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Robust Registration of Dynamic Facial Sequences
Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro

Abstract— Accurate face registration is a key step for several
image analysis applications. However, existing registration meth-
ods are prone to temporal drift errors or jitter among consecutive
frames. In this paper, we propose an iterative rigid registration
framework that estimates the misalignment with trained regres-
sors. The input of the regressors is a robust motion representation
that encodes the motion between a misaligned frame and the
reference frame(s), and enables reliable performance under non-
uniform illumination variations. Drift errors are reduced when
the motion representation is computed from multiple reference
frames. Furthermore, we use the L2 norm of the representation
as a cue for performing coarse-to-fine registration efficiently.
Importantly, the framework can identify registration failures and
correct them. Experiments show that the proposed approach
achieves significantly higher registration accuracy than the
state-of-the-art techniques in challenging sequences.

Index Terms— Image registration, gabor filters, face alignment,
registration failure detection.

I. INTRODUCTION

FACE registration is the process of compensating for
rigid transformations caused by head, body or camera

movements in an image sequence. This is a fundamental
pre-processing step for applications that interpret the non-rigid
motions of facial features, such as facial action recognition [1],
visual speech recognition [2], emotion recognition [3] and
micro-expression recognition [4]. Rigid registration for
facial analysis needs to address multiple challenges, namely
non-uniform illumination variations, occlusions and facial
activity itself, which generates non-rigid motions that become
outliers for rigid registration. Moreover, significant drift errors
may accumulate over time with online registration, even
when individual registration errors remain under a tolerance
threshold, thus leading to registration failures. Undetected
registration failures then become false references for subse-
quent frames, thus generating additional registration errors.
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Facial registration can be conducted considering the whole
face or its parts [5]. Part-based registration refers to regis-
tering selected facial regions independently from one another
(e.g., each eye and the mouth are registered as three separate
cropped sequences). Although part-based registration is useful
to reduce the effect of out-of-plane head rotations [5], it is
a challenging task as a large proportion of pixels undergo
non-rigid motions.

Registration is often approached as an optimisation problem
and solved with a gradient-descent method [6]–[10]. However,
gradient descent may underperform with untextured regions,
particularly when high-gradient regions are associated with
outlier motions. An emerging approach to optimisation in
computer vision is using statistical learning [11]–[14]. The
original idea of Cootes et al. [15] was to construct an
algorithm by learning the relationship between the parame-
ters to be optimised and the residual error caused by non-
optimal parameters. We argue that optimisation based on
learning is also promising for rigid facial registration, as
invariance to non-rigid motions can be improved by training
with sequences that contain facial activity. Moreover, robust-
ness to non-uniform illumination variations can be improved
with a robust feature extraction scheme without analytically
modelling the relationship between features and misalignment
parameters.

In this paper, we propose to use optimisation via statistical
learning for rigid facial registration. The proposed iterative
framework (Fig. 1) reduces drift errors by computing Gabor
motion energy with respect to multiple reference frames, and
can identify and correct registration failures via probabilistic
learning. We show that, in iterative registration, misalignment
can be estimated effectively with a pre-trained regressor of
Gabor motion energy and that this regressor can generalise
and perform accurately on data with illumination variations
even when trained using controlled data. Moreover, we show
that the L2 norm of Gabor motion energy can be used to
train multiple regressors with different granularities and also
to efficiently perform coarse-to-fine registration with these
regressors. We refer to the proposed framework as MUMIE
(Multiple regressors for Misalignment Estimation), and eval-
uate it both for whole-face and part-based registration and
obtain significantly higher accuracy than classical registration
frameworks. Particularly notable is the part-based registration
performance in the presence of large facial activity due to
facial expressions, and its robustness to non-uniform illumi-
nation variations. The code of the method is made available for
research purposes.

The paper is organised as follows. Section II reviews
existing registration approaches. Section III presents the
problem formulation. Section IV describes the registration
process. Section V explains how registration failures are
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Fig. 1. Overview of the proposed MUMIE framework. The top part represents the training of the misalignment estimators. The bottom part represents the
iterative registration scheme, followed by a convergence test. The input to registration is an ordered set of reference frames Īt−1, the misaligned frame It and
the initial misalignment estimation p̂t . The dashed lines represent the conditional paths that are followed when the labelled conditions hold (C1/C2) or do
not hold (C̄1/C̄2), and || · || is the L2 norm. †The condition C2 is satisfied also if a maximal number of iterations, Kmax, is reached.

identified and corrected. Experimental results are discussed
in Section VI. Section VII concludes the paper.

II. RELATED WORK

We discuss existing registration approaches and focus
on their ability to deal with illumination variations,
outlier motions and drift errors. We first cover a method
specific to faces, namely registration by localising fiducial
points [5]. Then we cover generic registration techniques,
which can be grouped in three main classes, namely keypoint,
transformation-based and direct methods.

A popular approach to rigid facial registration is to
localise and align fiducial landmark points (e.g., eyes) [5].
There exist landmark localisers that are robust to illumina-
tion variations [16] (e.g., [11], [13], [17]). Moreover, this
approach can be made robust to outlier non-rigid motions by
selecting landmarks that are less affected by facial activity
(e.g., eye corners). However, registration based on landmark
localisation is prone to jitter among consecutive frames due to
localisation errors [18] that occur even in relatively controlled
conditions [2]. The detrimental effect of jittering caused by
landmark localisation errors has already been observed in
visual speech recognition [2]. Similar jittering errors are
detrimental also to facial action analysis [1].

Keypoint methods perform registration using sparsely
located image points that are centred on visually salient
regions with rich texture [23]. While these methods are tolerant
to large outlier motions thanks to the use of robust estimators
such as RANSAC [27], keypoint methods may not perform
reliably when outlier motions occur around visually salient
regions (i.e., regions with texture variations). This occurs with
part-based registration or when illumination variations severely
reduce the number of matched features [28].

Global transformation-based methods use the invariance
properties of the Fourier transform [7], [22], Fourier-Mellin
transform [29] or Radon transform [23], [30]. These methods
are generally unsuitable for challenging real-life problems
as they are sensitive to outlier motions and illumination
variations [24]. Although a robust version of the fast Fourier

transform (FFT) [24] is successful against these challenges, its
accuracy in simpler conditions without illumination variations
can be lower than that of keypoint-based methods [28].

