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Pedestrian Detection Inspired by Appearance
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Abstract— Most state-of-the-art methods in pedestrian detec-
tion are unable to achieve a good trade-off between accuracy
and efficiency. For example, ACF has a fast speed but a
relatively low detection rate, while checkerboards have a high
detection rate but a slow speed. Inspired by some simple
inherent attributes of pedestrians (i.e., appearance constancy and
shape symmetry), we propose two new types of non-neighboring
features: side-inner difference features (SIDF) and symmetrical
similarity features (SSFs). SIDF can characterize the difference
between the background and pedestrian and the difference
between the pedestrian contour and its inner part. SSF can
capture the symmetrical similarity of pedestrian shape. However,
it is difficult for neighboring features to have such above
characterization abilities. Finally, we propose to combine both
non-neighboring features and neighboring features for pedestrian
detection. It is found that non-neighboring features can further
decrease the log-average miss rate by 4.44%. The relationship
between our proposed method and some state-of-the-art methods
is also given. Experimental results on INRIA, Caltech, and KITTI
data sets demonstrate the effectiveness and efficiency of the
proposed method. Compared with the state-of-the-art methods
without using CNN, our method achieves the best detection
performance on Caltech, outperforming the second best method
(i.e., checkerboards) by 2.27%. Using the new annotations of
Caltech, it can achieve 11.87% miss rate, which outperforms
other methods.

Index Terms—Pedestrian detection, feature extraction,
non-neighboring features, neighboring features, adaboost.

I. INTRODUCTION

EDESTRIAN detection has the various applications in

autonomous driving, auxiliary driving, video surveillance,
etc. The process of pedestrian detection mainly consists of
feature extraction and classification. And feature extraction is
a key for pedestrian detection. There are three main manners
for feature extraction: (1) completely Hand-Crafted (HC)
features [16], [19], [35], [42], (2) Hand-Crafted candidate
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features followed by Learning Algorithms (e.g., feature selec-
tion algorithm) (HCLA) [11], [13], [36], [53], and (3) Deep
Leaning (DL) based features [22], [40], [47]. This paper
concentrates on HCLA.

Most state-of-the-art methods generate the candidate
features by using local features (e.g., local mean fea-
tures [4], [11]) or neighboring features (e.g., haar fea-
tures [53], [54]). These features are the general descriptors.
Recently, some specific pedestrian attributes are used for
feature design. For example, Zhang et al. [52] proposed
the InformedHaar features based on that the common sense
that pedestrians usually appear up-right. Though its success,
it’s still the local feature and not good enough to describe
the inherent attributes of pedestrian. Appearance constancy
and shape symmetry are also two simple and basic attributes.
However, the previous methods for pedestrian detection do not
make full use of two above attributes. In this paper, we pro-
pose two new types of non-neighboring features: side-inner
difference features (SIDF) and symmetrical similarity fea-
tures (SSF). They can describe two above attributes very well.
The neighboring features are also proposed for pedestrian
detection. The proposed method based on non-neighboring and
neighboring features is called NNNF or NNF+NF. NNF con-
tains two types of non-neighboring features: SIDF and SSF.
NF means the proposed neighboring features The contributions
of the paper are as follows:

1) Appearance constancy and shape symmetry are two
inherent attributes of pedestrians. Inspired by these
attributes, we propose two new types of features:
side-inner difference features (SIDF) and symmetrical
similarity features (SSF). SIDF and SSF can abstract
the above pedestrian attributes very well. Specifically,
SIDF can characterize the difference between the back-
ground and pedestrian and the difference between the
pedestrian contour and its inner part. SSF can capture
the symmetrical similarity of pedestrian shape. Com-
pared to some state-of-the-art features (e.g., LDCF [29]
and Checkerboards [53]), our features are oriented
non-neighboring features. It’s difficult for neighboring
features to have such above characterization abilities.

2) Neighboring features (NF) are also designed for
pedestrian detection. Both neighboring features (NF)
and non-neighboring (NNF) features are assigned
large freedom in scale (size), aspect ratio, patch
distance, and partition location, resulting in the
strong discrimination. We propose to employ both
non-neighboring features and neighboring features for
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pedestrian detection. Among all the selected features,
it is found that about 70% of them are neighboring
features and 30% of them are non-neighboring ones.
Thus, the non-neighboring features are complementary
to the neighboring ones. The relationship between our
proposed features and some state-of-the-art features is
also revealed.

3) Compared to the state-of-the-art methods without using
CNN, our method achieves the best detection perfor-
mance (i.e., 16.20% miss rate on Caltech pedestrian
dataset [15]). Meanwhile, our method achieves the
best trade-off between efficiency and accuracy only
by the common CPU. Using the new annotations of
Caltech [54], the miss rate of our method is 11.87%,
which also outperforms other methods.

A preliminary version of this work appeared in [8]. This
paper extends the earlier work [8] as follows. Firstly, we reveal
the relationship between our proposed method and some state-
of-the-art methods (e.g., LDCF [29]) through the analysis and
the experiment. It demonstrates that our methods incorporate
more abundant features. Secondly, we comprehensively com-
pare our method with two state-of-the-art methods without
using CNN (i.e., MT-LDCF [51] and Checkerboards [53]) on
multiple subsets of Caltech pedestrian dataset. Experimental
results show that our method is the best and the most stable.
Thirdly, we use more large candidate features or more large
training negatives to re-train our method. It achieves a better
detection performance than [8]. Using the new and more accu-
rate annotations [54] of Caltech pedestrian dataset, we also
re-train our method and compare it with some state-of-the-art
methods. Fourth, Experiment results on KITTI dataset [20]
are also shown. In addition, we also give more detailed
explanations of our method in this paper, for example,
the channel-specific normalization in Section III-F.

The rest of this paper is organized as follows. We first
review related work in Section II. The proposed methods are
then given in Section III. Experimental results are shown in
Section IV. Finally, we conclude in Section V.

II. RELATED WORK

Generally, pedestrian detection methods can be divided into
three families [2]: DPM (Deformable Part Detectors) vari-
ants [18], [19], [27], [46], deep networks [9], [22], [40], [50],
and decision forests [13], [34], [53], [54]. Our method can
be categorized into the family of decision forests. In this
section, we review two important stages in the family of
decision forests: feature extraction and classification. Specif-
ically, the process of this kind of methods is as follows:
(1) a set of channel images are generated from an input image;
(2) then, features are extracted from patches of the channels;
and (3) finally, the features are fed into a decision forest
learned via AdaBoost.

