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Similarity of Scenic Bilevel Images
Yuanhao Zhai and David L. Neuhoff, Fellow, IEEE

Abstract— This paper presents a study of bilevel image
similarity, including new objective metrics intended to quantify
similarity consistent with human perception, and a subjective
experiment to obtain ground truth for judging the performance
of the objective similarity metrics. The focus is on scenic bilevel
images, which are complex, natural or hand-drawn images,
such as landscapes or portraits. The ground truth was obtained
from ratings by 77 subjects of 44 distorted versions of seven
scenic images, using a modified version of the SDSCE testing
methodology. Based on hypotheses about human perception of
bilevel images, several new metrics are proposed that outper-
form existing ones in the sense of attaining significantly higher
Pearson and Spearman-rank correlation coefficients with respect
to the ground truth from the subjective experiment. The new
metrics include adjusted percentage error, bilevel local direction,
and connected components comparison. Combinations of these
metrics are also proposed, which exploit their complementarity
to attain even better performance. These metrics and the ground
truth are then used to assess the relative severity of various
kinds of distortion and the performance of several lossy bilevel
compression methods.

Index Terms— Bilevel image database, perceptual similarity,
intensity-based overlap metric, image similarity metric.

I. INTRODUCTION

B ILEVEL images have only two intensity levels: 0 (black)
and 1 (white). The bilevel images in which we are

primarily interested are scenic bilevel images, such as those
illustrated in Fig. 1, which are complex bilevel images,
typically containing natural or hand-drawn scenes, e.g.,
landscapes and portraits, but which do not include text, line
drawings or halftoned images. Silhouettes, and bilevel images
formed by segmentations generally have a simpler form than
scenic images.

Objective image similarity metrics that make predictions
consistent with human perception are important for many
image processing applications, including those intended for
bilevel images. For example, metrics can be used to assess
overall performance of bilevel image compression algorithms
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Fig. 1. Seven scenic images.

and algorithms that produce bilevel segmentations. Metrics can
also play a role in the operation of some algorithms, such
as content-based retrieval algorithms for bilevel images and
bilevel image compression algorithms, for example com-
pression algorithms involving vector quantization or forward
adaptation. Metrics can also be used to judge similarity for
the purposes of establishing ownership or plagiarism. For
example, the illustrations in graphic novels and the cartoons
in magazines and newspapers are often scenic bilevel images.

While a number of objective similarity metrics have been
developed for grayscale and color images with the goal of
consistency with human perception, and while a number of
bilevel similarity metrics have been developed, these were
intended primarily for simple (non-scenic) bilevel images such
as silhouettes and segmentations. As such, there has been
almost no development of objective similarity metrics for
scenic bilevel images consistent with human perception.

The most common objective similarity metric for bilevel
images, is percentage error (PE), which for bilevel images is
the same as mean-squared error (MSE). Unfortunately, this
metric is not always so consistent with human perception,
as images with similar percentage error often appear very
different to viewers. With applications other than perceptual
similarity in mind, many intensity-based overlap metrics have
been proposed, as reviewed in [3]–[5]. Generally speaking,
like PE, these penalize pixel-level disagreements, based on
different assumptions about what is important in specific
applications. Examples of this kind of metric include those
developed by Jaccard [6], Kulczynski [7], Braun-Blanquet [8],
Dice [9], and Ochiai [10]. These metrics were first widely used
in biology related disciplines to group biotal communities [6]
or ecologically related species [11]. Additionally, metrics like
Dice [9] were used to quantify bilevel image similarity for
medical image processing applications [12], [13]. While these
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metrics may be good for their intended applications, they
were not designed to reflect human judgments of similarity.
Hence, it is natural to try to design metrics that better reflect
human perception. To the authors’ knowledge, the only bilevel
metric that attempts to reflect human perception is the SmSIM
metric [14] which is based on a Markov random field model.
Unlike previous metrics, SmSIM makes use of dependencies
among adjacent pixels and measures the similarity of the
“smoothness”/“roughness” of two images, as well as their
pixel-level similarity.

