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Curvature Filters Efficiently Reduce
Certain Variational Energies

Yuanhao Gong, Student Member, IEEE, and Ivo F. Sbalzarini

Abstract— In image processing, the rapid approximate solution
of variational problems involving generic data-fitting terms is
often of practical relevance, for example in real-time applica-
tions. Variational solvers based on diffusion schemes or the
Euler-Lagrange equations are too slow and restricted in the types
of data-fitting terms. Here, we present a filter-based approach
to reduce variational energies that contain generic data-fitting
terms, but are restricted to specific regularizations. Our approach
is based on reducing the regularization part of the variational
energy, while guaranteeing non-increasing total energy. This is
applicable to regularization-dominated models, where the data-
fitting energy initially increases, while the regularization energy
initially decreases. We present fast discrete filters for regular-
izers based on Gaussian curvature, mean curvature, and total
variation. These pixel-local filters can be used to rapidly reduce
the energy of the full model. We prove the convergence of the
resulting iterative scheme in a greedy sense, and we show several
experiments to demonstrate applications in image-processing
problems involving regularization-dominated variational models.

Index Terms— Approximation, filter, gaussian curvature,
half-window regression, mean curvature, regularization, total
variation, variational model.

I. INTRODUCTION

ARIATIONAL models play a central role in image

processing, as many tasks can be formulated in
this framework, from denoising [1], registration [2], and
enhancement [3], [4] to distortion removal [5], super-
resolution [4], [6], multi-spectral reconstruction [7], and seg-
mentation [8], [9]. In every variational formulation, one aims
to find a minimizing function U = arg ml}n E(U) to an energy

functional
EW) =Epy(U, 1)+ 280, (U). (D)

The total energy £ > 0 is composed of two parts: the data-
fitting energy Eo,(U, 1) > 0 measuring how well U fits
the image data / (typically a norm or divergence [9]), and the
regularization energy £¢,(U) > 0 formalizing prior knowl-
edge about U. These two contributions are weighted with the
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Fig. 1. In regularization-dominated variational models, the regularization
energy initially dominates the reduction in the total energy, while the data-
fitting energy initially increases when starting from the input image as initial
condition.

scalar regularization coefficient 4 > 0. All terms are non-
negative, as they relate to negative logarithms of probabilities
in Bayesian inference.

Finding the globally optimal solution of such a variational
problem can be challenging and is often not required in
a particular practical application. Rather, in some applica-
tions it is important to obtain approximations rapidly. Given
a variational model, the task then is to rapidly reduce
the variational energy &, without necessarily solving the
model.

Here, we present a discrete filtering approach to efficiently
compute reduced-energy images for regularization-dominated
variational models with curvature or total-variation (TV) reg-
ularization. We define regularization-dominated variational
models as those where the regularization term is the domi-
nant initial contribution to the total energy. This is the case
whenever the initial U, U, is identical to the input image, i.e.,
Up = I. Starting from the data themselves as initialization,
Eoy(Uyp = I,I) = 0 initially. The initial total energy hence
only consists of the regularizer. Reducing the regularizer, the
data-fitting term initially increases or remains constant, since
it cannot become negative. Any reduction in £ hence initially
comes from the regularizer, as illustrated in Fig. 1

This motivates the design of fast filters that minimize the
regularizer. Repeatedly iterating such filters over an image
successively reduces the regularization energy. The data-fitting
energy is evaluated in order to choose filter moves that
guarantee non-increasing total energy. Information from the
data-fitting term is hence appropriately considered. The filter
iterations are stopped as soon as the total energy does no
longer decrease. Since the filters are point-wise, and the
data-fitting energy need not be monotonic, convergence need
not be to a (local) minimum of the total energy. It is guaran-
teed, however, that the final £(U) < £(Up).
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We present such filters for Gaussian curvature (GC) [2],
[10]-[15], mean curvature (MC) [12], [16]-[19], and TV reg-
ularizers [20]. The TV regularizer formalizes the assumption
that U is a piecewise constant function over the image domain.
MC assumes U to define a minimal surface, and GC favors
piecewise developable U. These three regularizers hence con-
stitute a hierarchy of function spaces of increasing complexity.
Since the data-fitting term only needs to be evaluated, the
present filters work with generic data-fitting terms, as long as
they are computable. The filters use half-window regression
in order to preserve edges in the image and are pixel-local,
meaning they only involve nearest-neighbor pixel operations.

The conceptual idea of the present filters is to use the
pixel-local analytical solutions of the regularizer as a pro-
jection operation. Locally approximating the image by a
constant (TV), minimal (MC), or developable (GC) surface
reduces the regularization energy. All possible constant, min-
imal, or developable approximations in a local 3 x 3 pixel
neighborhood can be enumerated. We then choose the one that
leads to the smallest intensity change in the center pixel, i.e.,
the smallest increase in data-fitting energy. This is inspired
by the iterative reweighting scheme [21], but avoids the
construction of the sparse matrix required therein. Therefore,
the present local projections are fast and data-independent.

In summary, we present fast data-local discrete filters for
reducing the energy of regularization-dominated variational
models containing generic (potentially black-box) data-fitting
terms, but regularizers of the type TV, MC, or GC. We consider
the following properties of the present approach appealing in
applications that require approximate solutions:

* The filters do not need the gradient of the energy and
can therefore handle generic data-fitting terms, as long
as they can be evaluated point-wise.

* They do not assume differentiability of the signal. There-
fore, edges are preserved.

* They have linear algorithmic complexity in the number
of image pixels and only require as much memory as the
image, plus 17 numbers.

The filters are easy to implement and parallelize, and they are
parameter-free. All algorithms presented here have been imple-
mented in MATLAB (40 lines), Java, and C++ (100 lines).
The software and source code are publicly available from the
MOSAIC Group’s web site.

