-
formance, which outperforms CompACT-Deep [5], DeepParts
[44], NNNF [6], CCF+CF [50], and Checkerboards [55] by
1.35%, 1.49%, 6.38%, 6.92%, and 8.07%, respectively.

Miss rates and Frames Per Second (FPS) of some methods
based on CNN are visualized in Fig. 6. Detection time of the
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Fig. 7. ROC on Caltech test set using the new and accurate annotations
[56]. Miss rates log-averaged over the FPPI range of [10_2,100] and the
FPPI range of [10=4,1007 are shown. They are represented by MR_, and
MR_4, respectively. MR_> (MR_4) are shown in the legend.

methods are all tested on the common CPU (i.e., Intel Core
17-3700). The best choice is that the miss rate is as small as
possible while FPS is as large as possible. Though ACF [12]
has very fast detection speed (9.49 fps), miss rate of ACF is
very large. Fast RCNN reported in [27] has the better detection
performance (11.82%), but the speed of Fast RCNN is very
slow. MCF-f is the fast version of MCF with little performance
loss (0.65%). Compared to Fast RCNN [27], the detection
speed of MCF is 4.5 times faster and the miss rate of MCF is
0.77% lower. Therefore, MCF has a better trade-off between
detection speed and detection performance. We also implement
MCF-f on the GPU (NVIDIA k40c). The speed of MCF-f
is 8.13 fps.

Based on the new and accurate annotations of the Cal-
tech test set [56], Fig. 7 further compares MCF with some
state-of-the-art methods: CompACT-Deep [5], RotatedFilters
[56], DeepParts [44], NNNF [6], Checkerboards [55], and
CCF+-CF [50]. Miss rates log-averaged over the FPPI range
of [1072,10°] and the FPPI range of [1074,10°] are both
calculated. They are represented by MR_» and MR_4. MR_»
(M R_4) are shown in the legend. MCF and RotatedFilters [56]
are trained based on the Caltech10x with the new annotations.
MR >, and MR_4 of MCF achieve 7.98% and 15.45%,
respectively. They are superior to all the other methods.
Specifically, MR_, of MCF is 1.17%, 4.92%, 6.41%, and
14.36% lower than that of CompACT-Deep [5], DeepParts
[44], NNNF [6], and CCF+4CF [50]. Compared to M R_, of
MCEF, M R_4 of MCF has the better performance. Specifically,
M R_4 of MCF is 3.39%, 9.70%, 10.05%, and 26.54% lower
than that of CompACT-Deep [5], DeepParts [44], NNNF [6],
and CCF+-CF [50]. It means that MCF stably outperforms the
other state-of-the-art methods.

C. Comparison With the State-of-the-Art on INRIA Dataset

In this section, we compare MCF with some state-of-
the-art methods (e.g., ACF [12], InformedHaar [54], LDCF
[33], Roerei [2], SpatialPooling [34], and NNNF [6]) on the
INRIA dataset. The size of the negative images is 240 x 320.
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Fig. 8. ROC on INRIA dataset [8].

In order to enlarge the number of the negative windows,
the training negative images are upsampled by one octave.
Negative windows are accumulated by four rounds of original
NNNF, where the number of the trees in each round is 32, 128,
512, and 2048, respectively. 10000 hard negatives are added
after each round and the cumulative negatives are limited to
15000. As the number of the negatives on the INRIA dataset
is relatively limited, the number weak classifiers learned from
CNN is only set to 512. The resulting classifier contains 2560
level-3 decision trees. Specifically, S1 contains 2048 decision
trees and S2-S6 each have 102 decision trees. Fig. 8 compares
MCF with some state-of-the-art methods. The proposed MCF
achieves the lowest miss rate (i.e., 8.58%). For example, It
outperforms NNNF [6] and SpatialPooling [34] by 1.80% and
2.64%, respectively. It also outperforms than MT-LDCF [60]
by 1.92%.