Direct methods minimise an error function of a pair of
misaligned frames. The Lucas-Kanade (LK) method minimises
the sum of squared difference between two frames and can be
rendered partially robust to outliers by dividing frames into
blocks [6] or by employing robust estimators [31]. LK methods
perform minimisation via gradient descent and may therefore
not perform reliably if regions of outlier motions yield high
gradient while the remaining regions are relatively flat, which
is likely to happen in part-based registration. Extensions of LK
differ in the error function that is optimised, the optimisation
algorithm or the domain where the optimisation is performed
[6], [7], [9], [25], [32], [33]. Methods that operate on the pixel
domain are particularly sensitive to illumination variations [7].
Pre-processing with Gabor filters [25] helps improve
robustness of LK methods against illumination variations [7].
One of the most robust methods against non-uniform
illumination variations is based on the direct maximisation
of the gradient correlation coefficient (GradCorr) [7].
GradCorr employs a cosine kernel, which improves robustness
against outliers and illumination variations by eliminating local
mismatches [7].

Keypoint, transformation-based and direct methods are
prone to drift errors in long sequences as they register each
frame with respect to a reference frame. This problem was
highlighted for the LK framework [34] and addressed by a
number of methods [10], [26], [34], [35], which were validated
on data with limited illumination variations only.

Table I summarises the methods discussed in this section.
Note that while methods exist that independently tackle drift
errors, outlier motions or challenging non-uniform illumi-
nation variations, to the best of our knowledge no method
addresses all these challenges within the same framework. We
initially investigated the benefits of learning-based registration
in our preliminary work [28]. With respect to our preliminary
work the main novelties in this paper are (i) the misalignment
estimation through a continuous model that is simpler to train
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TABLE I

REPRESENTATIVE METHODS FROM VARIOUS REGISTRATION CATEGORIES AND HOW THEY ADDRESS ILLUMINATION VARIATIONS,
DRIFT ERRORS AND OUTLIER MOTIONS. KEY: (K)EYPOINT, (T)RANSFORMATION-BASED, (D)IRECT, (S)TATISTICAL LEARNING

than the discrete model; (ii) computing the motion representa-
tion using multiple reference frames to reduce drift errors; (iii)
the strategy for correcting registration failures; and (iv) using
the magnitude of motion representation as a prior cue about
the amount of misalignment, thereby improving computational
efficiency.

III. PROBLEM FORMULATION

Let S = (I1, I2, . . . , It , . . . , IT ) be a sequence of arbitrary
length T with unregistered frames It . The goal is to generate
a registered sequence S̄ = ( Ī1, Ī2, . . . , ĪT ) with no rigid
misalignment between any two frames Ī j , Īk . When S is
acquired via streaming, a frame It must be registered as
soon as it is obtained (online registration). Let I1 be the
reference frame that subsequent frames will be registered to
(i.e., Ī1 = I1).

Let pt be the parameters of the rigid motion responsible
for the misalignment in It . Īt can be obtained by transform-
ing It with a warping operator W(x; pt ) that maps each pixel
x = (x, y)T based on pt [6]:

Īt (W(x; pt )) = It (x). (1)

The critical task is to obtain an accurate estimation of
rigid motion, p̂t . The rigid motion in It can be estimated
with respect to a single frame (for example the most
recently registered frame, Īt−1); or by considering multiple
past reference frames. For example, one can use an
ordered set that contains the last TR registered frames
Īt−1 = ( Īτ , Īτ+1, . . . , Īt−1) where τ = max{1, t − TR}. We
refer to registration with TR = 1 as single-frame registration
and with TR > 1 as multi-frame registration.

IV. MISALIGNMENT ESTIMATION

Faces are non-planar objects and compensating for rigid
motion with an affine transformation may distort facial geome-
try and undermine facial activity analysis. Therefore, we model
rigid motion as a Euclidean transformation.

Fig. 2. Illustration of drift errors that can occur over time, through
an exemplar sequence that starts and ends with the same eye expression.
Registration output of a Lucas-Kanade (LK) method [7] (top) and MUMIE
(bottom). LK is prone to drift errors, as seen by comparing the first and last
frames of the registered sequences. Drift errors are highlighted in the last
column where the difference between the first and last frames is depicted.
(Dark values indicate registration errors.)

A. Optimisation via Learning

Let pt = (p1, p2, p3, p4) be a vector whose elements define
the horizontal and vertical translation, scale and rotation,
respectively. Registration via optimisation starts computing the
rigid motion between two images Īt−1 and It with an initial
estimate p̂t that is then updated iteratively as:

p̂t ← p̂t +�p̂t , (2)

until the norm of the increment, ||�p̂t ||, is smaller
than a threshold ε. �p̂t is generally computed with the
LK algorithm [8], [10] that uses gradient descent for
optimisation. Convergence is successful under constant
illumination conditions and limited occlusions [6]. Extensions
of LK can tackle illumination variations and occlusions using
a robust estimator [31] or a cosine kernel that eliminates
outliers caused by local texture mismatches [7]. However, as
mentioned in Section I, algorithms based on gradient-descent
may underperform when high-gradient image regions are
related to outlier motions.

Registration for facial analysis needs to cope with the
non-rigid motions caused by facial activity, which affect a
large proportion of pixels and are problematic for part-based
registration. Facial activity evolves slowly and may not be
eliminated as a local mismatch, thus causing drift errors.
Fig. 2 illustrates this problem: the first and last frame should be
aligned as they depict the same eye expression at two different
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Fig. 3. Illustration of the usefulness of the Gabor motion energy for registration via four example cases (a–d) that involve different types (horizontal/vertical
translation) and amounts (small/large) of misalignment. For each case, the Gabor motion energy is computed with four different filter pairs tuned to a particular
speed (vS(mall) or vL(arge)) and orientation (θh(orizontal) or θv(ertical)). The energy is maximal when the filters are in tune with the misalignment.

instants of a sequence; however, another expression appearing
in the in-between frames causes drift errors for the LK-based
algorithm [7].

An emerging approach to optimisation is to perform the
updates with a pre-computed function [11], [13], [15]. The
increment �p̂t can be computed with a regressor that mod-
els the relationship between misalignment and the residuals
caused by misalignment. We use regression for rigid facial
registration: at each iteration, we compute the rigid motion
between Īt−1 and It (or more generally, between Īt−1 and It )
with a regressor f as:

�p̂t = f(�(Īt−1, It );�), (3)

where � is the vector of input-independent regressor para-
meters and �(·) is a feature extraction process that we
discuss later in this section. � is computed from a dataset
D = {(Īn, I n, pn)}Nn=1 that contains N misaligned samples and
their misalignment labels. Invariance against an outlier can be
encouraged by augmenting D with training samples that are
affected by the outlier [36]. This strategy is particularly useful
for dealing with outliers that are difficult to model analytically
[36], such as the non-rigid motions caused by facial activity.
Moreover, invariance against illumination variations can be
encouraged with a robust feature extraction scheme. Unlike
algorithms based on gradient descent (e.g., LK), the compu-
tation in (3) does not require a differentiable expression to
minimise. For this reason, we can employ feature extraction
schemes that are difficult to differentiate or not differentiable.
However, while optimisation with regression provides an effi-
cient means for dealing with outliers, an important issue has
to be addressed for a pre-computed regressor, namely the
generalisation to unseen faces and imaging conditions.

