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Fast Unsupervised Bayesian Image Segmentation
With Adaptive Spatial Regularisation

Marcelo Pereyra and Steve McLaughlin, Fellow, IEEE

Abstract— This paper presents a new Bayesian estimation
technique for hidden Potts–Markov random fields with unknown
regularisation parameters, with application to fast unsuper-
vised K -class image segmentation. The technique is derived
by first removing the regularisation parameter from the
Bayesian model by marginalisation, followed by a small-variance-
asymptotic (SVA) analysis in which the spatial regularisation and
the integer-constrained terms of the Potts model are decoupled.
The evaluation of this SVA Bayesian estimator is then relaxed into
a problem that can be computed efficiently by iteratively solving
a convex total-variation denoising problem and a least-squares
clustering (K -means) problem, both of which can be solved
straightforwardly, even in high-dimensions, and with parallel
computing techniques. This leads to a fast fully unsupervised
Bayesian image segmentation methodology in which the strength
of the spatial regularisation is adapted automatically to the
observed image during the inference procedure, and that can
be easily applied in large 2D and 3D scenarios or in applications
requiring low computing times. Experimental results on synthetic
and real images, as well as extensive comparisons with state-of-
the-art algorithms, confirm that the proposed methodology offer
extremely fast convergence and produces accurate segmentation
results, with the important additional advantage of self-adjusting
regularisation parameters.

Index Terms— Image segmentation, Bayesian methods, spatial
mixture models, Potts Markov random field, convex optimisation.

I. INTRODUCTION

IMAGE segmentation is a canonical inverse problem which
involves classifying image pixels into clusters that are

spatially coherent and have well defined boundaries. It is
widely accepted that this task can be formulated as a statistical
inference problem and most state-of-the-art image segmen-
tation methods compute solutions by performing statistical
inference (e.g., computing penalized maximum likelihood or
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maximum-a-posteriori estimates). In this paper we focus on
new Bayesian computation methodology for hidden Potts-
Markov random fields (MRFs) [1], a powerful class of statisti-
cal models that is widely used in Bayesian image segmentation
methods (see [2]–[5] for recent examples in hyperspectral, non
destructive testing, ultrasound, and fMRI imaging).

Despite the wide range of applications, performing inference
on hidden Potts MRFs remains a computationally challenging
problem. In particular, computing the maximum-a-
posteriori (MAP) estimator for these models is generally
NP-hard, and thus most image processing methods compute
approximate estimators. This has driven the development of
efficient approximate inference algorithms, particularly over
the last decade. The current predominant approaches for
approximate inference on MRFs are based on convex models
and convex approximations that can be solved efficiently by
convex optimisation [6]–[8], and on approximate estimators
computed with graph-cut [9], [10] and message passing
algorithms [11]–[13]. In a similar fashion, modern algorithms
to solve active contour models, the other main class of
models for image segmentation, are also principally based on
convex relaxations and convex optimisation [14], [15] and on
Riemannian steepest descent optimisation schemes [16]–[19].

An important limitation of these computationally efficient
approaches is that they are supervised, in the sense that they
require practitioners to specify the value of the regularisation
parameter of the Potts MRF. However, it is well known that
appropriate values for regularisation parameters can be highly
image dependent and sometimes difficult to select a priori, thus
requiring practitioners to set parameter values heuristically
or by visual cross-validation. The Bayesian framework offers
a range of strategies to circumvent this problem and to
design unsupervised image segmentation inference procedures
that self-adjust their regularisation parameters. Unfortunately,
the computations involved in these inferences are beyond
the scope of existing fast approximate inference algorithms.
As a consequence, unsupervised image segmentation methods
have to use more computationally intensive strategies such
as Monte Carlo approximations [20], [21], variational Bayes
approximations [22], and EM algorithms based on mean-field
like approximations [23], [24].

In this paper we propose a highly efficient Bayesian
computation approach specifically designed for performing
approximate inference on hidden Potts-Markov random fields
with unknown regularisation parameters, with application
to fast unsupervised K -class image segmentation. A main
original contribution of our development reported here is to
use a small-variance-asymptotic (SVA) analysis to design an
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approximate MAP estimator in which the spatial regularisation
and the integer-constrained terms of the Potts model are
decoupled. The evaluation of this SVA Bayesian estimator
can then be relaxed into a problem that can be computed effi-
ciently by iteratively solving a convex total-variation denoising
problem and a least-squares clustering (K-means) problem,
both of which can be solved straightforwardly, even in high-
dimensions, and with parallel computing techniques.

Small-variance asymptotics estimators were introduced
in [25] as a computationally efficient framework for perform-
ing inference in Dirichlet process mixture models and have
been recently applied to other important machine learning
classification models such as the Beta process and sequential
hidden Markov models [26], as well as to the problem of
configuration alignment and matching [27]. Here we exploit
these same techniques for the hidden Potts MRF to develop
an accurate and computationally efficient image segmentation
methodology for the fully unsupervised case of unknown class
statistical parameters (e.g., class means) and unknown Potts
regularisation parameter.

The paper is organised as follows: in Section II we present
a brief background to Bayesian image segmentation using the
Potts MRF. This then followed by a detailed development
of our proposed methodology. In Sections IV and V the
methodology is applied to some synthetic and real test images
and compared to other image segmentation approaches from
the state of the art. Finally some brief conclusions are drawn
in Section VI.