D. Comparison With the State-of-the-Art on ETH
and TUD-Brussels Datasets

In this section, MCF and some state-of-the-art methods
(i.e., ACF [12], LDCF [33], Roerei [2], SpatialPooling [34],
Franken [32], TA-CNN [43], and MultiFtr+Motion [47]) are
compared on the ETH [13] and TUD-Brussels [49] datasets.
Following the experimental setups in [34] and [43], MCF is
trained on the INRIA dataset [8]. The parameters are the same
as Section I'V-C. Fig. 9 and Fig. 10 shows the ROC on ETH
dataset and TUD-Brussels dataset, respectively. It can be seen
that MCF achieves the state-of-the-art performance on the two
datasets. On the ETH dataset, MCF outperforms TA-CNN
[43], SpatialPooling [34], Franken [32] by 4.54%, 6.93%,
and 9.52%. On the TUD-Brussels dataset, MCF outperforms
SpatialPooling [34], LDCF [33], and MultiFtr+Motion [47]
by 2.82%, 12.75%, and 16.28%.

E. Comparison With the State-of-the-Art on KITTI Dataset

In this section, MCF and some state-of-the-art methods
(i.e., ACF [12], SpatialPooling+ [35], Checkerboards [55],
DeepParts [44], and CompACT-Deep [5]) are compared on the
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Fig. 10. ROC on TUD-Brussels dataset [49].

KITTI dataset [16]. All the methods are evaluated on the three
difficult levels (i.e., Easy, Moderate, and Hard) in terms of
average precision (AP). We train a model with 64 x 128 pixels.
Because the minimum height of pedestrian for evaluation is 25
pixels, the image is upsampled by two octave. The detection
results are given in Table IX. MCF outperforms the other
methods on all the three difficult levels. For example, AP
of MCF is 0.71% higher than that of CompACT-Deep [5]
on the moderately difficult level. Though some state-of-the-
art methods (e.g., [51] and [27]) also outperform than MCEF,
they are scale-aware methods. In the future, we will explore
scale-aware MCF.

FE. Visualization and Analysis of Detection Results

In this section, the visualization of some detection results
about MCF on Caltech dataset [10], [11] is given in Fig. 11.
The green rectangle means the true positive, the blue rectangle
means the missing positive, and the red rectangle means the
false positive. In Figs. 11(a) and (b), MCF can detect all
the pedestrians. In Fig. 11(c), one small-scale pedestrian and
one heavily occlusion pedestrian are missing. Fig. 11(d), three
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TABLE IX
AVERAGE PRECISION (AP) OF SOME METHODS ON KITTI

Method Easy Moderate Hard

ACF [12] 44.49% 39.81% 37.21%
SpatialPooling+ [35] 65.26% 54.49% 48.60%
Checkerboards [55] 67.75% 56.75% 51.12%
DeepParts [44] 70.49% 58.67% 52.78%
CompACT-Deep [5] 70.69% 58.74% 52.71%
MCF 70.87% 59.45% 54.28%

(@ (b)

(c) (d)

Fig. 11.  Some detection results on Caltech test dataset [10], [11]. The
green rectangle means the true positive, the blue rectangle means the missing
positive, and the red rectangle means the false positive.

heavily occlusion pedestrians are missing, and one small-scale
pedestrian cannot be detected accurately. Based on the above
observations, it can be seen that the small-scale pedestrian
performance and heavily occlusion pedestrian performance of
MCEF need to be more improved in the future.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a unifying framework,
which is called Multi-layer Channels Features (MCF). Firstly,
the handcrafted image channels and the layers in CNN con-
struct the multi-layer image channels. Then a multi-stage
cascade are learned from the features extracted in the layers,
respectively. The weak classifiers in each stage are learned
from the corresponding layer. On the one hand, due to the
much more abundant candidate features, MCF achieves the
state-of-the-art performance on Caltech pedestrian dataset (i.e.,
10.40% miss rate). Using the new and accurate annotations of
the Caltech pedestrian dataset, miss rate of MCF is 7.98%,
which is superior to other methods. On the other hand, due to
the cascade structure, MCF rejects many detection windows by
the first few stages and then accelerates the detection speed. To
further speedup the detection, the highly overlapped detection
windows are eliminated after the first stage. Finally, MCF with
VGG16 can run on the CPU by 0.54 fps.
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In the future work, we will explore the very slim net to
further improve detection speed. Based on the slim structure,
the computation cost of the first few layers is very small.
With the cascade structure, the first few stages can reject many
detection widows with little computation cost of the first few
convolutional layers.
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