A. Feature Extraction

Histograms of Oriented Gradients (HOG) [16] is a very
famous feature descriptor for pedestrian detection. After that,
Dollér et al. [13] proposed Integral Channel Features (ICF).
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Firstly, multiple channel images (HOG+LUV) such as gradi-
ent histograms, gradient magnitude, and CIE-LUV color chan-
nels are computed. Then, first-order and higher-order features
are efficiently generated by using integral images. Based on
ICF [13], many methods (e.g., ACF [11], SquaresChnFtrs [4],
InformedHaar [52], LDCF [29], and Checkerboards [53]) are
proposed. In ACF [8], the original channels (i.e., HOG+LUV)
are smoothed and each pixel in the resulting lower reso-
lution channels is used as the feature. SquaresChnFtrs [4]
only uses the local sum of squares in each channel as
the features. InformedHaar [52] is specifically designed for
pedestrian detection where a pool of rectangular templates is
tailored to the statistical model of the up-right human body
across the channels. LDCF [29] and Checkerboards [53] both
convolve original channels with a filter bank. LDCF [29]
learns the filter bank by using the technique of Linear Dis-
criminant Analysis (LDA) whereas Checkerboards [53] uses
the handcrafted filter bank. In Checkerboards [53], six types
of filters are considered: InformedFilters, CheckerboardsFil-
ters, RandomFilters, SquaresChntrs filters, LDCFS8 filters,
and PcaForeground filters.

SpatialPooling+ [31], [32] does not take channel images
as input. Instead, it applies the operator of spatial pooling
(e.g., max-pooling) on covariance descriptor and Local Binary
Pattern (LBP). Blob-like operator [26] and Torque opera-
tor [30] can be also used for image abstraction. Enzweiler
and Gavrila [17] proposed a multilevel mixture-of-experts
framework by combining the multicue pedestrian classifiers.
Khan et al. [24] proposed to use action-specific person detec-
tion to help the action detection. Depth information [21] is
also used to help the detection performance.

Though the above methods have achieved great success
in pedestrian detection, they are unable to achieve a sat-
isfying trade-off between accuracy and efficiency. Accord-
ing to [2] and our experimental results, the performance
of some above methods can be summarized as follows:
On the Caltech pedestrian dataset [7], [15], the decreasing
order of the log-average miss rates of the above meth-
ods is ICF > ACF > SquaresChnFtrs > InformedHaar >
LDCF > SpatialPooling+ > Checkerboards. Loosely speak-
ing, the increasing order of the detection speed of these
methods is SpatialPooling+ < ICF < SquaresChnFtrs <
Checkerboards < InformedHaar < LDCF < ACF. It can be
concluded that it’s difficult to simultaneously obtain the lowest
log-average miss rate and fastest detection speed.

Recently, the methods based on CNN have achieved great
success on pedestrian detection [10], [25], [41], [43], [50].
For example, Tian et al. [43] proposed DeepParts to improve
the detection performance by handling occlusion with an
extensive part pool. Li et al. [28] extended Fast R-CNN
to scale-aware Fast R-CNN to handle the detection of
small pedestrians. CCF [50] extends the original channel
features from HOGHLUV based features to CNN based
features. In fact, the simple feature design can also be
complementary to CNN. For example, by combining the
simple local features (e.g, ACF [11], Checkerboards [53],
and LDCF [29]) and very deep CNN features (e.g., VGG [38]
and AlexNet [23]) , Cai et al. [10] could decrease the miss
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rate from 18.90% to 11.75%. So in this paper, we focus the
feature design in the traditional methods.

B. Classification

Once the candidate features are generated, the following
step is feature selection and classification. Usually, feature
selection and classification are done in a unified framework
of AdaBoost. In pedestrian detection, the weak classifiers
are either decision forests or simple thresholding classifiers
(i.e., the level-1 trees). Weak classifiers are selected and
weighted by variants of AdaBoost algorithms.

In order for high efficiency, cascade structure is adopted
to select and arrange the weak classifiers in AdaBoost.
VJCascade [45] proposed by Viola and Jones is the most clas-
sical cascade AdaBoost algorithm. It selects weak classifiers
step by step until predefined minimum acceptable detection
rate and maximum allowable false positive rate are simulta-
neously satisfied. Retracting Cascade [5] and BoostChain [49]
further improve the detection speed of VJCascade by reusing
the weak classifiers of previous stages to construct the new
stage. Soft-Cascade [6] sets each weak classifier with a rejec-
tion threshold as one stage. Based on the insight that the
positive examples rejected by the complete classifier can be
safely rejected earlier, MIP [56] was proposed to automat-
ically set the rejection thresholds of a given Soft-Cascade.
By adding a complexity term to the objective function,
FCBoost [39] jointly accounts for classification accuracy
and speed. Crosstalk Cascade [14] makes full use of cor-
relation between detector responses at nearby locations and
scales to accelerate detection speed with a little performance
loss. To speed up the training of boosted decision trees,
Appel et al. [1] proposed to prune unpromising features early
in the training process.

ITI. OUR METHODS
A. Appearance Constancy and Shape Symmetry

Most state-of-the-art features for pedestrian detection are
designed to describe the local image variance. Thus, they do
not make full use of the inherent attributes of pedestrians.
In fact, some attributes of pedestrians can be used to fur-
ther improve detection performance or accelerate detection
speed. For example, prior knowledge that pedestrians above
the ground is used for pedestrian detection. Park et al. [33]
implicitly encoded the information of ground lane to penal-
ize detections which deviate from the ground plane. In [3],
Benenson et al utilized the information ground lane to accel-
erate detection speed. Zhang et al. [52] incorporated the com-
mon sense that pedestrians usually appear up-right into the
design of simple and efficient haar-like features. After that,
Zhang et al. [55] further proposed to use the average con-
trast maps for pedestrian detection due to the observation
that pedestrians indeed exhibit discriminative contrast texture.
Though these methods have achieved success, they still does
not make full use of the attributes of pedestrians. Appearance
constancy and shape symmetry are two simple pedestrian
attributes. In this paper, we design two types of no-neighboring
features to abstract two above attributes very well. First of all,
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Fig. 2.  Average values of channel images . (a) Inversed L (Luminance)
channel. (b) U channel. (c) Inversed V channel. (d) G channel.

we give the specific explanations of appearance constancy and
shape symmetry. Fig. 1 gives some examples of the cropped
pedestrians

1) Appearance Constancy: The appearances of pedestrians
are usually contrast to the surrounding background. Mean-
while, pedestrians can be seen as three main different parts
(i.e., head, upper body, and legs). The appearances of these
parts are usually constancy. For example, the woman wears
the sky-blue coat and the black pants in Fig. 1(a). We call this
inherent attribute of pedestrians appearance constancy. Thus,
the regions located inside the pedestrians (e.g., patches B
in Figs. 1(a) and (b)) are contrast to that located in the
background (e.g., patches A in Figs. 1(a) and (b). Note that
patches A and B lie in the same horizontal. Patches B are
called the inner patches, and patches A are called the side
patches.