II. BACKGROUND

We begin by recalling the standard Bayesian model used
in image segmentation problems, which is based on a finite
mixture model and a hidden Potts-Markov random field with
known regularisation parameter β. For simplicity we focus on
univariate Gaussian mixture models. However, the results pre-
sented hereafter can be generalised to all exponential-family
mixture models (e.g., mixtures of multivariate Gaussian,
Rayleigh, Poisson, Gamma, Binomial, etc.) by following the
approach described in [28].

Let yn ∈ R denote the nth observation (i.e. pixel or voxel) in
a lexicographical vectorized image y = (y1, . . . , yN )T ∈ R

N .
We assume that y is made up by K regions {C1, . . . , CK } such
that the observations in the kth class are distributed according
to the following conditional marginal observation model

yn|n ∈ Ck ∼ N (μk, σ
2), (1)

where μk ∈ R represents the mean intensity of class Ck . For
identifiability we assume that μk �= μ j for all k �= j .

To perform segmentation, a label vector z = (z1, . . . , zN )T

is introduced to map or classify observations y to classes
C1, . . . , CK (i.e., zn = k if and only if n ∈ Ck). Assuming
that observations are conditionally independent given z and
given the parameter vector μ = (μ1, . . . , μK ), the likelihood
of y can be expressed as follows

f (y|z,μ) =
K∏

k=1

∏

n∈Sk

pN (yn|μk, σ
2), (2)

Fig. 1. [Left:] Directed acyclic graph of the standard Bayesian model for
image segmentation (parameters with fixed values are represented using black
boxes). [Right] Local hierarchical representation of the hidden Potts MRF and
the observed image for 4 neighbouring pixels.

with Sk = {n : zn = k} (to simplify notation the dependence
of distributions on σ 2 is omitted). A Bayesian model for
image segmentation is then defined by specifying the prior
distribution of the unknown parameter vector (z,μ). The prior
for z is the homogenous K -state Potts MRF [29]

f (z|β) = 1

C(β)
exp [β H (z)], (3)

with regularisation hyper-parameter β ∈ R
+, Hamiltonian

H (z) =
N∑

n=1

∑

n′∈V(n)

δ(zn == zn′), (4)

where δ(·) is the Kronecker function and V(n) is the index
set of the neighbors of the nth voxel (most methods use the
1st order neighbourhoods depicted in Fig. 2), and normalising
constant (or partition function)

C(β) =
∑

z

exp [β H (z)]. (5)

Notice that the Potts prior (3) is defined conditionally to a
given value of β. Most image segmentation methods based on
this prior are supervised; i.e., assume that the value of β is
known and specified a priori by the practitioner. Alternatively,
unsupervised methods consider that β is unknown and seek to
adjust its value automatically during the image segmentation
procedure (this point is explained in detail in Section III).

In a similar fashion, the class means are considered prior
independent and assigned Gaussian priors μk ∼ N (0, ρ2) with
fixed variance ρ2,

f (μ) =
K∏

k=1

pN (μk |0, ρ2). (6)

(to simplify notation the dependence of distributions on the
fixed quantity ρ2 is omitted).

Then, using Bayes theorem and taking into account the
conditional independence structure of the model (see Fig. 1),
the joint posterior distribution of (z, μ) given y and β can be
expressed as follows

f (z,μ| y, β) ∝ f (y|z,μ) f (z|β) f (μ), (7)



PEREYRA AND McLAUGHLIN: FAST UNSUPERVISED BAYESIAN IMAGE SEGMENTATION 2579

Fig. 2. 4-pixel (left) and 6-voxel (right) neighborhood structures. The
pixel/voxels considered appears as a void red circle whereas its neighbors
are depicted in full black and blue.

where ∝ denotes proportionality up to a normalising constant
that can be retrieved by setting

∫
f (z,μ| y, β) dzdμ = 1.

The graphical structure of this Bayesian model is summarised
in Fig. 1 below. Notice the Markovian structure of z and that
observations yn are conditionally independent given the model
parameters z, μ and σ 2.

Finally, given the Bayesian model (7), a segmentation of
y is typically obtained by computing the MAP estimator

ẑ1, μ̂1 = argmax
z,μ

f (z,μ| y, β), (8)

which can also be obtained by solving the equivalent
optimisation problem

ẑ1, μ̂1 = argmin
z,μ

− log f (z,μ| y, β). (9)

Unfortunately these optimisation problems are known to
be NP-hard due to the combinatorial nature of the Potts
Hamiltonian H (z) defined in (4). As mentioned previously,
modern image segmentation methods based on (7) typically
address this issue by using approximate (local) integer optimi-
sation algorithms (e.g., graph-cut, message passing) [10]–[12],
and more recently with convex relaxations of the Potts model
(see for instance [6], [7]).

III. PROPOSED METHOD

This section presents a highly computationally efficient
approach for performing approximate inference on z when
the value of the regularisation parameter β is unknown. The
approach is based on a small-variance asymptotics (SVA)
analysis combined with a convex relaxation and a pseudo-
likelihood approximation of the Potts MRF. Our development
has three main steps. In the first step we adopt a hierarchical
Bayesian approach to remove β from the model by marginal-
isation; because marginalising w.r.t. β requires knowledge of
the intractable Potts partition function (5) we use a pseudo-
likelihood approximation. However, performing inference with
the resulting marginalised model is still NP-hard. In the second
part of our development we address this difficulty by using
auxiliary variables and an SVA analysis to decouple the spatial
regularisation and the integer-constrained terms of the Potts
model. The evaluation of the resulting SVA Bayesian estimator
is then relaxed into a problem that can be computed effi-
ciently by iteratively solving a convex total-variation denoising
problem and a least-squares clustering problem, both of which
can be solved straightforwardly, even in high-dimensions,
with parallel implementations of Chambolle’s optimisation
algorithm [30] and of K-means [31].