Generalisation can be improved with a feature extraction
scheme that is sensitive to rigid motion and insensitive
to irrelevant factors, such as skin colour and illumination
variations. To this end, we use a spatio-temporal Gabor

representation, which encodes motion without computing
motion vectors explicitly [37] and is robust against illumi-
nation variations [28]. The Gabor representation encodes the
motion between two frames Īt−1 and It by convolving this
pair with speed- and orientation-selective Gabor filters that
are defined as [38]

gφ
v,θ(x, y, t ′) = γ√

8π3σ 2τ
e
− x̄2+γ ȳ2

2σ2 − (t−μt )2

2τ2

× cos
2π

λ
(x̄ + vt ′ + φ), (4)

where x̄ = x cos θ + y sin θ and ȳ = −x sin θ + y cos θ , and
the phase offset φ can be set to φ = 0 to obtain an even-phased
(cosine) filter and to φ = π

2 to obtain an odd-phased (sine)
filter — the two filters together form a quadrature pair. The
parameters θ and υ define the orientation and speed of motion
that the filter is tuned for (see [38] for the definition and
details of the remaining parameters). An important property
of the Gabor representation is direction selectivity (e.g., dis-
tinguishing between leftwards and rightwards motion), which
is acquired by computing the Gabor motion energy through a
quadrature filter pair as:

Ev,θ = (( Īt−1, It ) ∗ g0
v,θ)

2 + (( Īt−1, It ) ∗ g
π
2
v,θ)

2, (5)

where ∗ denotes convolution.
Fig. 3 illustrates why the Gabor representation is useful

for registration. We plot four pairs of images along with
the motion energies computed through four pairs of Gabor
filters. The energy produced with filters tuned to small, vertical
motions gets maximal when the misalignment involves a small,
vertical translation, as illustrated in Fig. 3a. More generally,
misalignments in different directions or magnitudes activate
different Gabor filters. This property is critical for optimisa-
tion, as it guides which direction each optimisation step should
take, and what the step size should be. The usage of such
a motion representation enables generalisation; if we would
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replace the images Īt−1 and It in Fig. 3 with the images of
other subjects, the energy output would change. However, the
essential relationship would not change: each filter would still
reach its maximal response only if the rigid motion (i.e., the
misalignment) is in tune with the filter parameters. The overall
representation, �′( Īt−1, It ) = (φt,1, φt,2, . . . , φt,d , . . . , φt,D),
is computed by pooling the energy matrices Ev,θ after
partitioning them into M × M non-overlapping subregions.
An advantage of pooling is to facilitate generalisation in terms
of image size. While the size of the energy matrices Ev,θ

depends on the size of the images Īt−1 and It , after pooling
we have M × M = M2 coefficients per energy matrix
independently of image size. The dimensionality of the overall
representation is D = M2 × KG , where KG is the number
of Gabor filter pairs or, equivalently, the number of energy
matrices. The implementation details of the representation are
provided in Section VI-C.

To reduce drift errors, we extend the above-described
scheme to encode motion with respect to multiple reference
frames, Īt−1. We denote this multi-frame motion representation
between It and Īt−1 as �t = �(Īt−1, It ). �t computes pair-
wise motion representations between the misaligned frame and
each of the reference frames in Īt−1, and then averages them
over time:

�t = �(Īt−1, It ) = 1

t − τ

t−1∑

t ′=τ

�′( Īt ′, It ), (6)

where τ = max{1, t − TR}. For brevity, we rewrite (3) as:

�p̂t = f(�t ;�) (7)

and denote the training set as D� = {(�n, pn) : �n =
�(Īn, I n)}Nn=1.

As Fig. 3 exemplifies, there is a non-linear relation between
the Gabor representation (input) and rigid motion parame-
ters (output). Therefore, it is reasonable to choose a non-
linear regression function to model the intended input-output
relationship. We choose f to be a single-hidden-layer neural
network as it is a well-established non-linear regressor and
one whose properties are well understood [39]. Then the
parameter vector � includes the hidden-layer weights, output
layer weights and biases [36].

The optimal parameters �∗ are those that minimise the
regularised mean squared error on D�:

�∗ = argmin
�

N∑

n=1

||pn −�p̂n||2 + α||�||2, (8)

where �p̂n = f(�n;�) and α ∈ (0, 1] is the regularisation
parameter defined during training through cross-validation.

The iterative process in Fig. 1 can achieve accurate registra-
tion if the errors of the estimator f get smaller as the amount of
rigid motion in It gets smaller. However, since the initial error
in a given It may be high, D must contain samples with both
large and small misalignments. In a dataset with such a broad
range of input–output mapping, because of the bias/variance
trade-off [40] the estimator may not be able to attain the
desired level of accuracy. Although bias can be reduced by
increasing model complexity, this would increase the variance

Fig. 4. Correlation between the magnitude of the Gabor representation and
misalignment. This correlation suggests that the magnitude of the representa-
tion provides information about the amount of misalignment.

of the estimator, thus increasing the risk of overfitting [40].
We address this problem with a coarse-to-fine misalignment
estimation, as discussed next.

B. Coarse-to-Fine Misalignment Estimation

To improve the bias/variance trade-off, one can employ a
coarse-to-fine cascade of K estimators {fk}Kk=1 with coarse
estimators tuned to large amounts of misalignment and fine
estimators tuned to small amounts of misalignment (e.g.,
[41]). Such a cascade produces better bias/variance trade-offs
as each estimator models an input-output mapping with a
smaller range [40]. However, typical coarse-to-fine estimation
schemes use all the estimators in the cascade, even when
the initial registration is small and the finest estimator would
suffice [42].