2) Shape Symmetry: As stated in [52], pedestrians usually
appear up-right. Thus, the pedestrian shape is loosely symmet-
rical in the horizontal direction. For example, the symmetrical
regions (patches A and A’) in the Figs. 1(c) and (d) have the
similar characteristic. This inherent attribute is called shape
symmetry.

Inspired by the above appearance constancy and shape
symmetry, we can design two types of non-neighboring fea-
tures. The non-neighboring features can describe appearance
constancy and shape symmetry. It can be clearly explained
by Fig. 2. The average appearances of pedestrians in chan-
nel images such as L, U, V, and G are given. Due to
the appearance constancy, the pixel values of pedestrians
in L, U, and V channel images are similar in the same
horizontal, which are different from that of the two-side
regions (i.e., background). The difference can be characterized
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Fig. 3. Demonstration of the discrimination and usefulness of

non-neighboring features. (a) and (d) show Object 1 and Object 2, respec-
tively. In (b) and (e), neighboring features are extracted. In (c) and (f),
non-neighboring features are extracted.

by the non-neighboring feature formed by patches A and B
in Figs. 2(a)-(c). Meanwhile, the pixel values of the inner
part of pedestrians in G channel image are constantly small,
and the pixel values of pedestrian contour in G channel image
are relatively large. Thus, the large difference in G channel
image can be characterized by not only the neighboring feature
formed by patches A and B but also the non-neighboring
feature formed by patches C and D in Fig. 2(d). Due to shape
symmetry, the symmetrically non-neighboring regions in the
same horizontal have the similar characteristic. For example,
the symmetrical patches E and E’ in Fig. 2(d) describe the
similar edge characteristic, while patches C and C’ in Fig. 2 (c)
are both bright. Figs. 2(a) and (b) also support it.

The discrimination and usefulness of non-neighboring fea-
tures are graphically supported by Fig. 3. In Fig. 3, there
are two objects (classes) to be classified. We call the object
in Fig. 3(a) Object 1 and the object in Fig. 3(d) Object 2.
There is a line in the middle of Object 1 whereas the
inner part of Object 2 is flat. In both Figs. 3(b) and (e),
two neighboring dashed rectangles form a feature. We can
see that this neighboring feature is unable to distin-
guish between Object 1 and Object 2 because the val-
ues of neighboring features in Object 1 (i.e., Fig. 3(b))
and Object 2 (i.e., Fig. 3(e)) are equal. Now we use two
non-neighboring patches in Figs. 3(c) and (f) to form the
features. Because the blue dashed patch in Fig. 3(c) contains a
line whereas the blue dashed patch in Fig. 3(f) contains noth-
ing, the non-neighboring features in Object 1 (i.e., Fig. 3(c))
and Object 2 (i.e., Fig. 3(f)) have the different values. Thus,
the two objects can be correctly classified according to the
different values of the non-neighboring features. It demon-
strates the discrimination and usefulness of non-neighboring
features.

B. Side-Inner Difference Features Inspired
by Appearance Constancy

Inspired by appearance constancy, we design the
non-neighboring difference features in the same horizontal.
We call the non-neighboring difference feature Side-Inner
Difference Feature (SIDF). Fig. 4 gives some possible forms
of SIDF. Fig. 4(a) shows that the distance d(A, B) of
non-neighboring patches A and B in SIDF can be different.
To describe the difference between the background and
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Fig. 4. Some possible forms of side-inner difference features (SIDF).
(a) Varying distance between two patches. (b) G Varying size of two patches.
(c) Varying size of one patch with the other fixed. (d)Varying aspect ratio.
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Fig. 5. The patch B is randomly located between the patch A and its
horizontal mirror A’. The locations of patch B in (a) and (b) are different.
But they are both among patch A and its mirror A’. (¢) and (d) show that the
width of patch B can be changed.

the pedestrian and the difference between the pedestrian
contour and its inner part, the location /(B) of patch B in the
interval of the locations /(A) and /(A”") where patch A’ is the
horizontal mirror of patch A. That is, [(B) € [[(A),l(A"].
As demonstrated in Fig. 5, [(B) is randomly sampled from
[[(A),1(A)] in our experiments.

Both Figs. 4(b) and (c) show varying sizes of patches. But in
Fig. 4(b) both two non-neighboring patches equally vary with
size (scale) whereas in Fig. 4(c) only one patch varies its size.
It’s good enough for letting patches A and B have the different
width but the same height. Figs. 5(c) and (d) also give an
example of the different widths of patches A and B. Fig. 4(d)
shows SIDF with varying aspect ratio.

The size of a patch (e.g., patch A in Fig. 5(a)) is allowed
to change in a reasonable range. In this paper, the variation
of a patch is limited to a maximum square. In other words,
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Fig. 6. The size of patch is allowed to change inside the maximum square
indicated by green squares.

Fig. 7. A side-inner difference feature.

Algorithm 1 Generating the Candidate Features of SIDF

1: Initialize the feature pool T" to be empty;

2 fory=1,x=1to H, W do

32 forh=1,w=1to hyp, w,, do

4 ifr+w—1<H&y+h—1<W then

5: TA=2,Ya =Y, WA =w,ha = h;

6: if z+w—1<W/2 then

7 dst =2x (W/2 - (z+w—1));

8 wp = randi([1, min(wy,,dst — 1)]), hg = h;
9

xp = randi(ft + w + 1, W —2 —w+ 2 —
wB])’ YB =Y;
10: Compute SIDF by Eq. (1) and add it to T
11: end if
12: if £ > W/2+1 then
13: dst =2 x (x — (W/2+1));
14: wp = randi([1, min(wy,, dst — 1)]), hg = h;
15: xp =randi(W+2—z,2—wp —1]),yg = y;
16: Compute SIDF by Eq. (1) and add it to 77
17: end if
18: end if
19:  end for

20: end for

the sizes of both patches A and B are allowed to be not
larger than the size of the maximum square. The green squares
in Fig. 6 are maximum squares and patches have to be inside
them. A typical maximum square is of size 8 x 8 cells
(1 cell=2 x 2 pixels).