A. Marginalisation of the Regularisation Parameter β

Following a hierarchical Bayesian approach, we address
the fact that the value of β is unknown by modelling it
as an additional random variable of the Bayesian model.
Precisely, we assign β a prior distribution f (β) and define
an augmented model that includes β within its unknown
parameter vector. By using Bayes’ theorem we obtain the joint
posterior distribution

f (z,μ, β| y) ∝ f (y|z,μ) f (μ) f (z|β) f (β) (10)

which includes β as an unknown variable. The rationale for
replacing the fixed regularisation parameter β of (7) by a
random variable with prior f (β) is that it is often possible
to specify this prior distribution such that the amount of
regularisation enforced by the Potts MRF is driven by data
and the impact of f (β) on the inferences is minimal. At the
same time, experienced practitioners with knowledge of good
values of β can specify f (β) to exploit their prior beliefs.
In this paper we use a gamma (hyper-)prior distribution

f (β) = γ αβα−1 exp (−γβ)1R+(β)/�(α)

because it has favourable analytical tractability properties that
will be useful for our development (appropriate values for the
fixed parameters α and γ will be derived later through a small-
variance asymptotics analysis).

Moreover, in order to marginalise β from the model we
notice that β is conditionally independent of y given z; to be
precise, that f (z,μ, β| y) = f (β|z) f (z,μ| y). Therefore,
integrating f (z,μ, β| y) with respect to β is equivalent to
redefining the posterior distribution (12) with the marginal
prior f (z) = ∫

R+ f (z, β)dβ. Evaluating this marginal prior
exactly is not possible because it requires computing the
normalising constant of the Potts model C(β) defined in (5),
which is a reputedly intractable problem [20]. To obtain an
analytically tractable approximation for this marginal prior
we adopt a pseudo-likelihood approach [32] and use the
approximation C(β) ∝ β−N , leading to

f (z) =
∫

R+
f (z, β)dβ

∝
∫

R+
βN exp (β H (z))βα−1 exp (−γβ)dβ

∝ [γ − H (z)]−(α+N), (11)

and to the following (marginal) posterior distribution

f (z,μ| y) ∝
⎡

⎣
K∏

k=1

∏

n∈Sk

pN
(

yn|μk, σ
2
)
⎤

⎦

× f (μ) (γ − H (z))−(α+N) , (12)

that does not depend on the regularisation parameter β.

B. Small-Variance Approximation

The next step of our development is to conduct a small-
variance asymptotics analysis on (12) and derive the asymp-
totic MAP estimator of z,μ. We begin by introducing a
carefully selected auxiliary vector x such that y and (z,μ)
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are conditionally independent given x, and that the posterior
f (x, z,μ| y) has the same maximisers as (7) (after projection
on the space of (z,μ)). More precisely, we define a random
vector x ∈ R

N with degenerate prior

f (x|z,μ) =
K∏

k=1

∏

n∈Sk

δ(xn − μk), (13)

and express the likelihood of y given x, z and μ as

f (y|x, z,μ) = f (y|x) =
N∏

n=1

pN (yn|xn, σ
2).

The prior distributions for z and μ remain as defined above.
The joint posterior distribution of x, z,μ is given by

f (x, z,μ, β| y) ∝ f (y|x) f (x|z,μ) f (z|β) f (μ)

∝
⎡

⎣
K∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − μk)

⎤

⎦

× f (μ)
[
γ − H (z)

]−(α+N)
. (14)

Notice that from an inference perspective (14) is equivalent
to (12), in the sense that marginalising x in (14) results in (12).

Moreover, we define H ∗(z) as the “complement” of the
Hamiltonian H (z) in the sense that for any z ∈ [1, . . . , K ]N

H (z) + H ∗(z) =
∑N

n=1
|V(n)|,

where |V(n)| denotes the cardinality of the neighbourhood
structure of the nth pixel. For the Potts MRF this comple-
ment is given by

H ∗(z) �
N∑

n=1

∑

n′∈V(n)

δ(zn �= zn′). (15)

Replacing H (z) = ∑N
n=1 |V(n)| − H ∗(z) in (14) we obtain

f (x, z,μ, β| y)

∝
⎛

⎝
K∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − μk)

⎞

⎠

× f (μ)
[

H ∗(z) + (γ − ∑N
n=1 |V(n)|)

]−(α+N)
. (16)

Furthermore, noting that H ∗(z) only measures if neighbour
labels are identical or not, regardless of their values, it is
easy to check that the posterior (14) remains unchanged if
we substitute H ∗(z) with H ∗(x)

f (x, z,μ, β| y)

∝
⎡

⎣
K∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − μk)

⎤

⎦

× f (μ)
[

H ∗(x) + (γ − ∑N
n=1 |V(n)|)

]−(α+N)
. (17)

Finally, we make the observation that for 1st order neigh-
bourhoods (see Fig. 2) we have H ∗(x) = 2||∇x||0, where
||∇x||0 = ||∇h x||0 + ||∇v x||0 denotes the 	0 norm of the

Fig. 3. [Left:] Directed acyclic graph of the proposed Bayesian model,
augmented by the auxiliary variable x decoupling μ and z from y, and
with marginalisation of the regularisation parameter β (parameters with fixed
values are represented using solid black boxes, marginalised variables appear
in dashed boxes). [Right] Local representation of three layers of the model
for 4 neighbouring pixels.

horizontal and vertical components of the 1st order discrete
gradient of x, and therefore

f (x, z,μ, β| y)

∝
⎡

⎣
K∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − μk)

⎤

⎦

× f (μ)
[
||∇x||0 + (γ − ∑N

n=1 |V(n)|)/2
]−(α+N)

. (18)

The graphical structure of this equivalent hierarchical
Bayesian model is summarised in Fig. 3 below. Notice that
in this model x separates y and σ 2 from the other model
parameters, that the regularisation parameter β has been
marginalised, that the MRF is now enforcing spatial smooth-
ness on x not z, and that the elements of z are prior
independent.