A. Organization of the Paper

Section II introduces the notation and basic concepts.
In Sections III to V, we derive and present the filters to
locally minimize (over the image domain) GC, MC, and TV
regularization energies. In Section III, we consider GC regu-
larizers, embodying the prior that U is piecewise developable.
In Section IV, we analogously present a filter to reduce
MC, corresponding to the prior that U is a minimal surface.
In Section V, we present the filter for TV regularization,
assuming U to be piecewise constant. In Section VI, according
to the concept illustrated in Fig. 1, these three filters are then
used as basic operators to reduce the total energy £(U) of
variational models. We show that the resulting algorithms can
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handle generic data-fitting terms, as illustrated in cases that
cannot be handled by traditional solvers.

II. MATHEMATICAL FRAMEWORK

Let X = (x,y) € Q denote the spatial coordinate and Q
the 2D image domain. Let 7(i, j) : Zg‘ X Zg‘ — [0, 1] be the
given discrete digital image with integer pixel indices i and j
and continuous intensity I € [0, 1]. Let U(¥) € [0, 1] denote
the current reconstruction, i.e., the image obtained by reducing
the total energy in Eq. 1 starting from Uy = 1.

We interpret U and [ as geometric surfaces over Q, i.e.,
¥ (¥) = (X, U(X)). From this, curvature can be computed by
taking partial derivatives. For GC we have:

UsxUyy — U)%y )
(1+Uz+UH*’ @
where subscripts denote partial derivatives. Recall that the
total GC (i.e., the integral of K) of any surface is related
to the surface’s topology through the Gauss-Bonnet theorem.
Since total GC is therefore a topological invariant, one can
only minimize total absolute GC [10]-[14].

The total absolute GC regularizer is

eiw) = [ wmldi = [KO)IeE O

where x1 and x, are the two principal curvatures of Y.
Analogously, the regularization energy for MC is:

Sql‘){C(U)z/Q df:/Q|H(U)|d£, 4)

with the MC H computed from U as [22]:
(1 + UDUrx — 22U UyUyy + (1 + UH Uy,
200+ U2+ U2 '

K(U(X) =

K1+ K2

H(U) = (5)

The MC is hence related to the Laplace operator V2 as:
UsUyy 4 2UxUyUsy + UlUpx
201+ U2 4+ U232 ’
(6)
which relates MC regularization to gradient-adaptive diffusion

along intensity edges in the image.
Finally, the regularization energy for TV is classical:

Ep, (U) = VU, )

VU
204Uz +UH2

HU)=

where || - ||, is any L” norm and V is the gradient operator.

For these regularizers (i.e., GC, MC, and TV) all minimizers
S; (¥),i =1,..., Ny inalocal 3x3 pixel neighborhood around
pixel X can be enumerated, as shown below. From this finite
set, we choose the element that leads to the smallest change
in the intensity of pixel x:

S (X) = argmin |S; (¥) — U )| 8
Si(X)

and update U(¥) = S,,(¥). When used together with a data-
fitting term, an additional condition is added (Eq. 16) in
order to ensure non-increasing total energy. This is detailed in
Section VI. In the sections until then, we describe the filters
by considering the regularizer alone, without data-fitting term.
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III. GAUSSIAN CURVATURE FILTER

We first derive the most general filter, the one for reduc-
ing GC. Surfaces with zero GC can be isometrically mapped
onto a plane without distortion, which is why they are called
developable. Minimizing GC is hence equivalent to making
the image “as developable as possible”. The fact that GC is
intrinsic and related to developability renders it a desirable
regularizer, as has, e.g., been noted in image registration [2].

Despite its desirability, using GC as a regularizer has been
hampered by two issues: First, the algorithms available for
minimizing GC converge slowly, since they are based on
diffusion flows. Second, GC needs to be explicitly computed
in every iteration of the algorithm, which is only possible if
the image is at least twice differentiable (Eq. 2).

The present GC filter relaxes these two limitations. The
filter converges orders of magnitude faster than previous
methods and reduces GC without explicitly computing it.
This relaxes the differentiability assumption about the image.
We provide proofs of the filter’s correctness and conver-
gence and demonstrate its performance in image processing.
We first prove a theorem that guarantees that our filter reduces
total absolute GC. Then, we show a domain-decomposition
technique that removes dependencies between neighboring
pixels. This increases computational efficiency of the filter.
Finally, we prove convergence of the total absolute GC to a
local minimum over filter iterations.

A. Theoretical Foundation

Any developable surface S can be locally approximated by
its tangent plane 7S. Then, the following holds:
Theorem 1:

Vi eS,Ve>0, g e S
s.t. 0 <|X¥—Xxg| <eand X € TS(Fp). (9)

Proof: Letx = F(u,v) € S, where (u, v) is the parametric
coordinate. Since S is developable, 7(u, v) can be represented
as 7 (u,v) = ra(u) +o7g(u) [23], where 74 (u) is the directrix
and 7g(u) is a unit vector. Let Xxo = 79 = 7(u,v9) € S,
where vy = v + € and € # 0. The tangent plane at Xy can be
represented with two scalars a1 and ax:

TS (%) = 7o + ay d_r + azﬂ
du ﬁdv

S - dr -
=r+e€rg+ay— +axrp
du

- dr -
=r+oa1— + (a2 +)rp.

10
i (10)
Therefore, X is on the plane that contains Xo and is spanned
by the vectors g—; and 7. Hence, ¥ € TS(Xp). ]

In differential geometry, GC of a 2D surface is defined
as k1x2, where x o are the principal curvatures. Equation 9
requires that one principal curvature of any developable sur-
face must be zero. Therefore, minimizing one of the principal
curvatures is equivalent to minimizing GC. This is why our
GC filter does not need to explicitly compute GC. Thanks to

Y

k1ky = 0 <= min{|x1], [x2[} = 0,
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Fig. 2. Illustration of the minimum vertex coloring domain decomposi-
tion. The pixels are decomposed into four neighborhood-disjoint sets: black
circles B¢, black triangles By, white circles W, and white triangles Wr.

we instead minimize the principal curvature of smaller
absolute value, in order to apply the least change to the image.

B. Algorithm

We design the filter algorithm with computational efficiency
and data locality in mind, as described below.