Suppose that the side-inner difference feature f(A, B)
consists of two patches A and B (see Fig. 7). The numbers of
pixels of patches A and B are denoted by N4 and Np, respec-
tively. Let S4 and Sp be the pixel sum of patches A and B in
a channel image, respectively. Then the side-inner difference
feature f(A, B) can be calculated by

Sa  Ss
f(A,B) = Ny Ng 1
where the weights 1/N4 and 1/Np are used for normal-
ization. Algorithm 1 gives the process for generating the
candidate feature pool of SIDF. W and H is the detection
model width and height. w,, and h,, is the maximum width
and height of the patch.
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Fig. 8. Examples of symmetrical similarity features.

C. Symmetrical Similarity Features Inspired
by Shape Symmetry

As stated in Section III-A, the shape of pedestrian is loosely
symmetrical. Thus, patches A and A’ in Fig. 5 have the
similar characteristic. Inspired by this characteristic, we design
the Symmetrical Similarity Features (SSF). The symmetrical
similarity features f(A, A’) of patches A and A’ can be
calculated by the following equation:

A AN =1fa— ful, )

where fa and f4 represent the features of patches A and A’,
for example, histogram features and local mean features.
For the efficiency of computation, we just use the local mean
features to represent the patches. Namely, f4 = Sa/Na and
far = Sa//Ny . Then, Eq. (2) can be written as the following
equation:

Sar

Ny

However, due to the changes of the pedestrian posture,
the pedestrian symmetry is relatively loose. It results that
Eq. (3) is very sensitive to the pedestrian deformation.

To eliminate the above influence caused by pedestrian
deformation, we replace the local mean features of patches
by the max-pooling features [48]. In Fig. 8, two symmetrical
patches A and A’ are represented by three different color
sub-patches, respectively. For example, patch A consists of
three sub-patches A1, Ay, and A3. They are randomly gener-
ated inside the patch A. The size and aspect ratio of them can
be arbitrary, whereas the area of them should be larger than
half of patch A. Then, the feature value of patch A is set as
the maximum of mean values of three sub-patches. It can be
expressed as:

Ne A
Fa,A) =14 . 3)

Si
fm(A) = max. N “4)

Note that the maximum is replaced by minimum in L and V
channel images. Then, the symmetrical similarity feature
f(A, A") of patches A and A’ is calculated by the following
equation:

FAA) =1 fu(A) = fu(A)I. )

Algorithm 2 gives the process for generating the candidate
feature pool of SSE. W and H is the detection model width
and height. wy and hg is the minimum width and height of



CAO et al.: PEDESTRIAN DETECTION INSPIRED BY APPEARANCE CONSTANCY AND SHAPE SYMMETRY

Algorithm 2 Generating the Candidate Features of SSF

1: Initialize the feature pool T" to be empty;

22 fory=1,z=1to H, W do

3 for h = h,, w = ws to h,y,, W, do

4: ifr+w—-1<W/2&y+h—1<W then

5 TaA=T,Ya =Y, wa=w,ha=h;

6 rp=W+1—2x,yg =y, wp =w,hg = h;

7 Randomly sample three sub-patches inside patch
A and patch B, respectively;

8: Compute SSF by (5) and add it to T7;
9: end if

10:  end for

11: end for

(b)

Fig. 9. Some possible forms of neighboring features. The green squares are
called maximum squares. (a) Local mean features. (b) Neighboring difference
features.

the patch. w,, and h,, is the maximum width and height of
the patch. The size of the symmetrical patches A and A’
is allowed to change in a reasonable range, which varies
from 6 x 6 cells to 12x 12 cells. As the symmetry in pedestri-
ans mainly exists in L, U, V, and G channel images, we only
use the above channel images to generate SSF.

D. Neighboring Features

In Section II-B and III-C, we introduce two types of
non-neighboring features (i.e., SIDF and SSF) based on
appearance constancy and shape symmetry, respectively.
In fact, both non-neighboring features and neighboring fea-
tures are crucial for pedestrian detection. As stated in
Section II-A, most of state-of-the-art features belong to neigh-
boring features. ICF [13], ACF [11], and SquaresChnFtrs [4]
are very simple and efficient to be computed by the trick
of integral image. InformedFilters [52] and Checkerboards-
Filters [53] are rich in representation but in-efficient in com-
putation due to the relatively high complexity of the features.

In this section, we propose to form the pool of neighboring
features by using local mean features (see Fig. 9(a)) and
neighboring difference features (see Fig. 9(b)) with enough
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freedom in size, patch direction, aspect ratio, and partition
location. The left portion of Fig. 9(a) shows that the size of a
feature is allowed to vary in a large extent. Patch direction is
either vertical or horizontal. The patch direction in the middle
of Fig. 9(a) and the left portion of Fig. 9(b) is vertical whereas
the direction in the right portion of Fig. 9(a) and the right
portion of Fig. 9(b) is horizontal.

Partition location is illustrated in Fig. 9(b) which is defined
as the location where two neighboring patches intersect.
Partition direction can be horizontal and vertical. Assigning
large freedom in partition location and partition direction can
strengthen the representative ability and the discriminative
ability of the neighboring difference features.

To avoid the large number of the candidate features,
we specify a maximum square. The sizes of local mean
features and neighboring difference features are not allowed
to be larger than the size of the maximum square. The green
squares in Fig. 9 represent the maximum squares. As stated
in Section III-B, a typical size of the maximum square
is 8x8 cells.

The local mean features and neighboring difference features
illustrated in Fig. 9 are suitable to be quickly computed
with integral image. Hence the feature extraction process
is very efficient. Note that neighboring difference features
can be calculated using the same formula (i.e., Eq. (1)) of
non-neighboring features.

In our method, both the neighboring features (i.e., local
mean features and neighboring difference features) and
non-neighboring features (i.e., SIDF and SSF) are used for
generating the candidate features. Soft-Cascade AdaBoost [6]
is used for learning the strong classifier from the candidate
features. The rejected threshold of each stage is the same
as the default value (i.e., -1) in [44]. To improve perfor-
mance [13], [53], level-2 and level-4 decision trees are also
used based on AdaBoost.