For color and grayscale images, many perceptual similar-
ity metrics have been developed. For example, much recent
work has focused on SSIM type metrics [5], [15]–[17].
Moreover, a number of metrics have been proposed just
for textured images, including an LBP-based metric [18],
STSIM [19]–[21] and LRI [22], [23]. Such grayscale met-
rics can provide templates and insight for designing bilevel
similarity metrics. Indeed, in some cases, they can be directly
applied to bilevel images.

In this paper, several new bilevel similarity metrics are
proposed based on hypotheses about human perception. Such
new metrics include Adjusted Percentage Error (APE), Bilevel
Local Direction (BLD), Connected Components Compari-
son (CC) and combinations of such.

In order to assess the performance of objective image
similarity metrics – indeed, to enable their development – it
is essential to have ground truth, i.e., a set of distorted images
whose perceptual similarity to the corresponding original
images (perceived distortion) have been subjectively rated by
human subjects. As bilevel ground truth has not previously
been available, this papers describes a subjective experiment
to obtain such.

To develop the ground truth, we follow an approach
inspired by studies of how to develop ground truth for
grayscale and color images and video. In particular,
ITU-R BT.500-11 [24] made a thorough study of subjective
experiment methodologies for videos. Several methods were
suggested for different assessment tasks, including double-
stimulus continuous quality-scale (DSCQS), double-stimulus
impairment scale (DSIS), single-stimulus (SS), and simulta-
neous double stimulus for continuous evaluation (SDSCE).

Motivated by such, in this paper, we designed and conducted
a subjective similarity evaluation of distorted scenic bilevel
images using a modified version of the SDSCE methodology.
The resulting similarity ratings are then used to assess the
performance of the new similarity metrics and to compare
them to previous metrics, as well as to assess the relative
severity of the various kinds of distortion injected in the
ground truth database.

The original and distorted images used in the subjective
experiments, along with the subjective rating data obtained can
be found in “Bilevel Image Similarity Ground Truth Archive”
at University of Michigan Deep Blue.1

With this ground truth, it is found that the newly proposed
metrics perform significantly better than previous ones,
as assessed by Pearson and Spearman-rank correlation

1http://deepblue.lib.umich.edu/handle/2027.42/111059.

Fig. 2. Two original scenic bilevel images.

coefficients with respect to ground truth. For example, the
best of the new metrics attains Pearson correlation 0.93, in
comparison to 0.90 for an LBP-based metric, which is the
best of the previous metrics, and 0.87 for the best of the
intensity-based overlap metrics.

The ground truth and the metrics are also used to assess
the performance of several bilevel lossy image compression
algorithms and the severity of various degrees of several kinds
of image distortion.

Note that metrics for grayscale images have sometimes
focused on quality and sometimes on similarity, with the
latter referring to quality judged relative to a reference, for
example the original image. On the other hand, we assert
that it can sometimes be difficult or even impossible to judge
the quality of a bilevel image without a reference, due to the
fact that many scenic bilevel images are man-made or man-
processed and that artists and image processors have different
stylistic intentions which to some may appear as distortion,
but not to others. As examples, the image ‘boat’ in Fig. 1
may appear to have low quality despite the fact that it is
the original, the image on the left of Fig. 2 might appear
to be overly smoothed, while the image on the right might
appear to be overly noisy, despite each being the intended
result of the ACA segmentation algorithm [25] applied to a
grayscale image with parameters set differently due to different
intentions. Finally, each “distorted” image in Fig. 17 could
conceivably be considered to be an “original”. This provides
an additional motivation for focusing in this paper on bilevel
image similarity metrics, rather than quality metrics.