Coarse-to-fine estimation is more efficient when coarse
estimators are used only if the initial registration error is large.
However, this can be achieved only if we have a prior cue
about the amount of misalignment in It . Our spatio-temporal
Gabor representation provides this cue: Large-magnitude
motion activates Gabor filters with large spatial support [38],
as was exemplified in Fig. 3. For this reason, the L2 norm
(magnitude) of the representation,

ρt = ||�t || =
D∑

d=1

φ2
t,d , (9)

generally gets larger as rigid motion gets larger. Fig. 4
illustrates this relationship, which allows us to use the L2 norm
of a representation as a prior on the amount of misalignment It .

We exploit magnitude while constructing the estimators of
different granularities, {fk}Kk=1. We choose all estimators fk

to have the same structure and therefore the estimators differ
in their granularity due to the dataset they are trained with.
Coarse estimators are trained with samples of larger magnitude
and fine estimators with samples of smaller magnitude.

Let us denote the training dataset of each estimator as Dk
�,

with
⋃K

k=1 Dk
� = D�. A simple way to create the sets {Dk

�}
is to first compute the magnitudes of all training samples,
Dρ = {ρn : ρn = ||�n||, ∀(�n, pn) ∈ D�}, and to partition
the range of [min{Dρ}, max{Dρ}] into K uniform intervals.
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However, this partitioning would be sensitive to the sample
with maximal magnitude max{Dρ}, as a large max{Dρ} value
would affect all intervals. Instead, we allow for non-uniform
lengths. To this end, we cluster the set Dρ into K clusters by
using a Gaussian Mixture Model. Each cluster is a distribution
N (ρ|μk, σ

2
k ) where the variance σ 2

k controls distribution width
and is learnt from data. We create a subset Dk

� by picking
the samples that are close to the kth center. Specifically, we
create Dk

� as Dk
� = {(�n, pn) : N (ρn |μk, σk) ≤ 2σk} (i.e. we

cover approximately 95% of the distribution with the 2σk

rule [43]). Then we train each fk by applying the empirical
risk minimisation in (8) using the dataset Dk

�.
We estimate misalignment at each iteration as:

�p̂t = fk∗(�t ), (10)

where k∗ = argk maxN (ρt |μk, σk). For clarity, we dropped
the regressor parameters.

If no registration failure occurs, the procedure described in
this section can register each It sequentially for t = 2, . . . , T
(Fig. 1). However, when the registration of a frame fails, the
corresponding frame must be identified and removed prior to
registering subsequent frames, otherwise it becomes a false
reference for subsequent frames. This problem is addressed in
the next section.

V. FAILURE HANDLING

A. Probabilistic Failure Identification

To account for possible registration failures, it is desirable
to generate a second output in addition to the registered
sequence S̄. This second output, a vector λ, should indi-
cate whether the registration at each frame was successful:
λ = (λ1, λ2, . . . , λT ), where λt = 1 indicates that Īt was
registered correctly and λt = 0 indicates that the registration
failed.

Let 〈p̂t , pt 〉c define the average error in the estimation of
canonical points [6] between two registered frames Īt and Īt−1.
We choose two canonical points1 x1 and x2 as the leftmost and
rightmost points in the vertical middle of the image plane.
Then 〈p̂t , pt 〉c can be computed as:

〈p̂t , pt 〉c =
2∑

i=1

√
||W(xi ; p̂t )−W(xi ; pt )||. (11)

When this error is smaller than a convergence threshold, εy ,
the registration is considered successful. We cast failure iden-
tification as a binary classification problem where the two
classes are converged (i.e., 〈p̂t , pt 〉c ≤ εy) and not converged
(i.e., 〈p̂t , pt 〉c > εy). We denote those two classes with a
binary variable ỹ ∈ {0, 1}.

This problem could be solved with a classifier trained with
a labelled dataset D̃� = {(�n, ỹn)}. However, if we mislabel a
frame Īt as converged, then the mislabelled frame will become
a false reference to all subsequent frames; therefore, false
positives are more costly than false negatives. A minimal
false positive rate is therefore desirable, even if this causes
a relatively higher rate of false negatives. False positives can

1Two points suffice to define Euclidean motion.

Fig. 5. Failure identification performance on the Synthesised dataset (left)
and on the PIE dataset (right) illustrated via ROC curves. The FPR range is
restricted to [0, 0.05] for better interpretation. Each curve is computed from
500 positive and 500 negative samples for εy = 1. Results suggest that the
Gabor representation is more robust against illumination variations than the
optical flow representation.

be reduced if we have a confidence measure associated with
each estimation, and we reject labelling a sample as converged
unless the estimation confidence is above an acceptance
threshold θconv. A probabilistic classifier can be used to this
end, as the confidence value we seek is the probability assigned
with the estimation.

We compute the convergence probability via Bayesian learn-
ing as [36]:

p(ỹt = 1|�t , D̃�) =
∫

p(ỹt = 1|�t , �̃)p(�̃|D̃�)d�̃, (12)

where �̃ is the vector that contains classifier parameters,
p(�̃|D̃�) is the prior distribution over parameters �̃ and
p(ỹt = 1|�t , �̃) is the probability of a segment with motion
representation �t having converged when the parameters
are �̃.

The closed-form expression of p(ỹt = 1|�t , �̃) depends on
the classifier type and the type of the distribution p(�̃|D̃�)
is usually selected in a way that would allow (12) to have a
closed-form approximation (i.e., conjugate prior) [36]. Since
the processes of failure identification and misalignment esti-
mation share a common input space (i.e., spatio-temporal
Gabor representation), we choose statistical models with the
same structure and use a single-hidden-layer neural network as
a classifier. We implement Bayesian learning on this classifier
through evidence approximation [44].

The decision on failure identification, λt , is defined as

λt = λ(�t ) =
{

1 if p(ỹt = 1|�t , D̃�) > θconv

0 otherwise.
(13)

We set the threshold θconv automatically as follows. We com-
pute the ROC curve of the failure identification function
of λ by evaluating the true positive rate (TPR) and false
positive rate (FPR) on a validation set for a range of threshold
values θconv, and select the θconv that produces a low false
positive rate (e.g., 0.01) on the ROC curve.

Fig. 5 illustrates the failure identification performance of the
employed Bayesian neural network on two validation sets: one
with constant illumination and one with illumination variations
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Algorithm 1 Procedure CORRECT

(the datasets are described in Section VI-B). Fig. 5a shows that
a Bayesian neural network enables reliable failure identifica-
tion with a TPR larger than 0.90 for a FPR as low as 0.01 for
both representations. To highlight the importance of a robust
motion representation, we also compare the performance with
an optical flow representation [45] that replaces the Gabor
representation in the pipeline. Fig. 5b shows that the Gabor
representation is significantly more robust against illumination
variations than the optical flow representation. The robustness
is due to the Gabor filters being localised in space and the
Gabor response being normalised in time [28].