E. Relation to Other Methods

Figs. 7, 8, and 9 show the proposed non-neighboring
features and neighboring features. It can be seen that a
non-neighboring feature (e.g., SIDF) is also a difference
feature. If two non-neighboring patches are close enough
(i.e., adjacent), then the non-neighboring feature becomes
neighboring feature. Therefore, neighboring difference fea-
tures can be seen as the special cases of non-neighboring ones.

ICF [13], ACF [11], and SquaresChnFtrs [4] are subsets
of the local mean features shown in Fig. 9(a). LDCF [29]
and FCF [53] are neighboring features. The relationship of
different features is shown in Table I.

Moreover, binary versions of LDCF features [29] are
also special cases of neighboring features shown in Fig. 9.
In LDCF, a filter bank is obtained by an LDA technique.
Convolving the filter banks with the channel images results
in LDCF features. Fig. 10 shows the first three LDCF filters
on 10 channel images (i.e., HOG+LUYV) for a 4 x 4 patch.
Three filters in the first column of Fig. 10 are chosen and
their values are shown in Fig. 11. All the values in Fig. 11(a)
are approximately equal. In Fig. 11(b), the values of the first
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TABLE I
RELATIONSHIP OF DIFFERENT FEATURES
Feature ICF, ACF, SquaresChnFtrs, LDCF, FCF SIDF, SSF
Category neighboring non-neighboring
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Fig. 10. The first 3 filters on 10 channel images (i.e., HOG+LUYV) for a 4 x 4
patch.
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Fig. 11. The filter values in the first column of Fig. 10.
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Fig. 12. Binary LDCEF filters corresponding to Fig. 10.

two columns are negative and those of the last two columns
are positive. In Fig. 11(c), the values of the first two rows
are negative and those of the last two rows are positive.
Therefore, we propose to binarize the filters by threshold
zero. The binarized filters corresponding to Fig. 10 are shown
in Fig. 12.

Comparing Fig. 12 with Fig. 9, one can conclude that the
binary filters of LDCF are a small subset of the proposed
neighboring features/filters. Denote the pedestrian detection
method with the binary filters by LDCF-B. The ROC curves
of LDCF and LDCF-B on the Caltech pedestrian detection
dataset (the Caltech training set is used for training) are
shown in Fig. 13. The source codes of LDCF are from
Dollar’s toolbox [44]. The log-average miss rates of LDCF
and LDCF-B are 29.93% and 29.52%, respectively. LDCF-B
is comparable and even slightly better than LDCF. Because our
method employs much richer and more discriminative features
compared to LDCF-B, our method gets much better results
than LDCF-B and LDCF as well.
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Fig. 13. ROC curves of LDCF and LDCF-B on Caltech dataset [15].

F. Channel-Specific Normalization

In ICF [13], ACF [11], LDCF [29], Checkerboards [53],
and so on, the features extracted from channel images are
directly used as the input of decision forests and AdaBoost.
We propose to properly normalize both the non-neighboring
and neighboring features. Many methods adopt the same nor-
malization strategy for all channel images. Instead, we propose
a channel-specific normalization scheme.

In our channel-specific normalization scheme, features cor-
responding to different channels employ different normaliza-
tion approaches. The reason is that different channels have
different physical meaning and property.

In classical sliding-window based detection approach,
a detection window slides over an image. Let x be a feature in
a detection window. Denote i and ¢ as the mean and variance
of the corresponding channel images in the detection window.
Because L (Luminance) channel is sensitive to variations in
lighting conditions, zero-mean and unit variance approach
is employed for normalization. Formally, the normalization
function f(x) is expressed as:

faoy =224 ©6)
o

In fact, the normalization in Eq. (6) has been widely used
in many applications [45].

As to the U and V channels, we do not perform normaliza-
tion because they are relatively stable when there are variations
in illumination.

Finally, the normalization function f(x) for the gradient
magnitude (G) and six oriented gradients is given by:

fl) =, @)
HG

where u ¢ is the mean of the gradient magnitude channel (G)
in the detection window.

Table II clearly shows
channel-specific normalization.

Our contributions mainly lie in the proposed non-
neighboring features (i.e., SIDF and SSF) and neighboring fea-
tures (NF). But the channel-specific normalization is slightly
and stably helpful for improving performance of pedestrian
detection.

the proposed scheme of
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TABLE 11
CHANNEL-SPECIFIC NORMALIZATION

Channel L U \Y% G 6 Oriented gradients
Method T=u 2

g I27e}

IV. EXPERIMENTS

INRIA dataset [16], Caltech pedestrian dataset [7], [15],
and KITTI dataset [20] are employed for evaluation. In the
INRIA dataset, there are 1237 pedestrians used for training
and 288 pedestrian images used for evaluation. By simple
geometric transformation (e.g., flip and translation) of the
1237 pedestrian images [44], there are 22,666 positive samples
in our training set.

The Caltech pedestrian dataset is more challenging than
the INRIA dataset and hence has become a benchmark of
pedestrian detection. It consists of approximately 10 hours
of 640 x 480 30Hz video taken from a vehicle driving through
regular traffic in an urban environment [7]. The 10 hours
data consists of 11 videos with the first 6 videos used
for training and the last 5 videos for testing. There are
2300 unique pedestrians in the dataset. The standard positive
training data is formed by sampling one image out of each
30 sequential frames. As a result, there are 4250 frames in
which there are 1631 positive samples. A positive sample is
a subimage which tightly contains a pedestrian. The corre-
sponding training data is called Caltech training set. To enlarge
the number of training samples, we sample a frame from
every 15 or 3 frames instead of 30 successive frames, respec-
tively. The result training sets are called Caltech 2x and
Caltech 10x, respectively [53]. Whenever Caltech 2 x training
set or Caltech 10x training set is used, the testing set is the
same. The testing set consists of 4024 frames among which
there are 1014 positive images. The miss rate is log-average
over the FPPI of [1072,10°] unless noted otherwise. FPPI
means False Positve Per Image.

KITTI dataset [20] is a challenging benchmark used for
stereo, optical flow, visual odometry, and object detection.
Pedestrian detection is a subtask of object detection on KITTI
dataset. For pedestrian detection, the benchmark consists
of 7481 training images and 7518 test images. For evaluation
of experimental results, precision-recall curve is used.