The remainder of the paper is organized as follows.
Section II reviews existing bilevel image similarity metrics.
Section III proposes new similarity metrics. Section IV
presents the subjective experiment that produces ground truth.
Results of the subjective experiment are described in Section
V. Section VI assesses the performance of the new metrics
using the ground truth. Section VII uses the ground truth and
metrics to assess the performance of several lossy bilevel
compression methods and the severity of several types of
distortion. Finally, Section VIII concludes the paper.

II. EXISTING BILEVEL IMAGE SIMILARITY METRICS

The most commonly used objective metric to quantify
bilevel image similarity is the percentage error (PE), which
is equivalent to mean-squared error (MSE) in the bilevel case.
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TABLE I

INTENSITY-BASED OVERLAP METRICS

Even though PE is not always consistent with human per-
ception, its simplicity and clear interpretation still make it
the most popular metric. Motivated by trying to improve on
percentage error, many intensity-based overlap metrics have
been developed. These metrics are based on the overlap of the
1 and 0 regions in one image with those of the other image.
Like PE, they produce nonnegative values. However, unlike
PE, 0 represents little or no similarity and large values indicate
high similarity. For all but the second Kulczynski metric, they
assign 1 to identical images. Comprehensive reviews can be
found in [3]–[5]. Given two bilevel images, the value assigned
by any of these metrics can be expressed in terms of the
following four overlap counts:

1) “a”: number of pixels that are one in both images.
2) “b”: number of pixels that are one in the first image and

zero in the second image.
3) “c”: number of pixels that are zero in the first image

and one in the second image.
4) “d”: number of pixels that are zero in both images.

The most popular of the many metrics of this sort are shown
in Table I. One can see that all metrics are symmetric with
respect to the two input images, which may not be suitable for
applications that focus more on one image than the other, such
as compression, where one image is the original and the other a
distorted reproduction. Symmetry is also inconsistent with the
notion that a perceptually-oriented metric should account for
the fact that features of the original may mask some distortions
in the reproduction.

Among the intensity-based overlap metrics, the
Dice metric [9] is most commonly used, especially in
medical image processing. Its value, 2a/(2a + b + c), is

easily rewritten as

2

1 + |B1∪B2||B1∩B2|
,

where Bi is the set of pixels where image i has intensity 1,
and |C| denotes the number of pixels in set C . One can see
from this formula that the metric depends strongly on the
overlap of the regions with intensity 1 in both images; metric
value 1 implies a perfect match, and 0 implies total mismatch.
Note that like one or two other metrics, it does not depend
on d , which implicitly presumes that 1’s are more important
than 0’s. In Section VI, intensity-based overlap metrics will
be compared to the newly proposed similarity metrics.

More recently another bilevel image similarity metric,
SmSIM [14], was proposed based on the idea that not only
should the metric assess pixel similarity (as in PE), but to
reflect human judgments, it should also assess the similarity
of the smoothness of the boundaries between black and white
in the two images. The smoothness measure incorporated in
SmSIM was based on a bilevel Markov random field model.
This metric will be included among those tested in Section VI.

III. NEW BILEVEL IMAGE SIMILARITY METRICS

This section proposes several new bilevel image similarity
metrics, all calculated within n ×n windows sliding across the
image, for example, n = 32. This sliding-window structure
is motivated, to a large degree, by the hypothesis that if
the window size is of the order of foveal vision, which
is the approximately two-degree-wide region2 of clearest
vision [30, p. 7], then what happens outside the window cannot
mask errors within the window, whereas masking of errors
can be caused by the contents of the window itself. If the
window were chosen to be larger than foveal vision, then it
could happen that the metric predicts masking that does not
actually occur. On the other hand, if the window were chosen
smaller than foveal vision, then the metric will be unable
to take into account masking effects that occur outside the
window but within foveal vision. We find that the hypothesis
that the window’s size should be of the order of foveal vision is
supported by the experimental results in Section VI. Once the
window size is specified, one must also specify the horizontal
and vertical steps with which the window will slide across
each image, which determine the window overlapping rate.
In Section VI, we choose the overlapping rate based on
experiments.