1) Domain Decomposition: Locally minimizing the smaller
absolute principal curvature is hampered by dependencies
between neighboring pixels [21]. We propose here a domain-
decomposition algorithm to circumvent these dependencies.

We use a checkerboard decomposition of the discrete pixel
domain into two disjoint subsets: the “white” points W and the
“black” points B. We further split each of these two subsets
into triangles and circles, leading to: white triangles Wr,
white circles W¢, black triangles Br, and black circles Bc.
This decomposition guarantees that neighboring pixels in a
4-connected neighborhood are in different subsets (i.e., is a
minimum vertex coloring of the pixel-neighborhood graph),
as illustrated in Fig. 2.

This decomposition has several benefits: First, it removes
dependencies between neighboring pixels. For example, all
pixels in B¢ can be updated simultaneously. Second, thanks
to this independence, the update can use neighbors that
have already been updated. This guarantees convergence (see
Sec. III-C). Third, in a 3 x 3 local window, all tangent planes
TS can be enumerated. Therefore, proximal projection can
be used to make the surface U(X) more developable, which
implies locally reducing GC.

According to Eq. 9, we need to project U () to U(¥) such
that U (¥) is on the closest tangent plane of any neighboring
pixel. First, we show how to represent a tangent plane 7 S.
Then, we show how to do the projection.

2) Discrete Representation of a Tangent Plane: There are
several ways of representing the tangent planes 7S through
neighboring pixels, e.g., as triangles or rectangles. We use
triangles because of their easy projection. This is illustrated in
Fig. 3a. The tangent plane 7 S(A) at the blue triangle cylinder
is drawn in green. Projecting U () (the red ball) onto the green
tangent plane is the same as projecting it onto the edge of the
green triangle that passes over it. Computing the distance d;
to this edge is hence sufficient (Fig. 3b).

3) Enumeration of all Projections: In order to find the
tangent plane that has the smallest |d;|, we enumerate all
possible tangent triangles in a 3 x 3 pixel neighborhood N (X)
around X that do not include X as a vertex (Fig. 4). There are
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Fig. 3. (a) A tangent plane 7S (the green triangle) at the blue triangle pixel.
Cylinder heights represent pixel intensities. (b) Illustration of the projection
distance d; of U(x) (the red ball) onto the edge of the green triangle from
(a) passing over it.

A A A A .
Ay, .. TS(A)

¥} o o <:>

A A A A A A

(@) TS(W) (upper) (b) TS(B) (upper-right) () TS(a)

Fig. 4. The twelve possible tangent planes in a 3 x 3 neighborhood:
(a) example 7S for X € W; (b) example 7S for X € B; (c) the four 7S
through mixed-color neighbors.
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(a) di,2 for TS(W) (b) ds,4 for TS(B) (c) ds...3 for TS(A)

Fig. 5. The eight d; to the tangent triangles passing over X: (a) two to
the common edges from the four 7S(W); (b) two to the common edges
from the four 7S (B); (c) four to the tangent planes through mixed neighbors
(no shared edges).

12 such triangles: four through each of the four white neigh-
bors W (one of the four possibilities is shown in Fig. 4a), four
through the four black neighbors B (one possibility is shown
in Fig. 4b), and four through mixed black/white neighbors (all
shown in Fig. 4c¢).

Since some of the 12 tangent triangles share common edges
over X, and projecting onto these edges is sufficient, there
are only 8 different d;: two to the common edges from W
(Fig. 5a), two to the common edges from B (Fig. 5b), and four
to the tangent planes through the mixed neighbors (Fig. 5c).

4) Minimal Projection Operator: After computing all
{d;i, i = 1,...,8}, we use the smallest absolute distance as
the minimum projection of the current intensity U (X) to the
target intensity U (X), guaranteeing that U (X) is on a tangent
plane through a neighboring pixel. More specifically, we find
d,, such that |d,,| = min{|d;|, i = 1,...,8}. Then, we let
U(%) = U(X)+dyu. We denote the resulting pixel-local update
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Algorithm 1 Minimal Projection Operator P,
Input: U(i, )
ldy = (U@ —1,5)+U(i+1,5))/2=U(i,j)
2dy=(U(i,j — 1)+ U(,5+1))/2=U(, j)
3:dg=U@Gi—-1,j—1)+U@G+1,j+1))/2-U(i,5)
4 dy=U(—-1,+1)+U(+1,7—-1))/2-U(i,5)
5: d5_U(i_1?.j)+U(Zv.7_1) (l_l .7_1) U(Zvj)
6: dg=U(i—1,5)+U(i,j+1)-U@GE—1,7+1)=U(4,7)
7.dr=U(,j—1)+U@Gi+1,5) -U@GE+1,7—1)=U(4,4)
8: dg=U(i,j+1)+U@GE+1,7)-U(i+1, j+1) Ui, 7)

9: find dp, such that |d,| = min{|d;[,i =1,...,8}
Output: U(i,j) = U(i, ) + dm

Algorithm 2 Gaussian Curvature Filter G,
Input: U(i, )

1: VZ € Be, 'Pg( (f))

2 VZ € Br, Py(U(Z))

3: V¥ € We, Py(U(X))

4 VT € W, Py(U(Z))
Output: U(i, )

by Pg. This compact operator is summarized in Algorithm 1.

The set {d;,i = 1,...,8} is a complete description of
the local discrete geometry at X. For any given U (X) and its
{di,i = 1,...,8}, UW(X)) can be obtained by solving a
linear system of equations. Geometrically, d; is the directional
curvature in the corresponding direction. This follows from
the Euler theorem, d; ~ K cos?0; + Ky sin? 6;, where K1, K)
are the principle curvatures and 6; is the angle to the principle
plane. Therefore, if the angular sampling is dense enough in
[—z, 7], we have |d,,| ~ min{|x;|} when kix; > 0. Even
though we only have eight angles in the local window, we
can still use d,,, as a discrete approximation of the minimal
absolute principle curvature on the pixel grid. Updating U with
d,;, hence reduces min{|x1]|, |k2|}, as desired [22].