A. Self-Comparison Using the Caltech 2x Training Set

Before comparing with the state-of-the-art methods, exper-
imental results on Caltech 2x dataset are reported to show
how the proposed method works and the importance of each
component of the proposed method. Note that the Caltech 2x
training set instead of Caltech 10x training set is used.

The experimental setup is as follows. Classical 10 channel
images (i.e., HOG+LUYV) are used for generating the can-
didate features. The final classifier consists of 4096 level-2
decision trees. The classifier is learned by five rounds, where
the numbers of trees in subsequent rounds are 32, 128, 512,
2048, and 4096, respectively. Each tree is built by randomly
sampling 1/32 of features from the large pool of features.
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Fig. 14. Self-comparison: ROC curves of NF, and NNNF-No, and NNNF
on the Caltech dataset.

TABLE III
COMPARISON OF LOG-AVERAGE MISS RATES

Method MR A MR
NF 27.50% N/A
NF+SIDF 25.67% +1.83%
NF+SSF 25.20% +2.30%
NNNF-No 24.34% +3.16%
NNNF 23.06% +4.44%

5000 hard negatives are added after each round and the
cumulative negatives are limited to 15000. The stride of sliding
windows is 4 pixels. The model size is 64 x 128, which consists
of 2048 cells (1 cell=2x2 pixels). As the height of the
reasonable pedestrian in Caltech dataset is generally taller than
50 pixels, each testing image is upsampled by one octave. ROC
curve is generated by pairs of miss rate and FPPIL.

In NNNF (a.k.a. NNF+NF), both Non-Neighboring Fea-
tures (NNF) and Neighboring Features (NF) are employed.
In the NNF, there are two types of non-neighboring features:
SIDF and SSF. NF+4-SIDF or NF+SSF means that the neigh-
boring features (i.e., NF) are combined with only one type of
non-neighboring features (i.e., SIDF or SSF). In SIDF and NF,
the channel-specific normalization stated in Section III-F can
be used. We denote NNNF-No the method which is the
same as NNNF except that no normalization is conducted
in SIDF and NF.

The ROC curves of NF, NNNF-No and NNNF are shown in
Fig. 14. It is seen that the performance of NNNF is systemat-
ically better than that of NF, meaning that incorporating NNF
is useful for improving detection performance. Meanwhile,
one can observe that NNNF-No is inferior to NNNF. NNNF
employs channel-specific normalization (see Section III-F) in
NF and SIDF whereas NNNF-No does not perform normal-
ization. So it is concluded that pedestrian detection benefits
from the proposed channel-specific normalization.

The above observation can also be seen from Table III
where the log-average miss rates are given. Specifically,
the log-average miss rates of NNNF (i.e., NNF+4NF),
NNNF-No, and NF are 23.06%, 24.34%, and 27.50%, respec-
tively. The log-average miss rate of NNF+NF is 4.44%
smaller than that of NF. So it is said that non-neighboring
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Fig. 15. Among all the selected features, about 30% are non-neighboring
features and 70% are neighboring features. Several representative
non-neighboring features and neighboring features are also shown.

Fig. 16.  Several selected non-neighboring features. The first two features
are side-inner difference features, and the last two features are symmetrical
similarity features.

features contribute significantly for improving detection per-
formance. Specifically, NF4-SIDF and NF+SSF outperform
NF by 1.83% and 2.30%, respectively. It means that SIDF and
SSF can boost the detection performance of NF by incorporat-
ing some complementary information, which is explained in
the next paragraph. NNNF outperforms NNNF-No by 1.28%.
Though the contribution of channel-specific normalization is
not as significant as non-neighboring features, it is steadily
helpful for improving detection performance.

Totally, 12288 features are selected, which consist of 3690
non-neighboring features (NNF) and 8598 neighboring fea-
tures (NF). Among non-neighboring features NNF), there are
2297 side-inner difference features (SIDF) and 1393 sym-
metrical similarity features (SSF). That is, the proportions of
SIDF, SSF, and NF are approximately 18.69%, 11.34% and
69.97% (see Fig. 15). We can conclude that non-neighboring
features are complementary to neighboring features. Several
representative forms of non-neighboring (SIDF and SSF) and
neighboring features (NF) are also shown in Fig. 15.

In Fig. 16, the representative non-neighboring features are
also visualized on pedestrian images. The first two images
show the side-inner difference features (SIDF), and the last
two images show the symmetrical similarity features (SSF).

In fact, SIDF features can be categorized into the fol-
lowing three types. (1) A SIDF feature is called Contour-
Inner SIDF (CI-SIDF) feature if one of its patch is located
on the contour of a pedestrian and the other patch is
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Fig. 17. A ternary model divides a normalized pedestrian image into three
regions: background, contour body, and inner body.
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Fig. 18. The proportions of CI-SIDF, BP-SIDF, and O-SIDF features.

inside of the pedestrian; (2) A SIDF feature is called
Background-Pedestrian SIDF (BP-SIDF) feature if one of its
patch is on the background and the other patch is inside
or on the contour of a pedestrian; and (3) A SIDF feature
different from CI-SIDF and BP-SIDF features is called Other
SIDF (O-SIDF) feature. To know the proportions of the three
types of SIDF features, a ternary model (Fig. 17), consisting
of background, contour body, and inner body, is created
according to average appearance (e.g., Fig. 2(d)) of pedes-
trians. All the 2297 selected SIDF features are classified to
CI-SIDF, BP-SIDF, and O-SIDF by computing the intersection
of a SIDF feature and the ternary model. The results given
in Fig. 18 indicate that the proportions of CI-SIDF, BP-SIDF,
and O-SIDF are 42.66%, 50.11%, and 7.23%, respectively.
Fig. 18 tells that SIDF features not only capture the difference
the contour of a pedestrian and its inner part but also utilize
the difference between the background and a pedestrian.
Background can be regarded as the context of a pedestrian
image and hence context has been proved to be effective in
object detection and recognition. It is difficult for neighboring
features to utilize the context information.