After computing the metric values M(Xi , Yi ) at all window
locations i in images X and Y , the final metric value M(X, Y )
is the average of all M(Xi , Yi ) :

M(X, Y ) = 1

Nwin

∑

i

M(Xi , Yi ),

where Nwin is the total number of window locations.
Matlab code for computing the metrics can be found in

“Scenic bilevel image similarity metrics MATLAB code” at
University of Michigan Deep Blue.3

2When viewing a computer monitor at 20 inches, two degrees is approxi-
mately 0.7 inches, or 70 pixels at 100 dpi.

3https://deepblue.lib.umich.edu/handle/2027.42/122736.
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Fig. 3. Scenic bilevel images with different percentage errors (PE) and subjective rating scores.

In this paper, we consider percentage error (PE) to be the
baseline metric. Though PE treats all errors in all windows
equally, in fact, error visibility depends significantly on the
surrounding content. For example, an error can be masked
if the surrounding content is “busy” in the sense that there
are many nearby black-white transitions, i.e., adjacent pairs of
pixels with one being black and the other white. Hence, PE can
be improved by taking these effects into account. Figure 3
illustrates some shortcomings of PE. It shows an original
scenic bilevel image together with four distorted versions.
For each, both PE and subjective rating score are presented.
Subjective rating scores, which range from 0 to 1, with
1 meaning identical, are obtained from the subjective experi-
ment described in Section IV. Based on PE, the first distorted
image is the most similar to the original, and the others
are approximately equally dissimilar. However, the subjective
rating scores indicate that human observers found the first two
distorted images to be significantly less similar to the original
than the last two.

Each of the metrics proposed in this section is motivated
by some particular hypothesis about human perception,
and attempts to outperform PE in measuring bilevel image
similarity. It is worth mentioning that unlike intensity-based
overlap metrics reviewed in Section II, all proposed metrics in
this section, including PE, give non-negative similarity scores,
with 0 meaning identical.

A. Adjusted Percentage Error

The first new metric is motivated by the hypothesis that
when more pixels within a window, or adjacent to it, have one
color than the other, then errors in (i.e., changes to) the pixels
with the minority color are more visible than errors in the
pixels with the majority color. Moreover, the visibility of errors
in minority pixels increases as their proportion decreases.
From now on we refer to the pixels having the minority
color as the foreground F and the remaining pixels as the
background B.

Based on this hypothesis, we define the Adjusted Percentage
Error (APE) as follows. Suppose the window is n × n, the
size of foreground is |F |, the size of background is |B| =
n2 − |F |, the number of foreground errors is eF , and the
number of background errors is eB . Then APE is the average
of foreground error rate eF|F | and background error rate eB|B| :

APE � 1

2
× eF

|F | + 1

2
× eB

|B| ,

which takes value in [0, 1]. Since |F | ≤ |B|, individual
foreground errors are given more weight than background
errors. When |F | = |B|, APE = PE. For a given eF and eB ,
as |F | shrinks, APE increases, consistent with the hypothesis
that foreground errors become more significant as the size of
foreground becomes smaller. One may also view PE as an
average of background and foreground error rates:

PE � eF + eB

|F | + |B| = |F |
|F | + |B| × eF

|F | + |B|
|F | + |B| × eB

|B| ,
from which we see how PE emphasizes background error rate
more than foreground error rate.

To link APE with intensity-based overlap metrics described
in Section II, let us formulate APE using the overlap counts
a, b, c and d . One may observe that in Section II, all
intensity-based overlap metrics are symmetric with respect
to image 1 and 2. In other words, b and c always play
the same role in metrics. In contrast, APE is an asymmetric
metric that focuses more on the original image, say image 1,
than the distorted one (image 2). Since the foreground size
|F | = min(a + b, c + d), APE can be rewritten as

APE = 1

2
× b

a + b
+ 1

2
× c

c + d
.