B. Failure Correction

Let t f denote a time when a registration failure occurs.
This failure may be corrected by registering with respect
to temporally farther frames. To this end, we search for a
reference within a set of previously registered frames

Ī = { Īτ : Īτ = Īτmin , Īτmin+1, . . . , Īt f−1 ∧ λτ = 1}, (14)

where τmin = max{t f − TD, 1} and TD is the length of
the temporal window within which correction is attempted.
If a reference frame is found, then the failure is corrected
and the registration index is updated as λt f = 1. The
correction process is summarised in Algorithm 1. Note that
IterativeRegistration refers to the set of operational blocks
with the same label in the lower part of Fig. 1.

The likelihood of a correction can be increased by using
frames after the failure time t f , that is by constructing Ī as

Ī = { Īτ : Īτ = Īτmin , Īτmin+1, . . . , Īτmax ∧ λτ = 1}, (15)

where τmax = min{T, t f + TD}. In this case, the registration
process will have a delay of TD frames, which may become
acceptable with small TD values.

VI. EXPERIMENTAL VALIDATION

In this section we validate the ability of the proposed frame-
work to prevent drift errors, to perform robustly in the presence
of facial expressions and non-uniform illumination variations,
to identify failures reliably and to generalise to unseen
conditions. We first compare multi-frame and single-frame
registration for MUMIE. Then we compare MUMIE with
state-of-the-art methods on sequences with facial expression

variations and on sequences with non-uniform illumination
variations. The latter cause registration failures, enabling us
to evaluate the failure identification and correction of the
proposed framework. We validate generalisation by always
conducting experiments in a cross-database manner, that is,
by training only on one dataset and testing on different ones.

A. Evaluation Measures

We validate sequence registration performance by evaluat-
ing the ability of a method to reduce the overall registration
error and its tendency to generate drift errors. To identify and
compare drift errors, we also illustrate sequence registration
performance by visualising the error variation over time.

We measure the registration error, es,t , of the t th frame of
the sth sequence by measuring the error in the estimation of
the canonical points (see Section V-A):

es,t = 1

2

2∑

i=1

√
||xi,t −W(x′i,t ; p̂s

t )||, (16)

where p̂s
t is the estimated transformation, xi,t is a canonical

point and x′i,t is the canonical point after perturbation by a
rigid motion ps

t . The average error, ēs , over a sequence s is:

ēs = 1

T − 1

T∑

t=2

es,t , (17)

where T is the sequence length. (Note that the error is mea-
sured with respect to the initial frame.) The overall average
error, ē, for a dataset is:

ē = 1

NS

Ns∑

s=1

ēs , (18)

where NS is the number of sequences in the dataset. The
average drift error, ēdri f t , is defined as:

ēdri f t = 1

NS

NS∑

s=1

es,T . (19)

Since drift error accumulates over time, the registration error
between the first and last frames of the sequences serves as
a useful measure of drift [46]. Finally, we use the percentage
of converged frames measure, c, which is commonly used for
registration algorithms [6], [7]:

c = 100× |{es,t : es,t < 1, s ∈ N[1,NS], t ∈ N[2,T ]}|
NS(T − 1)

, (20)

where | · | denotes set cardinality. The measure c is a useful
alternative to the overall average error when the average error
is biased by a few frames with a high registration error.

Following [6], we introduce a registration error to frames
by perturbing the canonical points with a random value drawn
from a Gaussian white noise distribution with σperturb standard
deviation. Since we focus on measuring registration accuracy
and tendency to drift errors, we set σperturb = 2 when com-
paring with other methods, as LK methods may not converge
for larger values [7]. However, we test our method with larger
σperturb values when analysing its performance for coarse-to-
fine registration in Section VI-F.
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Fig. 6. The apex frame of the six-basic expressions in the Synthesised
dataset. The top-left facial image shows the cropping regions for part-based
registration.

B. Test Datasets

To validate performance with real sequences of facial
expression variations, we perform registration on three facial
datasets: CK+ [47], MMI [48] and AFEW [49]. CK+ and
MMI contains sequences of posed facial expressions of frontal
faces. AFEW comprises sequences cropped from movies;
the challenges of this dataset include out-of-plane head pose
variations, illumination variations and background motion.
Registered videos from these sequences are available for
qualitative analysis as supplementary material.2

To quantify robustness against illumination variations we
use the PIE dataset [50]. This dataset is collected from
subjects that are sitting stably in front of a camera while the
illumination conditions are changed rapidly in a controlled
manner (see Fig. 7). We use 67 sequences (all the sequences
that contain a frontal face). Each sequence is 21 frames long.

To quantify robustness against non-rigid facial motions we
synthesised facial sequences with expression variations. We
will refer to this as the Synthesised dataset. The need for
such a test sequence arises from the goal of having only
expression variations without head or body movements. People
tend to move while displaying an expression even in controlled
datasets such as MMI [48] and therefore a ground truth for
rigid registration cannot be obtained. To produce realistic
faces, we use Autodesk Maya and two publicly available facial
rigs,3 Old Man (Subject 1) and Ilana (Subject 2). Subject 1
is an old male with a wrinkled face, whereas Subject 2 is a
young female with a smooth skin (see Fig. 6). We created
sequences that contain the six basic expressions by using the
Action Units that are associated with those expressions. All
sequences start with a neutral facial appearance, reach the
apex, and then return to neutral appearance. We also include
one sequence where there are no expression variations, thus
yielding to a total of 14 sequences for the two subjects.

Prior to registration, we crop and resize the frames for
all datasets. For whole-face registration, we first crop faces

2Supplementary material is on ftp://spit.eecs.qmul.ac.uk/pub/es/s.zip
3http://facewaretech.com/sdm_categories/rigs/

Fig. 7. Sample frames from the PIE dataset. All the sequences in this dataset
undergo similar illumination variations.

based on eye locations, and then resize the cropped frames to
200 × 200 pixels. For part-based registration, we first locate
the centres of both eyes and mouth, and then crop each of
these components so that the eye/mouth sits in the centre of
frame after cropping. The cropped frames are then resized to
50×50 pixels. Fig. 6 illustrates the boundaries of the cropped
components. For the Synthesised dataset we locate the centres
of eyes and mouth manually. For the PIE and CK+ datasets
we use the facial landmarks provided with the dataset. For the
MMI and AFEW datasets we detect faces using OpenCV and
locate landmarks using SDM [13].