B. Comparison With State-of-the-Art
Methods on Caltech Dataset

The proposed NNNF method can adopt different levels
(depths) of decision trees. In this section, NNNF-L2 stands for
the NNNF method where level-2 trees are utilized. The Cal-
tech 2x training set is used for NNNF-L2. All parame-
ters in NNNF-L2 are the same as those in Section IV-A.
In NNNF-L4, level-4 trees are employed. The Caltech 10x
training set is used for NNNF-L4. The resulting classifier is
composed of 4096 level-4 decision trees. Different from [8],
each tree is built by sampling all the candidate features
from the feature pool. The decision trees are obtained after
five rounds with real AdaBoost. In each round, 20000 hard
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Fig. 19. Comparison with state-of-the-art methods on the Caltech dataset
(reasonable).

negatives are added and the cumulative negatives are lim-
ited to 50000. Other parameters are the same as those
in Section IV-A.

Fig. 19 compares the proposed NNNF-L2 and
NNNF-L4 with the state-of-the-art methods: VI [45],
HOG [16], LatSvm-V2 [19], Roerei [4], ACF-Caltech [11],
InformedHaar [52], SpatialPooling [31], LDCF [29],
Katamari [2], SpatialPooling+ [32], [37], TA-CNN [41],
and Checkerboards [53]. In Fig. 19, the curves of ACF-Caltech
are obtained when they are trained on the Caltech training
set. The models of VJ, HOG, LatSvm-L2, and Roerei are
trained on the INRIA dataset. The curves of other methods
are obtained when the training set is Caltech 10x. VI,
Roerei, ACF, InformedHaar, SpatialPooling, LDCF, Katamari,
SpatialPooling+, and Checkerboards are based on AdaBoost
classifier. HOG and LatSvm are based on SVM classifier.
TA-CNN is based on CNN. They all utilize the Caltech
testing set for evaluation.

The following observations can be seen from Fig. 19.
Even the small Caltech 2x training set is used, the proposed
NNNE-L2 is better than LDCF [29] which is trained from the
large Caltech 10x training set. Specifically, the log-average
miss rate of NNNF-2 is 23.06%. It can also be seen from
Fig. 19 that the proposed NNNF-L4 is superior to all other
methods (VJ [45], HOG [16], LatSvm-V2 [19], Roerei [4],
ACF-Caltech [11], InformedHaar [52], SpatialPooling [31],
LDCF [29], Katamari [2], SpatialPooling+ [32], [37],
and TA-CNN [41]). The log-average miss rate of NNNF-L4
is as small as 16.20% whereas the log-average miss rate
of TA-CNN [41] and Checkerboards [53] are 20.86% and
18.47%, respectively. Though the proposed non-neighboring
and neighboring features are much simpler than the features
in convolutional neural networks [41] and Checkerboards [53],
the log-average miss rate of NNNF-L4 is lower than that of
TA-CNN [41] and Checkerboards [53] by 4.66% and 2.27%,
respectively.

According to whether using CNN or not, Fig. 20 divides
the state-of-the-art methods into two classes. In the first
class, the methods with red bars do not use CNN. NNNF-L4
achieves the best detection performance, outperforming
Checkerboards [53] by 2.27%. In the second class, the methods
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Fig. 20. Miss rate of the state-of-the-art methods. The methods represented
by blue bars are based on CNN. The methods with red bars are not
using CNN.

TABLE IV

Miss RATES OF SOME STATE-OF-THE-ART METHODS WITHOUT USING
CNN ON VARIOUS SUBSETS OF THE CALTECH DATASET ARE SHOWN

Subset MT-LDCF [51]  Checkerboards [53] NNNF-L4
Reasonable 19.95% 18.47% 16.20%
All 69.98% 68.75% 67.38%
None Occlusion 17.75% 16.11% 14.19%
Partial Occlusion 36.77% 36.20% 32.01%
Heavy Occlusion 76.98% 77.50% 74.92%
Mean 44.29% 43.41% 40.94%

with blue bars are based on CNN. CompACT-Deep [10]
achieves the lowest miss rate (i.e., 11.75%) by combi-
nation of some local channel features (e.g., ACF [11],
Checkerboards [53], and LDCF [29]) and deep features
(e.g., VGG [38]). Though CompACT-Deep has a better perfor-
mance than NNNF-L4, the improvement of CompACT-Deep
are based on very deep CNN model (i.e., VGG [38]). When
only using the above local features and small CNN, CompACT
can only achieve 18.90%, which is inferior to NNNF-L4.
It means that NNNF-L4 are much more effective than the
local features used in CompACT. Moreover, with very deep
CNN (e.g., VGG [38]), NNNF can also boost the detection
performance [9] (i.e., 10.4% miss rate on Caltech).

Table IV  further compares two  state-of-the-art
methods without using CNN (i.e., MT-LDCF [51] and
Checkerboards [53]) with our NNNF-L4 under “Reasonable”,
“All”, and three different occlusion subsets of Caltech
dataset (i.e, no occlusion, partial occlusion, and heavy
occlusion). It can be seen that NNNF-L4 stably outperforms
than MT-LDCF [51] and Checkerboards [53] on the
all subsets. For example, when the subset is “Heavy
Occlusion”, NNNF-L4 outperforms MT-LDCF [51] and
Checkerboards [53] by 2.06% and 2.48%, respectively.
The mean miss rates of MT-LDCF [51], Checkerboards [53],
and NNNF-L4 over the all subsets are 44.29%, 43.41%,
and 40.94%, respectively. Thus, NNNF outperforms
MT-LDCEF [51] and Checkerboards [53] by 3.35% and 2.47%,
respectively. It means that the detection performance of
NNNF-L4 is the best and the most stable in the methods
without using CNN.
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TABLE V
DETECTION SPEED (FPS) AND MISS RATE (MR) ON
THE CALTECH DATASET
Method FPS MR
LatSvm-V2 [19] 0.16 63.30%
Crosstalk [14] 14.10 53.90%
ACF [11] 9.49 44.20%
InformedHaar [52] 0.63 34.60%
SpatialPooling [31] 0.12 29.24%
LDCF [29] 3.62 24.80%
SpatialPooling+ [32] 0.12 21.89%
Checkerboards [53] 0.50 18.47%
NNNF-L2 1.61 23.06%
NNNF-L4 1.13 16.20%
60 : r‘ @® ACF
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Fig. 21. Miss rates versus frames per second (FPS).
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Fig. 22. Comparison with state-of-the-art methods on the Caltech dataset
using the new and accurate annotations [54]. MR_> (M R_4) are shown in
the legend.