Note that if image 2 were considered the original, then

APE = 1

2
× c

a + c
+ 1

2
× b

b + d
.

from which it becomes clear that the metric is asymmetric.
We also consider two slight variations of APE:

APE′ � 1

2
× eF ′

|F ′| + 1

2
× eB ′

|B ′| , APE′′ � eF + eB

|F | ,

where F ′ is the one-step dilation of F using a 3 × 3 all ones
structure element matrix, e′

F is the number of errors within F ′,
B ′ = W − F ′ denotes the remainder of the window W , and
e′

B is the number of errors in B ′. The hypothesis behind APE′
is that errors adjacent to F are as significant as foreground
errors and therefore should be counted in the first term, which
has the smaller denominator, rather than the second term,
which has the larger denominator. APE′′ is the ratio of total
number of errors to the size of foreground. In this event,
foreground and background errors are treated equally in APE′′,
just as in PE. However, the weight of errors within a window is
inversely proportional to the size of foreground, so that errors
within a window with small foreground have more weight than
those within a window with large foreground.
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Fig. 4. Bilevel Local Direction.

Fig. 5. Examples of smooth and rough contours.

B. Bilevel Local Direction

For bilevel images, the contours between black and white
regions contain most of the information. Hence, as consid-
ered in SmSIM [14], similar bilevel images should have
similar contour smoothness, roughness and directionality. For
grayscale images, a gradient histogram is a feature that cap-
tures such edge information, (For example, HOG [31] uses
gradient histograms for object detection.) This is also true
for bilevel images. However, a new definition of “gradient”
is needed. Furthermore, while a gray-scale gradient includes a
direction and a strength, a bilevel “gradient” will include only
a direction. In this section, Bilevel Local Direction (BLD)
is proposed as a “gradient” for bilevel images. With such,
the similarity of this newly-defined feature for two images
becomes a good candidate for measuring similarity.

As the bilevel local direction at pixel X (u, v), we
propose B L Du,v � angle(V u,v ), where V u,v is the complex
number

V u,v � X (u, v + 1) −X (u, v − 1)

+ j (X (u − 1, v) − X (u + 1, v))

provided this number is not zero. When V u,v is zero, for
example when X (u, v) lies in a monotone region, there is
no direction at pixel X (u, v), and B L Du,v is not defined.
It follows that B L Du,v has the eight possible directions
illustrated in Fig. 4, and consequently, the gradient local
direction histogram/feature for a given window position
consists of eight bins C = {C(1), . . . , C(8)}.

Clearly, the proposed bilevel local direction feature can
distinguish different directional contours. Its ability to measure
contour smoothness and roughness can be seen from the
example shown in Fig. 5. The left image has a smooth contour,
so that all pixels along the edge have the same local direction,
while the rough contour in the right image causes a distinctly
different local direction distribution.

To measure the similarity S(C, D) of the BLD histograms
C and D corresponding to the original and distorted images,
respectively, at a given window location, we propose three
methods. In each, a small value indicates high similarity, and
to avoid singularities, we increase any zero histogram bin
to one.

1. S1(C, D) � 1 −
8∏

k=1

2C(k)D(k)

C2(k) + D2(k)
.

As each term in the product is the ratio of a geometric average
to an arithmetic average (as commonly used for example in
[5], [15]–[17], [19]–[22]), it is less than or equal to one,
making S1(C, D) non-negative. By multiplicatively combining
eight terms, we tacitly assume that a distorted image has high
similarity only when all eight values are similar to the original.
Hence, this is a strict measure of histogram similarity, which
may over penalize some histogram differences.

2. S2(C, D) �
8∑

k=1

c(k) log
c(k)

d(k)
,

where c and d denote C and D normalized so as to sum to one.
This is the Kullback-Leibler divergence [32] of probability
mass function d with respect to c.