5) Gauss Curvature Filter: We iterate P, over all pixels in
each of By, B¢, Wr, and Wc. Since the pixels within each
set are independent, the iteration order does not matter and the
projections can be applied in parallel. This yields our Gaussian
curvature filter G, as summarized in Algorithm 2.

C. Convergence

We prove convergence of G. to a local minimum of the
total absolute GC. For this, we first show that P, reduces the
absolute local GC |K(U)|. Then, we show that iterating this
reduces the total absolute GC energy of Eq. 3.

1) Convergence of P,: |K(P,(U(X)))| < |K(U(X))|, Vx
Proof: we only prove this theorem for X € By. Similar proofs
also hold for B¢, W¢, and Wr.

VX1,X2 € Br and x| # x2, P,(U(X1))) is independent
of Pg(U(x2))). Therefore, we only need to consider one
projection Pg(U(X1))). VX1 € Br, if |dn(X1)] = 0, then
Py (U(X1))) = U(X1). Therefore, £(P,(U)) = E(U). Other-
wise, X1 € Br, s.t. [dy(X1)] # 0. P,(U(X1))) is on a tangent
plane 7S through one of its neighbors while U(xX]) is not
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(a) original image I with enlarged details

(b) diffusion (dt=0.01, iter=2000) (c) GLO filtered

Fig. 6. Tllustration on different developable surfaces. The diffusion process
to reduce GC with interpolation correction [10] leads to artifacts, whereas the
GC filter exactly preserves developable surfaces.

on any tangent plane. According to Eq. 9: |K (P, (U (x1)))| <
|K (U 1) u

2) Convergence of G.: Based on the convergence of Pg,
we have ESIC(P,(U)) < Sg’lc(U) (cf. Eq. 3). Let G denote
n iterations of G.. For all ny,n, € Z*, n, > nj, we have:
6, (G2 (U) = EGLG (V) = EGF(U).

In words, the total absolute GC energy SSIC(QS(U)) is
monotone with respect to n. At the same time, it has the obvi-
ous lower bound SSIC(U) > 0. According to the Monotone
Bounded Theorem, we thus have: G, converges to a (local)
minimum of Eglc over the domain Q.

D. Properties of the Filter

The most important property of the present GC filter is
that it preserves developable surfaces: If K(U) = 0, then
G:.(U) = U. This means that the filter leaves all parts of
the image unchanged that correspond to a developable surface
in intensity space. An example is shown in Fig. 6, compared
with a diffusion approach to reducing GC (without data-fitting
term). Run until convergence, diffusion generates artifacts at
the edges, even when using interpolation correction [10]. The
GC filter exactly preserves the developable surfaces.

The present GC filter is parameter-free. This is a key differ-
ence to other edge-preserving filters, which require parameters
to be tuned by the user, such as in the Bilateral Filter (BF) [24],
Guided Filter (GF) [25], CLMF [26], and RTV [27].

The runtime complexity of G, is in O(N), where N is the
total number of pixels. The pre-factor is 25, i.e., 25 operations
are required per pixel. This is less than the pre-factor in
diffusion methods, which typically is 176 [10].

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 4, APRIL 2017
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Fig. 7. GC filter on the Lena image, compared with the original image and
the result from GC-reducing diffusion with correction [10]. The diffusion was
run until convergence, such that further iterations do not change the result.

5&;’?(9}? (I)) vs. n for is shown in (d). (e) Histogram of G in log scale before

and after G10 filtering.

E. Experiments

We exemplify the use of the GC filter in image smoothing
and denoising. In all denoising examples, we report the peak
signal-to-noise ratio (PSNR) as a distribution-independent
measure of noise level. In the image-smoothing examples, no
noise is added.

1) Hlustration: For any image, the GC filter reduces the
total absolute GC, as shown in Fig. 7. Since GC alone tunes
smoothing based on image contents, one of the simplest
applications for a GC filter is image denoising, which we use
here as an illustrative example (Fig. 8) for different types of
noise. Ten iterations of the GC filter are enough in practice.
The evolution of the regularizer energy Eglc for the noisy Lena
image is shown in Fig. 8(e) next to the curvature histograms
before and after QCIO filtering. The corresponding PSNR are
given in Table I as compared with the diffusion-solver result.
There is no data-fitting term considered here, as we simply
iterate the filter in order to reduce the GC regularizer.

Since the GC filter preserves developable surfaces, it is
sufficient to almost perfectly denoise images that only contain
developable surfaces. No data-fitting term is needed in this
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Fig. 8. Ten iterations of G. for different noise types. (a) Gaussian
noise, PSNR=21.6. (b) QCIO filtered, PSNR=29.1. (c) Salt+Pepper noise,
PSNR=12.3. (d) G/ filtered, PSNR=31.7. (¢) £GC evolution of (c)/(d).
(f) Curvature histograms of (c)/(d).

TABLE I

PSNR OF THE NOISY AND FILTERED Lena IMAGES, COMPARING
THE PRESENT GC FILTER WITH A TRADITIONAL DIFFUSION
SCHEME [10] RUN TO STEADY STATE

noise type Gaussian  Salt+Pepper

noisy image 21.6 12.3
diffusion 28.2 29.8
after G0 29.2 31.7

case. This is illustrated in Fig. 9 and compared with the
results from a split-Bregman iteration solver [28] for the
L2-TV-L1 model including an L? data-fitting term. Due to its
piecewise constant assumption, the TV regularizer generates
staircase artifacts when the regularization coefficient 4 in the
L2-TV-L1 model is large. Reducing the regularization coeffi-
cient, however, makes the denoising fail. The GC filter pre-
serves the developable surfaces and removes noise efficiently
without requiring a regularization parameter to be tuned.

Table II compares the runtimes of the GC filter with those
of a split-Bregman solver [28] for the L2-TV-L1 model, a
diffusion model [10], and iteratively reweighted GC [21]. The
present filter is two to three orders of magnitude faster than
the fastest solver.