In Table V, the detection speed (FPS) of some
state-of-the-art methods without using CNN is shown.
The log-average miss rate of NNNF-L4 is lower than that
of Checkerboards [53] and the detection speed of NNNF-L4
is also 2.26 times faster than that of Checkerboards. Though
Crosstalk [14] has the fastest detection speed, it has the worst
detection performance. The log-average miss rates and FPS
(Frames per Second) of the methods are also visualized in
Fig. 21. It is desirable if miss rate is as small as possible
and FPS is as large as possible. So Fig. 21 implies that the
proposed NNNF-L4 achieves the best trade-off between miss
rate and FPS. Note that the detection speed is measured on a
computer with an Intel Core i7 CPU and a 640 x 480 image
with the height of pedestrians not less than 50 pixels. GPU is
not used in our experiments.

Based on the new and accurate annotations of the Cal-
tech test set [54], Fig. 22 compares NNNF-L4 with some
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Fig. 23. Miss rate of the state-of-the-art methods using the new and accurate
annotations. The methods represented by blue bars are based on CNN. The
methods with red bars are not using CNN.
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dataset.

Comparison with some state-of-the-art methods on the INRIA

state-of-the-art methods. NNNF-L4 is re-trained based on
the new annotations of the Caltech training set. The stan-
dard miss rate over the FPPI range of [1072,10°] and
more strict miss rate over the FPPI range of [1074,10°]
are both shown in the legend [54]. They are represented
by MR_» and MR_4, respectively. MR_», and MR_4 of
NNNF-L4 are 11.87% and 20.56%, respectively. They out-
performs that of Checkerboards [53] by 3.94% and 8.02%,
respectively. Based on M R_, of Fig. 22, Fig. 23 classifies
and ranks the state-of-the-art methods. The methods with red
bars do not use CNN. Among these methods, NNNF-L4 also
achieves the state-of-the-art.

C. Comparison With State-of-the-Art
Methods on the INRIA Dataset

Experiments are also conducted on the INRIA dataset.
Because pedestrian height in both the training and testing
sets are larger than 100 pixels, we train a model with
64 x 128 pixels. Different from [8], the training images are
upsampled by one octave in order to enlarge the num-
ber of training negatives. In the testing process, the image
is not upsampled. The model consists of 2048 level-3
decision trees. The decision trees are obtained after four
rounds, where the numbers of trees in each round are 32,
128, 512, and 2048, respectively. 10000 hard negatives are
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TABLE VI
DETECTION SPEED (FPS) AND MISS RATE (MR) ON THE INRIA DATASET

Method FPS MR
Crosstalk [14] 45.40 20.10%
LatSvm-V2 [19] 0.60 19.96%
ACF [11] 31.90 17.28%
InformedHaar [52] N/A 14.43%
LDCF [29] 4.70 13.79%
SpatialPooling [31] 0.14 11.22%
NNNF 5.15 10.38%
22
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Fig. 25. Miss rates versus frames per second (FPS).

added after each round and the cumulative negatives are
limited to 20000.

Experimental results are shown in Fig. 24. It can be
observed that the proposed NNNF achieves the best perfor-
mance (i.e., log-average miss rate is 10.38%). Please note
that the miss rate of NNNF is lower than that of [8].
It means that the large number of training negatives is
very important. The miss rate of NNNF is 9.58%, 6.90%,
4.05%, and 3.41% lower than that of LatSvm-V2 [19],
ACF [11], InformedHaar [52], and LDCF [29], respectively.
NNNF outperforms SpatialPooling [31] by 0.84%.

The comparison of detection speed (FPS) and miss rate
of different methods is given in Table VI. The image to be
detected has 640x480 pixels and the height of pedestrians is
not less than 100 pixels. One can see from Table VI that NNNF
outperforms all the methods in terms of log-average miss rate.
For example, the miss rate of NNNF is 0.84% lower than
that of SpatialPooling [31] and the detection speed of NNNF
is 36.79 times faster than that of SpatialPooling. Therefore,
our method is able to get the best trade-off between miss rate
and detection speed. The superiority in trade-off can also be
observed from Fig. 25.

D. Comparison With State-of-the-Art
Methods on the KITTI Dataset

In this section, NNNF is compared to some state-of-art
methods without using CNN (i.e., ACF [11], SquaresChn-
Ftrs [4], SpatialPooling+ [32], and Checkerboards [53]).
We also train a model with 64x128 pixels. Because the
minimum height of pedestrian for evaluation is 25 pixels,
the image is upsampled by two octave. The other training
parameters are same as the Section V.B. According to the
pedestrian height, occlusion, and truncation, there are three
difficult levels for pedestrian detection (i.e., Easy, Moderate,
and Hard). All the methods are evaluated on the three difficult
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TABLE VII

AVERAGE PRECISION (AP) OF SOME METHODS WITHOUT
USING CNN ON KITTI

Method Easy Moderate Hard

ACF [11] 44.49% 39.81% 37.21%
SquaresChnFtrs [4] 57.33% 44.42% 40.08%
SpatialPooling+ [32] 65.26% 54.49% 48.60%
Checkerboards [53] 67.75% 56.75% 51.12%
NNNF 69.16% 58.01% 52.77%

levels in terms of average precision (AP). The detection results
are given in Table VII. NNNF outperforms the other methods
on all the three difficult levels. For example, AP of NNNF
is 1.26% higher than that of Checkerboards [53] on the
moderately difficult levels. Fig. 26 further gives the average
precision curves of these methods on the moderately difficult
level. It can be seen that NNNF stably outperform the other
methods.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an effective and efficient
pedestrian detection method. Two types of non-neighboring
features (i.e., side-inner difference features (SIDF) and sym-
metrical similarity features (SSF)) are proposed. They are
found to be complementary to the proposed neighboring
features (NF). Among all the selected features, about 1/3
are non-neighboring features (NNF) and 2/3 are NF features.
SIDF features characterize not only the difference between
contour of a pedestrian and its inner part but also the dif-
ference of the background and pedestrian. SSF can capture
the symmetrical similarity of pedestrian shape. Though the
forms of the proposed NNF and NF features are very simple,
combining them in the framework of decision forests results in
the best trade-off between log-average miss rate and detection
speed. The relationship between our proposed features and
some state-of-the-art methods is also revealed. In addition,
the proposed channel-specific normalization was also found
to be helpful for the improvement of detection performance.
In the future work, we will explore that how to use the inherent
pedestrian attributes for the structure design of CNN to further
improve the performance of pedestrian detection.
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