3. S3(C, D) �
( 8∑

k=1

c(k) log
c(k)

d(k)

)
× max(‖C‖1, ‖D‖1)

min(‖C‖1, ‖D‖1)
.

In addition to the divergence of d with respect to c, this
method also considers the similarities between the L1 norms
of C and D, which approximates the total number of pixels
along edges within an image window.

We denote the Bilevel Local Direction metric with
these three similarity methods as BLD1, BLD2 and BLD3,
respectively.

We also experimented with a definition of bilevel local
direction that depended on the eight nearest neighbors, rather
than four, yielding 8 local directions, and another definition
yielding 16. Since the improvements in the experiments of
Section VI resulting from these enhanced bilevel local direc-
tions were small, from now on we assume the bilevel local
direction definition given previously.

C. Connected Components Comparison

The concept of connected components is useful in bilevel
image analysis. Here, we hypothesize that distorted images
should preserve the connected components of the foreground
of the original. The simplest way to use this hypothesis is to
compare the number of connected components in the original
and distorted image windows. However, to avoid a small
isolated dot adjacent to a large component from being counted
as a new connected component, we do a one-step dilation with
a 3 × 3 all ones structuring element before counting. Dilation
helps connect isolated dots and islands that are close to some
big connected components. We propose two methods to assess
similarity using connected components.

The first compares the effective number of foreground
connected components in a window W of the original and
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Fig. 6. Examples of CC2 calculation.

distorted images, where the effective number of connected
components in a window W with N connected components
is

NW �
N∑

k=1

min
(

1,
|cck|
TV

)
,

where |cck| is the size of the kth connected component and
TV is a threshold greater than 1, which increases robustness by
reducing the effect of small connected components, e.g., iso-
lated dots. In this paper, TV = 10. All connected components
with size less than TV contribute less than one to NW . Now, if
X is the original and Y is the distorted image at window W ,
the metric value is

CC1 � 1 − min(NW,X , NW,Y )

max(NW,X , NW,Y )
.

CC1 takes values between 0 and 1, with 0 meaning identical.
The second method considers not only the number of

connected components, but also errors inside or adjacent
to each connected component in the original image. The
hypothesis here is that a good reconstruction should not
only preserve the number of connected components, but also
their shapes. Suppose for some window W , the foreground
connected components for the original and distorted images
are [cc1, cc2, . . . , ccN1 ] and [ccd

1 , ccd
2 , . . . , ccd

N2
], respectively.

As explained below, the CC2 metric value is, basically, the
summation of individual metrics, CC2

i , one for each connected
component cci in the original.

If N1 > 0, let [ccd
i,1, ccd

i,2, . . . , ccd
i,ki

] denote all connected
components in the distorted image that overlap cci , and define

CC2
i �

∣∣∣cci � ki⋃
t=1

ccd
i,t

∣∣∣ × (|ki − 1| + 1)p.

where A � B denotes the symmetric difference between sets
A and B . The term above within size brackets measures
the total number of errors between cci and the union of
ccd

i,t , t ∈ {1, 2, . . . , ki }. The second term penalizes the lack of
any overlapping connected components (ki = 0) or multiple
connected components overlapping cci (ki > 1). Parameter p,
which we choose to equal to 1, controls the severity of the
penalty. Figure 6(a) gives an example. The region enclosed by
the blue curve is cci , and the distorted image has three con-
nected components, enclosed by red curves, overlapping cci .
Hence ki = 3, and the size of the yellow region represents the
first term in the formula above. Finally, we have

CC2 �
N1∑

i=1

CC2
i +

N2∑

t=1

δ
[|ccd

t ∩ (
N1⋃

r=1
ccr )|

] × |ccd
t |,

where δ[0] = 1 and δ[n] = 0,∀n 
= 0. The second summation
above represents the penalty for having connected components
in the distorted image that are disjoint with all connected
components in the original. This term is important if the
distorted image has many new connected components.