C. Implementation Details and Parameter Sensitivity

To compute the Gabor representation, we partition the
energy matrices into M × M = 3 × 3 pooling subregions.
We use standard deviation pooling (i.e., compute the standard
deviation of the values in each subregion), as it outperforms
mean and max pooling [28]. We use Gabor filters across 8 ori-
entations, {0°, 45°, . . . , 315°} and 3 scales, {2 j }2j=0, yielding a
filter bank with KG = 24 filters, and an overall representation
with D = 9× 24 = 216 features.

For optimisation we used the scaled conjugate gradients
algorithm. We conducted the training on MATLAB using the
NETLAB [44] library and the testing on a C++ implemen-
tation. We set the convergence threshold εy = 1 pixel, which
is the value used for the evaluation of the LK framework [6].
During correction, the width of the temporal window is set
to TD = 5 and we apply correction with a temporal window
that considers also subsequent frames (i.e., online-with-delay).
We created the training samples from CK+ [47] by perturbing
frames from 20 sequences where we perceived no head or body
motion. We fix the number of training samples to N = 15000.
We set the maximum number of iterations to Kmax = 12,
which is sufficient for convergence for σperturb = 2 (see
Section VI-A). Note that in Section VI-F we analyse perfor-
mance against large registration errors with more iterations.

The number of estimators is K = 5, the number of
hidden nodes in the neural network is Nhidden = 10, and the
number of iterations is Niter = 500. We will present below
an experimental analysis that shows the effect of varying
these parameters. For this purpose, we create testing data
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Fig. 8. (Left): average registration error against the number of estimators, K ,
suggests that K < 4 estimators are insufficient for accurate registration.
(Right): The mean and standard deviation of misalignment of samples in
each dataset Dk

� against the average magnitude of representations in Dk
�,

highlights the coarse-to-fine structure of the set of 5 estimators.

from the 6-basic expression sequences of the Synthesised
dataset; specifically, we create misaligned image pairs
(i.e., two-frame sequences) by picking all consecutive image
pairs and perturbing the second image with σperturb = 2, and
thus obtain NS = 228 two-frame sequences.

Fig. 8 (left) reports the performance in terms of overall
average error, ē, when varying K . The error is particularly high
for K = 1, which suggests that a single neural-network cannot
model the entire range of input-output mapping efficiently
(see Section IV-B). In fact, when K = 1, the optimisation
algorithm stops after only 26 iterations, which is a symptom
of inefficient learning. Limited improvement is obtained when
K is increased up to 3 as, similarly, training stops early.
When K = 4 (and beyond) there is a significant performance
improvement. In Fig. 8 (right) we illustrate the coarse-to-fine
structure of the K = 5 estimators through the statistics of
their corresponding datasets, {Dk

�}5k=1. Specifically, we show
the average and the standard deviation of the registration error
of all the samples in a Dk

� against the average magnitude
of the representations in Dk

�. Some estimators have a coarse
structure as their training samples have large misalignment
(e.g., k = 2, 5) and others have a fine structure as their training
samples have smaller misalignment (e.g., k = 1, 4).

To prevent overfitting, it is useful to add a random noise to
the motion representations computed from the training images.
This noise is drawn from an isotropic zero-mean Gaussian
distribution with standard deviation σnoise = 0.5. Other well-
known strategies to prevent overfitting are reducing Nhidden
(i.e., using a simpler model) or reducing Niter (i.e., performing
early termination) [36]. Fig. 9 compares the efficiency of these
three approaches in preventing overfitting by providing the
average convergence rate in the presence of three additional
image variations. The first two variations are image blur
with a Gaussian kernel of standard deviation 2 and additive
white noise with standard deviation of 8 (similarly to [6]);
these variations are applied to the second images of the
test pairs created from the Synthesised dataset. The third
variation is illumination, for which we created NS = 400
two-frame test sequences from the PIE dataset. Fig. 9a shows
that adjusting the Niter parameter provides no performance
improvement against image variations. The Nhidden parameter

Fig. 9. Registration performance against the (a) number of iterations,
(b) number of hidden nodes and (c) σnoise of the training samples. Adding
noise to training samples with a σnoise of approximately 0.6 enables the best
generalisation against image blur, white noise and illumination variations.

can be adjusted to improve performance against white noise.
However, only limited improvement can be achieved against
blur and illumination variations. On the other hand, adding
noise to training samples, can improve performance signifi-
cantly: With σnoise = 0.5, σnoise = 0.6, the performance in
the presence of blur, white noise or illumination variations
becomes similar to the performance without those variations.

D. Methods Under Comparison

We compare the proposed framework, MUMIE, with
a method from each of the categories listed in Table I.
We selected recently proposed robust methods with available
software. In categories where there are multiple methods,
we select experimentally the best-performing ones for the
comparison: (i) the SURF-based method as the keypoint-based
method, which generally outperformed the MSER method;
(ii) the Robust FFT (R-FFT) method [24] as the
transformation-based method, which, to the best of
our knowledge, is the only method that proved robust
against illumination variations and other outliers; and (iii)
the GradCorr method [7] as the direct method, which
outperformed a number of Lucas-Kanade (LK) variants,
namely IC-LK [6], ECC-LK [9] and Fourier-LK [25]. We
also compare with (iv) SDM [13], a registration based on
landmark localisation. Specifically, we perform registration
by computing an Euclidean transformation based on the
eye corners, which are useful reference points for rigid
registration. However, SDM (and recent landmark localisers
[18]) requires the entire face for localising landmarks and
therefore we perform only whole-face registration.

E. Results and Discussion

The results produced by MUMIE to register real sequences
from the CK+, MMI and AFEW datasets with various types
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Fig. 10. Registration results for R-FFT, GradCorr our method, MUMIE,
on a sequence with a disgust expression followed by blinking. MUMIE
accumulates little drift error and is not affected by the sudden motions that
occur during blinking.

Fig. 11. Illustration that depicts the advantage of part-based registration for
addressing out-of-plane rotations. The subject displays a small pitch rotation
between the neutral phase (t = 1) and the apex phases (t = 37) of the
expression. With whole-face registration (left), the effect of head-pose rotation
is more evident, as the eye corners move visibly downwards in t = 37. The
effect is less visible in part-based registration for left and right eye, as the
eye corners are better aligned.

of facial activity (e.g., talking and facial expressions other
than those of the six-basic emotions), out-of-plane head pose
variations, occlusions and background motion are provided as
supplementary material.