We are now ready to conduct a small-variance asymptotics
analysis on (18) and derive the asymptotic MAP estimator
of x, z, μ, which is defined for our model as [25]

argmin
x,z,μ

lim
σ 2→0

−σ 2 log f (x, z,μ| y) .

First, we use the fact that δ(s) = limτ 2→0 pN (s|0, τ 2) to
express (18) as follows

f (x, z,μ| y, β)

∝ lim
τ 2→0

⎛

⎝
K∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)pN (xn|μk, τ

2)

⎞

⎠

× f (μ)
[
||∇x||0 + (γ − ∑N

n=1 |V(n)|)/2
]−(α+N)

,

∝ lim
τ 2→0

⎛

⎝
K∏

k=1

∏

n∈Sk

exp

(
− (xn − yn)

2

2σ 2 − (xn − μk)
2

2τ 2

)⎞

⎠

× f (μ)
[
||∇x||0 + (γ − ∑N

n=1 |V(n)|)/2
]−(α+N)

. (19)
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Then, in a manner akin to Broderick et al. [25], we allow
the model’s hyper parameters to scale with σ 2 in order to
preserve the balance between the prior and the likelihood and
avoid a trivial limit. More precisely, we set α = N/σ 2 and
assume that σ 2 vanishes at the same speed as τ 2. Then, the
limit of −σ 2 log f (x, z,μ| y) as σ 2 → 0 is given by

lim
σ 2→0

−σ 2 log f (x, z,μ| y)

=
K∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − μk)

2

+ N log(||∇x||0 + (γ −
∑N

n=1
|V(n)|)/2), (20)

and the MAP asymptotic estimators of x, z, μ by

argmin
x,z,μ

K∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − μk)

2

+ N log(||∇x||0 + 1), (21)

where we have set γ = 2+∑N
n=1 |V(n)| such that the penalty

log
[
||∇x||0 + (γ − ∑N

n=1 |V(n)|)/2
]

≥ 0.

C. Convex Relaxation and Optimisation

Computing the estimator (21) is still NP-hard due to
log(||∇x||0 + 1). To address this difficulty we use a convex
relaxation of ||∇x||0 and exploit the concavity of the
logarithmic function. Precisely, we replace ||∇x||0 by the
convex approximation TV(x) = ||∇x||1−2, (i.e., the isotropic
total-variation pseudo-norm of x [33]), and obtain the follow-
ing optimisation problem

argmin
x,z,μ

K∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − μk)

2

+ N log(T V (x) + 1), (22)

which can be very efficiently computed by iterative minimi-
sation w.r.t. x, z and μ. The minimisation of (22) w.r.t. z
(with x and μ fixed) is a trivial separable integer problem
that can be formulated as N independent (pixel-wise) minimi-
sation problems over 1, . . . , K (these unidimensional integer
problems can be solved by simply checking the value zn =
1, . . . , K that minimises (22) for each pixel n = 1, . . . , N).
Similarly, the minimisation with respect to μ is a trivial
quadratic least squares fitting problem with analytic solution
(i.e., by setting μk = 1

|Sk |
∑

n∈Sk
xn for each k = 1, . . . , K ,

where |Sk | denotes the cardinality of Sk). Also note that
iteratively minimising (22) with respect to z and μ, with
fixed x, is equivalent to solving a least squares clustering
problem with the popular K-means algorithm [31]. Moreover,
the minimisation of (22) w.r.t. x (with z and μ fixed) is
achieved by solving the non-convex optimisation problem

argmin
x

K∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − μk)

2

+ N log [T V (x) + 1] , (23)

Algorithm 1 Unsupervised Bayesian Segmentation Algorithm

which was studied in detail in [34]. Essentially, given some
initial condition v(0) ∈ R

N , (23) can be efficiently minimised
by majorisation-minimisation (MM) by iteratively solving the
following sequence of trivial convex problems,

v(	+1) = argmin
x

K∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − μk)

2

+ λ	T V (x) with λ	 = N

T V [v(	)]+1
, (24)

in which λ	 plays the role of a regularisation parameter, and
where we have used the majorant [34]

q(x|v(	)) =
(
T V (x) − T V (v(	))

)

(T V (v(	)) + 1)
+ log (T V (x) + 1)

≥ log
(

T V (v(	)) + 1
)

. (25)

Notice that each step of (24) is equivalent to a trivial convex
total-variation denoising problem that can be very efficiently
solved, even in high-dimensional scenarios, by using modern
convex optimisation techniques (in this paper we used a
parallel implementation of Chambolle’s algorithm [30]).