2) Benchmark on a Standard Dataset: We compare the
GC filter with the diffusion scheme from [10] on the
500-image Berkeley Segmentation Dataset and Benchmark
(BSDS500) [29]. We define the metric T = E5C(0)/E§C(I).
where U and I are the final and original images, respectively.
Lower T is better. For the GC filter, we always perform
10 iterations. For the diffusion, we use dr = % and suc-
cessively increase the iteration number from 300 to 1200 in
order to check for convergence. The cumulative distributions
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TABLE II

RUNTIMES IN SECONDS ON A MacBOOK PRO (2 GHZ INTEL CORE 17)
FOR DIFFERENT IMAGE SIZES. ALL METHODS ARE IMPLEMENTED
IN C++ WITH OpenCV. WE USE THE SPLIT-BREGMAN SOLVER
FROM [28] WITH MAX ITERATION=80,¢ = 1. FOR THE
DIFFUSION SCHEME, WE USE THE SOLVER FROM [10]

WITH ITERATION=2000, dt = 0.01

Image Method 64 x 64 128 x 128 256 X 256
28] 2.187 2.354 6.041
Lena [10] 0.073 0.301 1.438
[21] 0.025 0.131 0.596
glo 0.000138 0.00055 0.0022
Camern- [28] 0.941 2.892 5.983
[10] 0.078 0.316 1.465
man [21] 0.025 0.131 0.596
Glo 0.000138 0.00055 0.0022

of T are shown in Fig. 10, where color indicates the iteration
numbers of the diffusion scheme, and the red line is for the
GC filter. The average runtimes per image for the GC filter
with 10 iterations and the diffusion scheme with 600 iterations
are 0.005 and 1.17 seconds, respectively. This shows that the
GC filter is on average two orders of magnitude faster in
reaching similar energy levels.

IV. MEAN CURVATURE FILTER

The concept of the GC filter can also be extended to mean
curvature (MC). MC regularizers are increasingly popular, as
they amount to data-adaptive diffusion with low smoothing in
areas of high intensity gradients, and vice versa [30]-[33]. The
MC regularization term has also recently been proven to be
convex [34].

Typically, MC models have the form

EU) = ||U<£>—I(£)||*+1/Q|H<£)|q aF o (12)

where || - ||+ is a proper norm, 4 is a regularization coefficient,
H is the mean curvature, and g > 0 is a positive real number.
We use g = 1 here. This model can be solved by gradient
decent, augmented Lagrangian methods [30], [31], or fixed
point methods [32]. These solvers require differentiability of
the norm || - ||, and explicit computation of H. Recent methods
relax the norm issue by introducing an auxiliary variable.

We avoid both of the above issues by exploiting the equiv-
alence between piecewise linearity of U and minimal MC,
which directly follows from Bernstein’s Theorm:

Theorem 2: Given an image surface ¥ (X) = (¥, U(X)) €
R" where n < 8, if ¥ is a minimal surface, then U(X) is a
linear function. This statement becomes false when n > 8.

We hence minimize MC without explicitly computing it
by making U(X) “as piecewise linear as possible”. We use
the local directional curvatures {d;} to construct such a filter,
leading to the approximation [22, eq. (6.12)]:

1 5 1

L8 516 16 516
H~ — di = - -1 — * U, 13
821: ! 16 16 (13)

= 1 5 1

16 16 16
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(c) (@

Fig. 9. Comparison of TV regularization and G, for the denoising of developable surfaces. (a) Noisy developable surface image (Gaussian noise, PSNR=13.3).
(b) Result from split-Bregman iteration [28] using the L2-TV-L1 model with 1=50, €=0.01 (PSNR=21.6); (c) L2-TV-L1 with 1=200, €=0.01 (PSNR=23.9).
(d) Result after 10 iterations of the G, filter without data-fitting term (PSNR=35.6). In L2-TV-L1, the small /1 does not remove the noise completely, while
the large A generates staircase artifacts. The G, filter removes the noise efficiently without generating artifacts and has no parameter to be tuned.
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T

Fig. 10. Cumulative distributions of 7" over the 500 images of the BSDS500
benchmark for the present GC filter and the diffusion scheme from [10].
Colored curves are for different iteration numbers of the diffusion scheme.
The red line is for the present GC filter. Lower T is better.

where * denotes convolution. This follows from the Euler
theorem (relation between directional curvature and MC)
applied over the 8 directions of the d; [22] and avoids
explicit computation of the derivatives in Eq. 5.! When applied
symmetrically using half-window regression in order to pre-
serve edeges (cf. Eq. 6), it leads to the projection distances d;
given in Algorithm 3, which are different from the directional
curvatures d;. The MC filter M, is in Algorithm 4. The
convergence proof for M, is analogous to that of G, and is
omitted here.

A. Experiments

State-of-the-art methods to minimize an MC regularizer
require tens of seconds for images of size 256 x 256 [31], [32].
Our MC filter can perform six iterations on an image of
size 400 x 400 in six milliseconds, which is four orders of
magnitude faster. This difference is even larger on bigger
images, because of the linear algorithmic complexity of M..
Six iterations are enough on our test images to pass the kink
in the L-shaped energy evolution curve.

An example of applying increasing iterations of the MC
filter is shown in Fig. 11. The energy evolutions for two

"When evaluating the MC energy (Eq. 4) in our benchmarks, however, we
still use the computation according to Eq. 5.

Algorithm 3 Projection Operator P,

Input U(i, j)

Ldi = HUGE=1,7)+UGE+1,5) + 5U(5+1) — (UG- 1,5+
1A)+Url+1j+1)) U(3,j) )

2dy=2(UGE—1,)+U(i+1,§)+ 23U, j—1)— §(UGE—1,5—
1)+U7,+1]—1)) U(3,5)

3: dgzli( (b j—1)+ UG +1)+3UG—1,5)— §(UGE—1,5—
D+ U —1J+1)) U(i,5)

4 dy={g(U(,5 - 1)+ U5+ 1)+ UG+ 1,5) — (U +1,5 -

)4+U@E+1,5+1)-U@,5)
5: find dy, such that |d,,,| = min{|d;|,i=1,---,4}
Output: Ui, j) = U(i, j) + dm

Algorithm 4 Mean Curvature Filter M,
Input: U(i, )
1: VZ € Bg, P,,L(U(x
2: V¥ € By, P, (U(f))
3: V¥ € Wc, P (
4: Y2 € Wy, P, (
Output: U(i, )

tested images, Lena and Barbara, are shown in Fig. 12.
We further test this filter on the complete BSDS500 dataset.
The distribution of energy ratios between filtered and original
images is shown in Fig. 13a. The runtime distribution on the
complete BSDS500 dataset is shown in Fig. 13b.