Fig. 10 shows registered frames from an 80-frame long
MMI sequence that contains a disgust expression. The
sequence contains also a blinking expression, which is a chal-
lenging quick facial action that may cause other algorithms to
fail. MUMIE achieves accurate registration and a considerably
smaller drift error.

Fig. 11 shows results from an anger sequence that contains
a pitch rotation. Whole-face registration causes a downward
motion around the eyes, which may be detrimental to the
analysis of facial activity. When the eyes are registered
independently, the effect of head rotation is reduced to a
better extent. Sequences with head pose variation highlight
the importance of doing part-based registration instead of
whole-face registration.

We now quantify the benefits of using multiple reference
frames and then compare MUMIE with other methods.

Fig. 12 depicts the overall average error and average drift
error on the Synthesised dataset when varying the number of
reference frames, TR . When TR = 2 instead of TR = 1 the
error decreases consistently. The average registration errors
for the whole-face, left eye, right eye and mouth decrease
respectively to 13%, 55%, 64%, 78% when TR is set to 2
instead of 1. When TR is larger than 2 the error decreases
generally at a lower rate and sometimes increases. The fact
that performance saturates with TR = 2 is desirable from
a computational complexity perspective, as computation time
increases with TR . In the remaining experiments, we therefore
set TR = 2 while obtaining the multi-frame registration results

Fig. 12. Average drift error, edri f t , and overall average error, ē, on the
Synthesised dataset for varying numbers of reference frames, TR .

Fig. 13. Sequence registration performance in terms of average registration
error over 14 sequences (Synthesised dataset).

for our method. The averaging that takes place when we
integrate information from multiple frames as in (6) may be
responsible in providing little improvement when TR > 2.
While taking the average has the advantage of keeping the
input representation at a limited length that is independent
of TR , it also reduces the weight of each individual frame as
TR increases, since the average is computed by dividing the
contribution of each frame with TR .

Fig. 13 compares the average registration error of MUMIE
with other methods on the Synthesised dataset. Overall, Fig. 13
suggests that MUMIE outperforms other methods significantly
on sequences with facial expression variations. The error
variation for each sequence over time is plotted in Fig. 15
for landmark-based whole-face registration and in Fig. 14
for other methods. Small landmark localisation errors among
consecutive frames cause jittering when using landmark-based
registration. Fig. 16 shows the difference between a sample
pair of consecutive frames from the neutral sequence of Sub-
ject 1. A similar jittering can also be observed when using the
R-FFT method. On the other hand, registration using SURF,
GradCorr and MUMIE produces only little jittering, also for
non-neutral sequences (registered sequences are provided as
supplementary material). Even though the registration error
may increase with expression variations (see Fig. 14), this
increase happens gradually without a jittering effect and the
registration error at the end of the sequences becomes low,
which is indicative of low drift error. The best results are
obtained with MUMIE (multi-frame) and, expectedly, MUMIE
(single-frame) produces higher drift errors compared to its
multi-frame variant.

However, the whole-face registration performance of SURF
and GradCorr do not generalise to part-based registration.
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Fig. 14. Whole-face and part-based registration errors of compared methods on the Synthesised dataset. Each line represents the error over time, es,t , for one
sequence (see legend on top right). MUMIE (multi-frame) results are obtained with TR = 2. MUMIE outperforms other methods, with a notable difference
in part-based registration.

Fig. 15. Performance of landmark-based registration on sequences of
the Synthesised dataset depicted separately for sequences of Subject 1 and
Subject 2. See legend of Fig. 14 for the expression corresponding to each
colour.

SURF keypoints are extracted from regions with rich texture.
In part-based registration, frames contain less texture and
relatively higher non-rigid motions. Therefore, finding

keypoints for rigid registration becomes more challenging.
The part-based registration error of GradCorr generally
increases gradually over time. However, unlike whole-face
registration, the error is not reversed in the offset of the
expression; therefore, part-based registration with GradCorr
yields visible drift errors. While the failure of a generic rigid
registration method when the input has considerable non-rigid
variations is not surprising, the large error for the neutral
sequences is an unexpected result. This may suggest that
GradCorr requires some texture variation to operate reliably,
even for simple cases without outlier motions.

Part-based registration is problematic also for R-FFT:
see for example the large performance difference between
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Fig. 16. Difference images computed from a consecutive pair of images
from the neutral sequence of Subject 1 of the Synthesised dataset. Grey levels
visualise the registration errors. GradCorr, SURF and MUMIE produce little
jittering error.

the left and right eye of Subject 2 in Fig. 14. While investigat-
ing this irregular outcome, we noticed a difference between the
unregistered versions of the left and the right eye sequences.
The initial registration error in left eye sequences of Subject 2
was causing the facial contour to appear in some frames and
disappear in others. The R-FFT method operates on gradient
images and the contour of the face produces a high gradient
which may be misleading the FFT-based algorithm.

The part-based registration errors of MUMIE are consider-
ably smaller than those of other methods (Fig. 13 and Fig. 14).
The error for whole-face registration does generalise to part-
based registration; that is, even though the error grows as the
expression evolves to apex, the error decreases during offset.
MUMIE outperforms other methods, even when it is used with
a single reference frame, i.e., TR = 1. The performance of
MUMIE with TR = 2 is particularly high, as the final error is
less than 1 pixel for all sequences except the mouth sequences
of Subject 1 and 2 for the surprise expression (see Fig. 14),
which is the expression that involves arguably the largest non-
rigid variation. The left and right eye performance of each
subject is quite similar, which implies that symmetrical non-
rigid motions of the same subject yield consistent results.
The surprise and fear expressions cause higher errors when
registering the eyes of Subject 2; this may be due to the
eyebrows of Subject 2 being raised higher than those of
Subject 1. (For both subjects, we raised eyebrows as much
as possible when synthesising sequences, however, there are
differences between facial rigs of the subjects.) Other inter-
subject performance differences may be due to the skin texture;
while Subject 1 has wrinkles, the skin of Subject 2 is smooth.
Wrinkles are advantageous as additional texture if they are not
moved by the expression, or they may be disadvantageous if
they cause more non-rigid motion.

Non-uniform illumination variations typically cause
registration failures on the PIE dataset, rendering the average
sequence registration error of little use for quantitative evalu-
ation. Therefore, we discuss the compared methods using the
error visualised over time, where the performance of methods
before and after failure is observed directly. Fig. 17 illustrates
the performance of all compared methods for 5 randomly
selected PIE sequences. (The results of all 67 sequences are
shown as videos in the supplementary material.) Landmark-
based registration deteriorates in the presence of illumination
variations due to increased error in landmark localisation.
SURF-based registration does not perform reliably in the PIE
dataset as the number of matched keypoints falls significantly.