The proposed unsupervised segmentation algorithm based
on (22) is summarised in Algo. 1 below. We note at this point
that because the overall minimisation problem is not convex
the solution obtained by iterative minimisation of (22) might
depend on the initial values of x, z,μ. In all our experiments
we have used the initialisation x(0) = 2 y, z = [1, . . . , 1]T ,
μ = [0, . . . , 0]T that produced good estimation results.
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Fig. 4. The four synthetic datasets used to benchmark the proposed
image segmentation methodology. Segmentation accuracy and computing
times reported in Tables I-II. (a) GMM4. (b) GMM8. (c) LMM2. (d) PMM3.

IV. VALIDATION WITH SYNTHETIC DATA

In this section we validate the proposed Bayesian image
segmentation methodology with a series of experiments on
synthetic data for which we have ground truth available.
To assess the accuracy of our method we compare the
results with the estimates produced by the Markov chain
Monte Carlo algorithm [20], which estimates the marginal
posterior of the segmentation labels f (z| y) with very high
accuracy. For completeness, we also report comparisons with
the Iterated Conditional Modes (ICM) method [32], which
is the predominant approach to perform approximate infer-
ences with the hidden Potts MRF model. We consider two
fully unsupervised instances of this method. The first is
a non-iterative algorithm in which μ, σ , z are initialised
by K-means clustering, followed by β estimated from z by
pseudo-likelihood estimation [35], and finally z estimated
by ICM conditionally on the values of μ, σ and β. The
second instance is an iterative algorithm in which we update
alternatively z by ICM, β by pseudo-likelihood estimation, and
μ and σ by maximum-likelihood estimation, until the estimate
of z stabilises (this algorithm is also initialised by K-means
clustering). The iterative instance is generally more accurate
than the non-iterative one because the estimates of μ, σ

and β are refined in each iteration, however it is also more
computationally expensive.

We tested the algorithms with the four synthetic datasets
displayed in Figure 4, which we have designed to represent a
range of challenging segmentation conditions related to high-
noise, large numbers of classes, and model misspecification
(i.e., deviations from the model such as heteroscedasticity and
non-gaussianity):

1) GMM4: Gaussian mixture model with K = 4 regions with
parameters μ = {0, 1, 2, 4}, σ = {1,

√
2,

√
3/2,

√
2},

TABLE I

SEGMENTATION ACCURACY (PIXELS CORRECTLY CLASSIFIED) FOR THE
FOUR DATA DISPLAYED IN FIG. 4

and spatial organisation according to a Potts MRF with
β = 1.2 and size 256 × 256 pixels, resulting in a
signal-to-noise ratio (SNR) of 7.7dB. This dataset is
challenging because there is strong overlap between the
distribution of the mixture components (i.e., low SNR)
as well as heteroscedasticity, which our method does not
take into account and hence represents a case of mild
likelihood misspecification.

2) GMM8: Gaussian mixture model with K = 8 regions
with parameters μ = {1, 2, . . . , 8}, σ = {0.3, . . . , 0.3},
and spatial organisation according to a Potts MRF with
β = 1.5 and size 256 × 256 pixels. The main challenge
here is the large number of mixture components, which
is further complicated by the fact that the distributions
overlap partially (the SNR for this dataset is 24.1dB).

3) LMM2: Laplace mixture model with K = 2 compo-
nents with parameters μ = {1, 2}, σ = {1, 1}, and
checkerboard spatial organisation (size 256×256 pixels),
resulting in a very low SNR value of 1.0dB. This
dataset is challenging because it strongly deviates from
the Bayesian model considered, which is misspecified
both at the level of the prior and the likelihood (note
that deviations from the model can degrade significantly
segmentation performance [36]). Also, both mixture
components overlap significantly, making the segmen-
tation even more difficult.

4) PMM3: Poisson mixture model with K = 3 components
with parameter μ = {1, 6, 11}, and spatial organi-
sation according to the three main structures of the
Shepp-Logan phantom. This dataset has a low SNR
value of 4.7dB. Again, the challenges here are the strong
misspecification in the likelihood and prior, and that the
mixture components overlap.

All experiments have been conducted using a MATLAB
implementation of Algo. 1 with parameters T = 50, L = 25,
ε = 10−3, and computed on an Intel i7 quad-core workstation
running MATLAB 2014a. For the ICM algorithms we have
used the MATLAB implementation of [36]. The implemen-
tation of the MCMC algorithm [20] is written in MATLAB
with specific functions in C, so it has an advantage in terms
of computational performance.

Table I reports the segmentation accuracy for the four
test data and each method (we measure accuracy as the
percentage of correctly classified pixels with respect to the
ground truth). We observe that the MCMC method produced
the most accurate segmentation results, with a remarkable
accuracy of the order of 95%−99%, followed by the proposed
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TABLE II

COMPUTING TIMES (SECONDS) FOR THE FOUR DATA DISPLAYED IN FIG. 4

method which achieved 90% − 96% of correctly classified
pixels. Moreover, we also observe that the ICM algorithms
were less accurate on average, and struggled particularly with
Data 2 because they were not able to estimate correctly
the mixture model parameters. More importantly, Table II
reports the computing times associated with these experiments.
Observe that the proposed method is very computationally
efficient and was one or two orders of magnitude faster than
the ICM and MCMC approaches in all experiments (notice
that these low computing times are in agreement with a large
body of literature reporting that convex relaxations, combined
with convex optimisation algorithms, lead to state-of-the-art
computational performance). In conclusion, these experiments
with synthetic data indicate that the proposed methodology
offer extremely fast and accurate segmentation results. Finally,
for completeness, we note that in all cases Algo. 1 converged
in t = 2 iterations, and determined the following values for
the regularisation parameter λ	: GMM4, λ	 = 5.5603; GMM8,
λ	 = 5.6314; LMM2, λ	 = 6.5282; and PMM3, λ	 = 4.8355.