V. TOTAL VARIATION FILTER

We extend our filter concept to also construct a filter to
rapidly minimize TV regularizers of the form:
Ep, (U) = VU@l - (14)

The TV filter 7V is summarized in Algorithms 5 and 6.
In the local projection operator Pry we directly exploit the

piecewise constant assumption. Again, the projection dis-
tances d; are different from the directional curvatures d;.
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(d) (e

Fig. 11. Tllustration of M, on the Lena image for different iteration numbers.
(a) original image regions and Mg-ﬁltered regions. (b) M% (c) Mg
(d) MO, (&) M2O,

4
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\

Energy
~

—
7

-

0.5 T T T m == — = — == =
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Fig. 12. gdl\)/I]C evolution for the images Lena and Barbara.

A. Experiments

We again illustrate the filter on the Lena image. The result is
shown in Fig. 14 and its energy evolution in Fig. 15. Because
the filter is based on local operations in small windows,
its spatial propagation requires large numbers of iterations,
as shown in Fig. 14. This is in contrast to global solvers,
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Fig. 13.  Energy ratio statistics for Mg on BSDS500. The result shows
that ./\/lg can reduce the mean curvature energy Eglc by about 70% in six
milliseconds. The filter is implemented in C++ using OpenCV and run on a
2GHz Intel Core i7. (a) Distribution of energy ratios. (b) Runtime histogram.

Algorithm 5 Projection Operator Pry

Input: U(, j)

di = (Ui—1j-1 + Ui—j + Uij1r + Uigrj-1+
Uit1,j)/5 = Ui,

2dy = (Ui-1; + Ui-1,j+1
Uiy1,j+1)/5 = Ui

3d3 = (Ui-1,j-1 + Ui-1j + Ui-1j+1 + Uij-1+
Ui j+1)/5 = Ui

4dy = Uigr,j-1 + Uiprj + Uit + Uij-i+
Uij+1)/5 = Ui

ssds = (Ui-1,j-1 + Ui-1,j + Uic1j1 + Uij-1 +
Uiy1,j-1)/5 = Ui

6:de = (Ui-1,j-1
Ui1,j+1)/5 = Ui

7:d; = (Uig1,j-1 + Uisrj + Uisrj+1 + Uicrj—1 +
Ui j-1)/5—=Ui;

8:dg = (Uiyr,j—1 + Uit1,j + Uitr,jr1 + Uimijsr +
Uij+1)/5— U X

9: find dy,, such that |d,,| = min{|d;|,i =1, -, 8}

Output: U(i, j) = U, j) + dn

+ Uijr1 + Ui+

+ Ui-1,j + Uimij+1 + Uij41 +

Algorithm 6 Total Variation Filter 7V
Input: U(i, )
1: VZ € Bg, 'PTv(U(_'))
2: V¥ € B, PTv(U( )
3: V¥ € W, PTv(U(_'))
4 ¥Z € Wy, Pryv(U(Z)
Output: U(i, )

like split-Bregman, which yield the approximation in few
iterations.

VI. APPLICATION TO VARIATIONAL MODELS WITH
GENERIC DATA-FITTING TERMS

We show how the filters for the three regularization terms
(GC, MC, TV) can be used to reduce the total energy
of regularization-dominated variational models with generic
data-fitting terms and spatially adaptive regularization func-
tion A(X). We hence consider models

5(U)=/cp0(U, 1) d)?—i—//l()?)d)l(U) dX = Epgto,,  (15)
Q Q
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Fig. 14. TV filter on the Lena image for different iterations. (a) 710 filter
on the Lena image. (b) TV, (¢) TV100, (d) 71000 () 714000,
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Fig. 15. 5})\17 evolution for the 7V filter on the Lena image.

where @; is either one of |H|, |K|, or o, = [[VU]p.
This generic variational model covers many models that use
geometric regularization.

Typically, solvers for such models exploit knowledge about
the form of ®(. Based on our three filters, however, we can
construct a local approximation to such models only requiring
that ®( can be evaluated (i.e., ®¢ is a black box). Therefore,
®( can be arbitrarily complex and need not even have an
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Algorithm 7 Spatially Adaptive Variational Filter
Input: U(i,j), P = Py, Pm, or Prv
I: VZ € Be, U(Z) = P(U(&))

2 IEA@)( 21 (U(F) -1 (U())) < Do(U(@))~Ro(U(%))
3: U(f) = U(J_f)

4 VZ € By, U(&) = P(U(&)) )

5. (@)@ (U(2) - 21 (U(F))) < Bo(U(F)~o(U(2))
6 U(z) = U(7)

7. Vi € We, U(F) = P(U(7)) K

8 IfA(Z)(D1(U(T)) =21 (U(7))) < Po(U()) =Po(U(T))
9 U(#) = U(7)

10: VT € Wr, U(Z) = P(U(Z)) )

1 IEAE)(@1 (U (@)~ 21 (U(@))) < 2o(U(F))~20(U())

)
12: U@ =U(X)
Output: U(i,j

analytical form. This is impossible for solvers such as gra-
dient decent, split-Bregman [28], [35], [36], Multi-Grid [37],
and Primal/Dual methods [38]. Moreover, the regularization
function A(X) can also be arbitrarily complex.