R-FFT is only slightly affected by illumination variations
due to the robustness in the design of this method. R-FFT
fails while registering the 17th frame of almost all PIE
sequences, due to the sudden illumination variation in this
frame (see Fig. 7). GradCorr is also designed to be robust, and
its performance deteriorates only slightly with illumination
variations. Similarly to R-FFT, registration via GradCorr
typically fails in the 17th frames of the sequences. Compared
to SURF or landmark-based registration, both R-FFT and
GradCorr achieve significantly better performance in the
presence of illumination variations. However, both methods
accumulate drift errors over time.

Fig. 17 depicts the performance of MUMIE in after failure
identification and correction. Uncorrected failures occurred
only in two frames of Subject-34’s sequence with MUMIE
(single-frame). Overall, Fig. 17 suggests a considerable differ-
ence between MUMIE and other methods: the error is lower
than that of other methods and, even though error does increase
over time, the increase is lower than R-FFT or GradCorr.
MUMIE (multi-frame) performs particularly well, as the error
in the last frame is smaller than 1 pixel for all sequences.

Finally, Fig. 18 (bottom row) shows the average error,
ēs , for each sequence of MUMIE (multi-frame) with and
without failure identification and correction. The former is
computed by eliminating the frames where correction was
not possible — Fig. 18 (top row) shows the ratio of those
frames. The performance of our method is notably accurate
after failures are automatically corrected, with an average
error smaller than 1 pixel for 65 out of 67 sequences. Our
method has successfully corrected most of failures of the PIE
sequences (see Fig. 18 top). However, correcting a failure
within a sequence may not be possible if a sudden appearance
variation (e.g., out-of-plane head rotation) makes a frame
visually dissimilar from all preceding frames. This may cause
subsequent registration failures, and a reasonable action to take
after a number of failures is to restart the registration process
by changing the reference frame to the one where the sudden
appearance variation caused the registration failure.

F. Computation Time and Convergence Rate

We report the computation time of the proposed framework
and highlight the usefulness of employing the magnitude of the
motion representation as prior information while performing
coarse-to-fine estimation.

Fig. 19 (left) shows the computation time per frame with
respect to the amount of initial registration error. The overall
average computation takes 2.74 seconds when all estimators
are applied in a cascaded manner, and 1.59 seconds when
estimators are selected at each iteration based on the mag-
nitude of the motion representation (i.e., adaptively). For the
cascaded approach, we allowed 6 iterations for the estimators
except the finest one, as allowing for fewer iterations prevented
convergence for some samples. The adaptive approach is
on average faster, as coarse estimators are employed only
when the initial registration error is large. Also, even when
coarse estimators are used, they are generally used for fewer
iterations, as we need not define a termination criterion for
each estimator in the cascade.
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Fig. 17. The performance of compared methods on five randomly selected PIE sequences, illustrated as error per frame over time, es,t . Each sequence is
represented with a different colour. Note that we depict error at two different scales by inserting a break into the vertical axis. Even the robust R-FFT
and GradCorr methods accumulate significant drift errors over time, whereas MUMIE produces little drift error, particularly in a multi-frame setting
(i.e., with TR = 2).

Fig. 18. Performance of MUMIE (multi-frame) for each sequence of the PIE
dataset. (Top): The percentage of successfully registered frames. (Bottom):
The average registration error with and without failure identification and
correction.

Fig. 19. The efficiency improvement achieved by choosing the estimators
based on the motion representation’s magnitude (i.e., adaptively) instead
of applying all estimators in a cascaded manner. (Left): Computation time
against initial registration error, shows that registration takes less time with
the adaptive approach as coarse estimators are used only when misalignment
is large. (Right): Registration error against the number of iterations, depicted
separately for samples of small misalignment and large misalignment. Note
that the error decreases monotonically with the adaptive approach.

Fig. 19 (right) highlights the advantage of the adaptive
approach by showing the error against the number of iterations
on two different test sets: one that includes samples with
a registration error up to 4 pixels (i.e., small misalignment)
and one where the registration error of samples reaches up to
15 pixels (i.e., large misalignment). As the registration error
decreases, the magnitude of the representation also decreases,
and therefore the adaptive approach proceeds registration with

TABLE II

CONVERGENCE RATE AGAINST THE AMOUNT OF REGISTRATION ERROR.
A REPRESENTATION COMPUTED FROM GABOR FILTERS ACROSS 5

SCALES, {2 j }4j=0, CAN TACKLE LARGER REGISTRATION ERRORS

THAN ONE COMPUTED FROM FILTERS AT 3 SCALES, {2 j }2j=0

finer estimators, which results in a monotonic decrease in aver-
age error, and an earlier convergence compared to the cascaded
approach when misalignment is small. With the cascaded
approach, the error is not always reduced monotonically as in
some cases the coarse estimators reach their granularity limit
before they reach their limit of iterations, in which case they
cannot reduce the registration error further. The cascaded and
adaptive approaches reduce the error at a similar rate on the set
with samples of large misalignment. However, the cascaded
approach is still slower on average, as in some cases the
convergence occurs before the last (i.e., finest) estimator, yet,
the cascaded approach needs to proceed with the subsequent
estimators in the cascade at least for one iteration.

The maximal amount of registration error that can be tackled
by our method depends on the scale of the Gabor filters that
we use to compute the representation. We used filters at three
scales, {2 j }2j=0, which may not converge if the registration
error is 10 pixels or larger (see Table II). However, larger
filters can tackle larger errors, as we report in Table II, where
we trained a model that is based on a representation computed
from filters at five scales, {2 j }4j=0.

VII. CONCLUSION

We proposed a novel rigid registration framework that is
based on optimisation via statistical learning and that can cope
with outlier non-rigid facial motions, drift errors and registra-
tion failures. Extensive experiments showed that using mul-
tiple reference frames during registration reduces drift errors
and the proposed framework performs accurate registration in
the presence of facial expressions or non-uniform illumination
variations. Overall, the proposed framework performs reliably
and consistently across various scenarios, both for whole-face
or part-based registration. The code of the proposed method
and the synthesised facial expression sequences are available
as supplementary material.
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Future work includes investigating motion representations
that are both robust and computationally efficient, and investi-
gating the benefits of the proposed framework in visual speech
recognition and micro-expression detection.
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