Note that if the original image window is monotone, i.e., it
contains only background, then N1 = 0, and CC2 reduces to

CC2 �
N2∑

t=1

|ccd
t |.

Note also that CC2 is closely related to PE. If for all cci ,
ki = 1, and each ccd

i overlaps only one cc j for some j ,
then CC2 = PE. However, when there are missing or split
connected components, e.g., Fig. 6(a), CC2 will penalize
appropriately.

The false connection of two or more connected components
is another interesting case. As illustrated in Fig. 6(b), two
connected components, cci and cc j , enclosed by blue curves,
become one connected component in the distorted image,
enclosed by the red curve. The yellow region is penalized
in CC2

i and the green region is penalized in CC2
j . The purple

region, however, is penalized in both CC2
i and CC2

j . Thus, we
see that a false connection is penalized multiple times.

IV. SUBJECTIVE EVALUATION EXPERIMENT

In previous sections, we reviewed existing bilevel image
similarity metrics and proposed several new metrics. In order
to compare their performance, ground truth is needed. This
ground truth should consist of a collection of distorted scenic
bilevel images with subjective similarity ratings to their origi-
nal. This section describes a subjective experiment designed to
obtain such ground truth using a modified version of simul-
taneous double stimulus for continuous evaluation (SDSCE)
suggested in ITU-R BT.500-11 [24]. Note that this kind of
experiment is difficult to design and conduct, not only because
it is time consuming to engage a large number of participants,
but also because the experiment needs to be constructed so that
each participant will patiently rate the similarity of hundreds
of image pairs.

Subsequent sections will (a) analyze the subjective exper-
iment in various ways (Section V), (b) use the ground
truth to assess the performance of the new and old metrics
(Section VI), and (c) assess the severity of the distortions intro-
duced in the subjective evaluation experiment (Section VII),
thereby leading to insight on the relative severity of different
types and degrees of distortion.

A. Experiment Design

In our experiments, each distorted image, called a test
image, is shown simultaneously side by side with its original.
Figure 7 shows an example of the screen that each subject
saw during the experiment. Subjects are told which is the
original and asked to rate the similarity of the distorted image
to its original by dragging a slider on a continuous scale as
in [33]. As benchmarks to help subjects make good ratings,
the scale is divided into five equal portions, labeled “Bad”,
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Fig. 7. A sample screen of the subjective experiment.

“Poor”, “Fair”, “Good” and “Excellent”. Each rating is then
rounded to the nearest integer between 0 and 100. In addition,
unlike previous work, the rating time for each image by
each subject was recorded for screening purposes. However,
subjects were not informed of this. To make sure the recorded
time information is as accurate as possible, a “Pause” button is
added so that subjects could take rests during the experiment
without influencing the rating times. Finally, since the number
of test images is large, to prevent subjects from becoming
impatient, we divide the 315 test images into 15 groups and
display to subjects the number of remaining groups, instead of
the number of remaining images, during the whole experiment.
The grouping does not influence the data processing.

During the experiment, the ordering of test images is
independently randomized for each subject to avoid systematic
bias that might be caused by some fixed ordering. Moreover,
to avoid contextual effects (discussed later), no two successive
test images come from the same original.

The database of test images is developed from the seven
scenic images shown in Fig. 1, each with size 512 × 512.
The first six images are recognizable scenes and the last
one, ‘MRF’, is typical of an Ising Markov random field
model, which has been proposed as a model for scenic
images [34], [35]. Seven kinds of distortions are created,
resulting in 44 distorted images for each original:

i) Finite State Automata Coding (FSA) [36] with nine error
rate factors: [1, 100, 150, 200, 300, 400, 500, 700, 1000].

ii) Lossy Cutset Coding (LCC) [34], [35] with eight grid
sizes: [2, 4, 6, 8, 10, 12, 14, 16].

iii) Lossy Cutset Coding with Connection Bits (LCC-CB)
[34], [35] with the same eight grid sizes as LCC.

iv) Hierarchical LCC (HC) [37] with eight MSE thresholds
for block splitting: [0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 1].

v) Random bit flipping with five different probabilities:
[0.01, 0.03, 0.05, 0.10, 0.15].

vi) Dilation with 1, 2 and 3 iterations using a 3×3 all ones
structuring element.

vii) Erosion with 1, 2 and 3 iterations using a 3 × 3 all ones
structuring element.