V. EXPERIMENTAL RESULTS AND OBSERVATIONS

In this section we demonstrate empirically the proposed
methodology with a series of experiments with real data
and comparisons with state-of-the-art algorithms. Similarly to
Section IV, to assess the accuracy of our method we compare
the results with the estimates produced by a Markov chain
Monte Carlo algorithm [20], which estimates the marginal
posterior of the segmentation labels f (z| y) with very high
accuracy. We also report comparisons with four supervised
fast image segmentation techniques that we haven chosen to
represent different efficient algorithmic approaches to image
segmentation (e.g. MRF energy minimisation solved by graph-
cut, active contour solved by Riemannian gradient descent,
and two convex models solved by convex optimisation). The
specific methods used in the comparison are as follows:

• The two-stage smoothing-followed-by-thresholding
algorithm (TSA) [15], which is closely related to a semi-
supervised instance of Algo. 1 with a single iteration
(TV-denoising followed by K-means), and with a fixed
regularisation parameter λ specified by the practitioner.

• Hidden Potts MRF segmentation (7) with fixed β, solved
by graph max-flow/min-cut approximation [37].

• Chan-Vese active contour by natural gradient descent [16]
(to our knowledge this method is currently the fastest
approach for solving active contour models).

• The fast global minimisation algorithm (FGMA) [14] for
active contour models. In a similar fashion to our method,
this algorithm also involves a model with a TV convex
relaxation that is solved by convex optimisation.

Fig. 5. The Lungs (336 × 336 pixels), Bacteria (380 × 380 pixels),
Brain (256 × 256 pixels), and SAR (256 × 256 pixels) images used in the
experiments. (a) Lung. (b) Bacteria. (c) Brain. (d) SAR.

We emphasise that, unlike the proposed method, all these
efficient approaches are supervised, i.e., they require the
specification of a regularisation parameters. In the experiments
reported hereafter we have tuned and adjusted the parameters
of each algorithm to each image by use of visual cross-
validation to ensure we produce the best results for each
method on each image.

To guarantee that the comparisons are fair we have applied
the six algorithms considered in this paper to four images
with very different characteristics: the Lungs and Bacteria
images from the supplementary material of [14]; one slice
of a 3D in-vivo MRI image of a human brain composed
of biological tissues (white matter and grey matter) with
complex shapes and textures, making the segmentation prob-
lem challenging; and a SAR image of an agricultural region
in Bourges, France, containing three types of crops (note
that SAR image segmentation is challenging because of the
presence of strong non-Gaussian noise). The four test images
are depicted in Figure 5. These images have been selected as
they are composed of different types and numbers of objects;
objects which have different shapes, (regular and irregular);
noise characteristics; and a range of potential segmentation
solutions. Again, all experiments have been conducted using a
MATLAB implementation of Algo. 1 with parameters T = 50,
L = 25, ε = 10−3, and computed on an Intel i7 quad-core
workstation running MATLAB 2014a. With regards to the
algorithms used for comparison, when possible we have used
MATLAB codes made available by the respective authors.
It should be noted that these are mainly MATLAB scripts,
however the graph-cut method is written in C++, (the [38]
implementation was used here), and the MCMC method is
partly written in C, so they have an advantage in terms of
computational performance.
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Fig. 6. Comparison with the state-of-the-art methods [14], [15], [16], and [38]
using the lung image (336 × 336 pixels) from the supplementary material
of [14]. (a) Proposed. (b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38].
(e) Natural grad. [16]. (f) FGMA [14].

We emphasise at this point that we do not seek to explicitly
compare the accuracy of the methods because: 1) there is
no objective ground truth; 2) the “correct” segmentation is
often both subjective and application-specific; and 3) the
segmentations can often be marginally improved by fine tuning
the regularisation parameters. What our experiments seek to
demonstrate is that our method performs similarly to the most
efficient deterministic approaches of the state-of-the-art, both
in terms of segmentation results and computing speed, with the
fundamental advantage that it does not require specification
of the value of regularisation parameters (i.e., it is fully
unsupervised).

Figures 6, 7, 8 and 9 respectively show the segmentation
results obtained for the Lungs, Bacteria, Brain and
SARtest images with each method. The segmentations of the
Lungs and Bacteria images have been computed using
K = 2 classes to enable comparison with the natural gradient
method [16] and FGMA [14] (these methods are based on an
active contour model that only supports binary segmentations),
whereas the Brain image has been computed using K = 3
classes to produce a clear segmentation of the grey matter

Fig. 7. Comparison of the supervised and unsupervised methods with the
state of the algorithm [14], [15], [16], and [38] using the bacteria image
(380 × 380 pixels) from the supplementary material of [14]. (a) Proposed.
(b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38]. (e) Natural gradient [16].
(f) FGMA [14].

TABLE III

COMPUTING TIMES (SECONDS) FOR THE Lungs, Bacteria AND Brain
IMAGES DISPLAYED IN FIGS. 6, FIGS. 7 AND FIGS. 8

and the white matter. Similarly, the SAR image has also been
computed using K = 3 to identify the three crops. The com-
puting times associated with these experiments are reported
in Table III. Observe that all six methods produced similar
segmentation results that are in good visual agreement with
each other. In particular, we observe that the proposed method
successfully determined the appropriate level of regularisation
for each image and produced segmentations that are very
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Fig. 8. Segmentation of a brain MRI image (256×256 pixels). (a) Proposed.
(b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38].