Iterating the corresponding filter V (any of G., M., TV,
depending on ®1) over the image, £p, reduces as shown in
previous sections, while £g, increases when starting from /
as the initial condition. The following additional condition
ensures non-increasing total energy £ and accounts for infor-
mation from the data-fitting term:

LE) (@1 (U (X)) — ®1(UF))) < Do(U (X)) — @o(U (X)) V¥
— EV()) < EU), (16)

where U = P(U ) and P is the projection operator for G., M.,
or 7V, respectively. @ is evaluated using finite-difference
approximations to the differential operators given in Section II.
Since the above condition is evaluated point-wise at each
pixel, it is sufficient to imply that ¢, reduces more than
Eo, increases. However, the condition is not necessary, and
potentially better moves could be obtained by other methods.
We accept the projection at X if the condition is locally
satisfied, and reject otherwise. This guarantees convergence
of the total energy, albeit not necessarily to a mininum. It also
allows us to choose different A(X) for different X, which is why
we call this filter “Spatially Adaptive Variational Filter” ).
The complete algorithm is summarized in Algorithm 7. The
iteration loop stops if the above condition is false for all X.

A. V on an Adaptive Data-Fitting Energy

We show the application of the filter to a variational model
with a data-fitting energy that cannot be handled by previous
solvers: a data-adaptive norm. While Bregman divergences
in @g can be handled by split-Bregman iterations [9], data-
adaptive norms have never been considered in global solvers.
However, our filter can still provide approximate solutions.

Specifically, we consider the model:

€(U)=/ U — 11>7VUaR + 2|vU I (17)
Q
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Fig. 16.  The filter V on a variational model with content-adaptive noise
model (Eq. 17 with 4 = 1). (a) Energy evolution for filter V. (b) V20_filtered
Lena image.

with A = 1. Since U € [0, 1], and we measure distances
in units of pixels, the adaptive power 2 — |[VU| in the data-
fitting term automatically balances between 0 and 2, depending
on |[VU (¥)|. This uses a sparse (hyper-Laplacian) noise model
at corners, a Laplacian noise model at edges, and a Gaussian
noise model in flat image regions.

Solving this model is difficult, because neither its Euler-
Lagrange equation nor the gradient of the total energy can be
easily obtained. Our filter V, however, can straightforwardly
be used to approximate this model without the need for an
analytical form. The result is shown in Fig. 16.

B. V on the L2-TV-L1 Model

In order to show the influence of the data-fitting term, we
test V on the standard L2-TV-L1 model for which the split-
Bregman iteration method [28] is particularly popular.

The L2-TV-L1 model is defined as:

EWU) =IlU— 13+ VU1 . (18)

We set 1 = 1 for our tests. For the split-Bregman method, we
set the stopping tolerance € = 0.001. The energy evolution
for both solvers is shown in Fig. 17. Both methods achieve
similar results, but the running times for split-Bregman and
our filter are 0.24 seconds and 0.14 seconds, respectively (both
implemented in C++ and run on a 2GHz Intel i7 core). The
approximate solution our filter finds in this case is comparable
(in energy) to the optimal solution found by split-Bregman.

C. V on the L2-TV-L2 Model

We further illustrate the filter )V on the standard
Rudin-Osher-Fatemi (ROF) model [20] and compare it with
a Primal/Dual method [38].

The ROF model is defined as:

EWU) =lU =13+ VU2 (19)

The result for 4 = 0.2 is shown in Fig. 18. The filter reduces
the total energy efficiently over the first few iterations, but then
plateaus. The global Primal/Dual method converges slower,
due to the global information exchange, but reaches a lower
energy. Since this model is convex, V converges to a point
that is not a minimum of &, but still has lower total energy
than the initial condition.
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Fig. 17. Energy evolution for the filter V and final converged energy of the
split-Bregman solver (horizontal black bar). The split-Bregman method [28]
needs 18 iterations to converge to the energy indicated, while V needs
20 iterations.
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Fig. 18.  The filter V on the ROF model with A = 0.2, compared with
a global Primal/Dual solver [38]. (a) Result of 130, (b) Primal/Dual result.
(c) Energy profiles for both.
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Fig. 19. The filter V on the L1-TV-L2 model with 1 = 2, compared with
a global Primal/Dual solver [38]. (a) Result of \%ZE (b) Primal/Dual result.
(c) Energy profiles for both.

D. YV on the L1I-TV-L2 Model
We also compare our filter with a Primal/Dual method [38]

on the standard L1-TV-L2 model, defined as:

EWU)=IU—=Illi +AIVU]l2. (20)

The result for A = 2 is shown in Fig. 19. Again, the
filter converges faster, but plateaus at a sub-optimal solution,
whereas the Primal/Dual method reaches a lower energy level.

E. YV on an MC-Regularized Model

Beyond TV-regularized models, the filter V' can also han-
dle GC and MC regularization. We illustrate this using the
MC-regularized model:

S(U)z/ |U—I|‘1d?c+/1/ [HU)|d¥ Q1)
Q Q
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Fig. 20.  The filter V for MC-regularized models with different data-
fitting terms, and the corresponding evolution of the total energy £ below.
(@) L1-MC, 2 = 2. (b) L>-MC, 4 = 0.2. (¢) L'>-MC, % = 0.5. (d) Energy
profile of (a). (e) Energy profile of (b). (f) Energy profile of (c).
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Fig. 21. Comparison of the filter V with a Multi-Grid solver [37] for the
L2-MC model. We set Z = 1 for both methods. From left to right, the running
times for the Multi-Grid solver are 173, 193, and 217 seconds, respectively.
The running times for our solver are 3.4, 4.1, and 5.5 seconds, respectively.
Our filters were implemented in MATLAB, the Multi-Grid solver was obtained
as binary MATLAB p-code. (a) Results from V' on L2-MC. (b) Results from
the Multi-Grid solver [37] with y = 100, f =1, € = 1074, (c) The total
energy profiles of the above. We only show the final energy for the Multi-Grid
solver, because the code does not output intermediate results.

forg =1, g =2, and ¢ = 1.5. The filter V can handle this
model for any g. For ¢ = 1, we set 2 = 2, and the result is
shown in Fig. 20(a/d). For ¢ = 2, we set 4 = 0.2, in order to
make the two models comparable, and the result is shown in
Fig. 20(b/e). For g = 1.5, the model becomes comparable for
A = 0.5, and the result is shown in Fig. 20(c/f).
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For the L2-MC model (i.e., ¢ = 2), we compare our filter
with a fast Multi-Grid solver [37]. This is the only value of ¢
for which the Multi-Grid solver can handle the model. The
comparison is shown in Fig. 21. The Multi-Grid solver reaches
a lower final energy, but requires 40 to 50-fold more time to
converge. The filter V also preserves edges better.