Fig. 9. Segmentation of a SAR image of an agricultural region (256 ×
256 pixels). (a) Proposed. (b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38].

similar to the results obtained with the supervised methods
graph-cut [37] and TSA [15], and with the unsupervised
MCMC algorithm [16] that in a sense represents a benchmark
for these approximate inference methods. Moreover, Table III
shows that the proposed method was only 2 or 3 times
slower than state-of-the-art supervised approaches, which is
an excellent performance for a fully unsupervised method.
This additional computing time is mainly due to the addi-
tional computations related to the non-convex program (23);

however, we emphasise that this algorithm has the property of
adapting automatically the level of regularisation to the image,
and that the computing times reported in Table III do not
take into account the time involved in running the supervised
algorithms repeatedly to adjust their regularisation parameters.
Finally, for completeness, we note that in all cases Algo. 1
converged in t = 2 iterations, and determined the following
values for the regularisation parameter λ	: Lung, λ	 = 0.065;
Bacteria, λ	 = 0.110; Brain, λ	 = 0.095; and SAR,
λ	 = 6.6314. Observe the large range of values of λ	,
which highlights the fact that different images do require
very different amounts of regularisation, and that the capacity
of the proposed methodology to self-adjust λ	 represents an
important advantage over supervised approaches.

VI. CONCLUSIONS

We have presented a new fully unsupervised approach for
computationally efficient image segmentation. The approach
is based on a new approximate Bayesian estimator for
hidden Potts-Markov random fields with unknown regularisa-
tion parameter β. The estimator is based on a small-variance-
asymptotic analysis of an augmented Bayesian model and a
convex relaxation combined with majorisation-minimisation
technique. This estimator can be very efficiently computed
by using an alternating direction scheme based on a convex
total-variation denoising step and a least-squares (K-means)
clustering step, both of which can be computed straightfor-
wardly, even in large 2D and 3D scenarios, and with parallel
computing techniques. Experimental results on synthetic
and real images, as well as extensive comparisons with
state-of-the-art algorithms showed that the resulting new image
segmentation methodology performs similarly in terms of
segmentation results and of computing times as the most
efficient supervised image segmentation methods, with the
important additional advantage of self-adjusting regularisation
parameters. A detailed analysis of the theoretical properties
of small-variance-asymptotic estimators in general, and in
particular of the methods described in this paper, is currently
under investigation. Potential future research topics include the
extension of these methods to non-Gaussian statistical models
from the exponential family, taking into consideration linear
degradation effects such as blurring and missing pixels [39],
model choice techniques to address segmentation problems
where the number of classes K is unknown, applications to
ultrasound and PET image segmentation, and comparisons
with other Bayesian segmentation methods based on alterna-
tive hidden MRF models that can also be solved by convex
optimisation, such as [8].
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[14] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.-P. Thiran, and S. Osher,
“Fast global minimization of the active contour/snake model,” J. Math.
Imag. Vis., vol. 28, no. 2, pp. 151–167, Jun. 2007.

[15] X. Cai, R. Chan, and T. Zeng, “A two-stage image segmentation method
using a convex variant of the Mumford–Shah model and thresholding,”
SIAM J. Imag. Sci., vol. 6, no. 1, pp. 368–390, Aug. 2013.

[16] M. Pereyra, H. Batatia, and S. McLaughlin, “Exploiting informa-
tion geometry to improve the convergence properties of variational
active contours,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 4,
pp. 700–707, Aug. 2013.

[17] M. Pereyra, H. Batatia, and S. McLaughlin, “Exploiting information
geometry to improve the convergence of nonparametric active contours,”
IEEE Trans. Image Process., vol. 24, no. 3, pp. 836–845, Mar. 2015.

[18] L. Bar and G. Sapiro, “Generalized Newton-type methods for energy
formulations in image processing,” SIAM J. Imag. Sci., vol. 2, no. 2,
pp. 508–531, 2009.

[19] G. Sundaramoorthi, A. Yezzi, A. C. Mennucci, and G. Sapiro, “New
possibilities with Sobolev active contours,” Int. J. Comput. Vis., vol. 84,
no. 2, pp. 113–129, May 2009.

[20] M. Pereyra, N. Dobigeon, H. Batatia, and J.-Y. Tourneret, “Estimating
the granularity coefficient of a Potts–Markov random field within a
Markov chain Monte Carlo algorithm,” IEEE Trans. Image Process.,
vol. 22, no. 6, pp. 2385–2397, Jun. 2013.

[21] M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum
marginal likelihood estimation of the granularity coefficient of a Potts–
Markov random field within an MCMC algorithm,” in Proc. IEEE
Workshop Statist. Signal Process. (SSP), Jun. 2014, pp. 121–124.

[22] C. A. McGrory, D. M. Titterington, R. Reeves, and A. N. Pettitt,
“Variational Bayes for estimating the parameters of a hidden Potts
model,” Statist. Comput., vol. 19, no. 3, pp. 329–340, Sep. 2009.

[23] G. Celeux, F. Forbes, and N. Peyrard, “EM procedures using mean
field-like approximations for Markov model-based image segmentation,”
Pattern Recognit., vol. 36, no. 1, pp. 131–144, Jan. 2003.

[24] F. Forbes and G. Fort, “Combining Monte Carlo and mean-field-like
methods for inference in hidden Markov random fields,” IEEE Trans.
Image Process., vol. 16, no. 3, pp. 824–837, Mar. 2007.

[25] T. Broderick, B. Kulis, and M. I. Jordan, “MAD-Bayes: MAP-based
asymptotic derivations from Bayes,” J. Mach. Learn. Res., vol. 28, no. 3,
pp. 226–234, 2013.

[26] A. Roychowdhury, K. Jiang, and B. Kulis, “Small-variance asymptotics
for hidden Markov models,” in Advances in Neural Information Process-
ing Systems, vol. 26. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, Eds. Cambridge, MA, USA: MIT Press, 2013,
pp. 2103–2111.

[27] P. J. Green, “MAD-Bayes matching and alignment for labelled and
unlabelled configurations,” in Geometry Driven Statistics, I. L. Dryden
and J. T. Kent, Eds. Chichester, U.K.: Wiley, 2015, ch. 19, pp. 365–375.

[28] K. Jiang, B. Kulis, and M. I. Jordan, “Small-variance asymptotics for
exponential family Dirichlet process mixture models,” in Advances in
Neural Information Processing Systems, vol. 25, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds. Cambridge, MA, USA: MIT Press,
2012, pp. 3167–3175.

[29] F. Y. Wu, “The Potts model,” Rev. Mod. Phys., vol. 54, no. 1,
pp. 235–268, Jan. 1982.

[30] A. Chambolle, “An algorithm for total variation minimization and
applications,” J. Math. Imag. Vis., vol. 20, no. 1, pp. 89–97, 2004.

[31] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Berkeley Symp. Math. Statist. Probab.,
vol. 1. 1967, pp. 281–297.

[32] J. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Statist.
Soc. B (Methodol.), vol. 48, no. 3, pp. 259–302, 1986.

[33] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
nos. 1–4, pp. 259–268, Nov. 1992.

[34] J. P. Oliveira, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Adap-
tive total variation image deblurring: A majorization–minimization
approach,” Signal Process., vol. 89, no. 9, pp. 1683–1693, 2009.

[35] A. L. M. Levada, N. D. A. Mascarenhas, and A. Tannüs, “Pseudolike-
lihood equations for Potts MRF model parameter estimation on higher
order neighborhood systems,” IEEE Geosci. Remote Sens. Lett., vol. 5,
no. 3, pp. 522–526, Jul. 2008.

[36] J. Gimenez, A. C. Frery, and A. G. Flesia, “When data do not
bring information: A case study in Markov random fields estimation,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 1,
pp. 195–203, Jan. 2015.

[37] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–1137, Sep. 2004.

[38] S. Bagon. (Dec. 2006). MATLAB Wrapper for Graph Cut. [Online].
Available: http://www.wisdom.weizmann.ac.il/~bagon

[39] X. Cai, “Variational image segmentation model coupled with
image restoration achievements,” Pattern Recognit., vol. 48, no. 6,
pp. 2029–2042, Jun. 2015.

Marcelo Pereyra was born in Buenos Aires,
Argentina, in 1984. He studied electronic engineer-
ing and received a double M.Eng. degree from
ITBA, Argentina, and INSA Toulouse, France,
together with a M.Sc. degree from INSA Toulouse,
in June 2009. In July 2012 he obtained a Ph.D.
degree in Signal Processing from the Univer-
sity of Toulouse. From 2012 to 2016, he held
a Brunel Post-Doctoral Research Fellowship in
Statistics, a Post-Doctoral Research Fellowship
from the French Ministry of Defence, and a

Marie Curie Intra-European Fellowship for Career Development at the School
of Mathematics, University of Bristol, U.K. In 2017, he joined the School of
Mathematical and Computer Sciences, Heriot-Watt University, as an Assistant
Professor. His research interests include Bayesian statitical analysis and
computation for high-dimensional inverse problems related to mathematical
and computational imaging. He was awarded the Leopold Escande Ph.D.
Thesis Award from the University of Toulouse (2012), an INFOTEL R&D
Award from the Association of Engineers of INSA Toulouse (2009), and an
ITBA R&D Award from the Buenos Aires Institute of Technology (2007).



PEREYRA AND McLAUGHLIN: FAST UNSUPERVISED BAYESIAN IMAGE SEGMENTATION 2587

Steve McLaughlin (F’11) was born in Clydebank,
Scotland, in 1960. He received the B.Sc. degree
in electronics and electrical engineering from the
University of Glasgow in 1981, and the Ph.D. degree
from The University of Edinburgh in 1990. From
1981 to 1984, he was a Development Engineer of
Industry, where he was involved in the design and
simulation of integrated thermal imaging and fire
control systems. From 1984 to 1986, he was involved
in the design and development of high frequency
data communication systems. In 1986, he joined

the Department of Electronics and Electrical Engineering, The University

of Edinburgh, as a Research Fellow, where he studied the performance of
linear adaptive algorithms in high noise and nonstationary environments.
In 1988, he joined the Academic Staff with Edinburgh, and from 1991 to 2001
he held a Royal Society University Research Fellowship focused on nonlinear
signal processing techniques. In 2011, he joined Heriot-Watt University, as a
Professor of Signal Processing and Head of the School of Engineering and
Physical Sciences. His research interests include the fields of adaptive signal
processing and nonlinear dynamical systems theory and their applications to
biomedical, energy, and communication systems. He is a fellow of the Royal
Academy of Engineering, the Royal Society of Edinburgh, and the Institute
of Engineering and Technology. In 2002, he was awarded the Personal Chair
of Electronic Communication Systems with The University of Edinburgh.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