VII. SUMMARY

We have presented a discrete filter-based approach to rapidly
reduce the energy of regularization-dominated variational
models with generic data-fitting terms. The approach is based
on reducing the regularizer while ensuring non-increasing total
energy. Convergence is guaranteed, but not necessarily to a
minimum of the total energy. This is because the condition
in Eq. 16 is sufficient, but not necessary, and also because
no assumption is made about the monotonicity of the data-
fitting term. When the filters are iterated over an image without
considering Eq. 16, they converge to a (local) minimum of the
regularization energy £p, over the image domain Q. When
coupled with a data-fitting term, it is guaranteed that the final
total energy is not higher than the initial one.

We have provided efficient energy-reduction filters for
Gaussian curvature (GC), mean curvature (MC), and total
variation (TV) energies. In all three cases, all exact minimizers
in a 3 x 3 pixel neighborhood can be enumerated and selected
based on evaluating the data-fitting energy. The filters run
two to four order of magnitude faster than state-of-the-art
global solvers. They have linear computational complexity in
both runtime and memory. Our C++ implementation runs
at 30 mega-pixel per second for GC-regularized denoising
on a 2GHz Intel Core i7, using only 17 memory words
in addition to the image data. This allows handling images
of large size, in particular when only loading a part of the
image into memory, as in tile-based image processing [39].
Using graphics processing units (GPU), this can be further
accelerated due to the streaming nature of the filters. The filters
can also be parallelized on multi- and many-core hardware if
additional performance is required.

We provided the mathematical background for these filters
and analyzed them theoretically and experimentally. Then, we
showed how these filters can be used to rapidly reduce the
total energy in regularization-dominated variational models
with regularizers of these types, but generic data-fitting terms.
Comparisons with split-Bregman, Primal/Dual, and Multi-Grid
solvers have confirmed that the resulting approximations are
sub-optimal, but computationally efficient. In particular, the
present filters yield rapid initial energy reduction, but then get
stuck or are slow in moving towards the (global) minimum.

We have proven convergence of the proposed filters in the
regularizer, but did not discuss their convergence rate. Since
the filters are pixel-local, it is difficult to estimate the global
convergence rate. Numerically, we find a convergence rate
of 1.4 (1.37...1.43) across all BSDS500 images.

When rapid energy reduction is of interest, the present
filters relax two limitations of diffusion and gradient-descent
schemes: numerical stability and solution smoothness. In diffu-
sion schemes, the pseudo-time step size has to fulfill the CFL
(Courant-Friedrichs-Lewy) stability condition. The method is
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unstable for large steps and does not advance for small time
steps. While implicit solvers relax the CFL condition, they
suffer from high condition numbers. Moreover, even the most
efficient diffusion solvers require 123 additions, 45 multiplica-
tions, and 8 sign-change operations in each iteration [10]. This
is more than the 25 operations needed by the present filters.

The second limitation concerns solution smoothness. Both
diffusion methods and iteratively reweighted methods [21]
require the regularizer to be explicitly computed in order
to determine the geometric flow. Computing curvature over
an image, however, requires the image to be at least twice
differentiable, enforcing U € C2, which requires the final
result to be smooth. Therefore, edges in the image will not be
preserved. To relax this smoothness requirement, interpolation
between neighboring pixels has been proposed [10]. This
interpolation, however, generates artifacts (see Fig. 6), which
are unavoidable in explicit minimization.

Our filter approach avoids the stability and smoothness
problems. This is because we do not use a global flow, but
instead locally approximate the image by piecewise devel-
opable, minimal, or constant surfaces (depending on the reg-
ularizer) that minimally increase the data-fitting energy. Due
to the half-window regression used when doing so, we only
require U € C°, but U not necessarily in C' or C2. This
renders our filters edge-preserving. While this is not true in
the continuous domain, it holds in the discrete domain. This is
equivalent to saying that the filters do not require the pixels in
I to resolve (i.e., well-sample) all gradients in the continuous
U, but can tolerate edges. In comparison with six other edge-
preserving filters (WLS [40], AM [41], DT [42], GF [25],
L0 [43], RTV [27]), the present GC filter consistently produced
the visually most appealing results in the shortest runtime [22]
(pp. 149-151).

Comparing the 7V, M., and G, filters, we note that
they allow different geometric configurations. 7'V only allows
constant intensity in a neighborhood, while M, additionally
allows linear planes. G, allows the most geometric configura-
tions, as long as they are developable, for example a cone
structure. In this sense, GC regularization is a superset of
MC regularization, which is a superset of TV regularization.
This makes GC the least restrictive prior, allowing the most
solutions. However, there are applications where stronger
regularization may be required, notably at low PSNR. This
explains our empirical observation that 7'} preserves large
gradients, but removes small details, whereas M, leads to a
result that is smoother.

In the future, it could be interesting to extend the ideas
presented here to higher-order models, like the fourth-order
LLT model [44]. The results could then be compared with
Augmented Lagrangian Methods (ALM) [45], which is not
directly possible at this time. Moreover, extensions to color
images and three-dimensional images are possible.

It is also worth noticing that the sequence of filtering
operations presented here can be implemented as a layer in
a Convolutional Neural Network (CNN), and network training
can be done via standard error back-propagation. This is,
e.g., similar to the recent effort of using mean-field Markov
Random Field (MRF) operations in a CNN [46].
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The filters presented here lead to fast algorithms for reduc-
ing the total energy of regularization-dominated variational
models. They provide the flexibility of treating generic black-
box data-fitting terms and spatially adaptive regularizers.
While the results are sub-optimal, they are not restricted to
particular image models. We therefore believe that these filters
will benefit many practical tasks, for example in real-time or
embedded image processing.
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