Figure 8 shows the seven test images, each with a randomly
selected distortion. Besides these distorted images, every orig-
inal image itself is also included as a “distorted image” in
order to verify that, as described later, subjects are making
good faith judgments. Thus, since there are seven original

Fig. 8. Seven randomly selected distorted images in the database, one for
each original image.

images, each subject is asked to rate 45 × 7 = 315 images,
each displayed side by side with the original at size 4′′ × 4′′.
Subjects were asked to view the images from approximately
20 inches.

Before participating, each subject was given an explanation
of the purpose of the experiment and a description of the pro-
cedure. In addition, several training images, similar to actual
test images, are shown to subjects. These training images
roughly cover the whole similarity range in the database.

B. Data Processing

1) Scaling the Ratings: In all, 77 subjects, all non-experts,
completed a session in which they rated all 315 distorted
images. For each subject, raw rating data, test image order and
rating times were recorded. As in [38], the raw rating data,
Raw(i, j), for the j th image by the i th subject was then scaled
to reduce systematic differences in ratings among subjects and
to obtain values between 0 and 1, with 1 representing highest
similarity:

Scaled(i, j) = Raw(i, j) − min(Raw(i, k),∀k)

max(Raw(i, k),∀k) − min(Raw(i, k),∀k)
.

From now on, we will work with scaled rating data.
2) Subject Screening: Subject screening, such as in

[24] and [33], which is designed to rule out abnormal subjects
and those who are just randomly rating, helps improve the
quality of the ground truth. In this experiment, a subject is
rejected if at least two of the following criteria are satisfied:

i) Total rating time is less than 10 minutes.
ii) More than 33 outlier ratings. (Described later.)

iii) At least two ratings of original images are outliers.
iv) Average of the scaled ratings for the seven original

images is less than 0.5.
v) The “monotonicity test” is failed. (Described later.)
The motivation for criteria ii) and iii) is that the presence of

many outlier ratings, especially for original images, indicate
abnormal behavior or careless rating. Hence the corresponding
subjects should be screened out. Similar to the approach taken
in [33], a scaled rating Scaled(i, j) is considered an outlier if

|Scaled(i, j) − avg( j)| > δ × std( j) ,

where avg( j) and std( j) are the expectation and standard
deviation of scaled rating scores for image j by all subjects.
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TABLE II

AVERAGE RATING TIME IN SECONDS FOR EACH IMAGE

δ is chosen to be 1.96 corresponding to a 95% confidence
interval, assuming scaled rating scores are Gaussian.

The “monotonicity test” in criterion v) is a new idea,
based on the property of our database that for each type
of distortion, there is a clear monotonicity in the amount of
distortion with respect to some parameter, such as bit flipping
probability, number of dilation/erosion iterations, and coding
rate for compression. Hence, if any subject’s rating scores
are too far from monotonic, the subject should be screened
out. Specifically, for each subject i , a penalty counter P(i) is
initialized to zero. Now suppose

[Scaled(i, n1), Scaled(i, n2), . . . , Scaled(i, nk)]
are k ratings that should be monotonically non-increasing
for reasons such as mentioned above. Then for each
t ∈ {1, 2, . . . , k − 1} such that

Scaled(i, nt+1) > Scaled(i, nt ),

P(i) is increased by Scaled(i, nt+1)−Scaled(i, nt ). If, finally,
P(i) > 19, subject i fails the monotonicity test and is screened
out of the experiment.

After screening as described above, seven subjects were
removed. From now on, all analyses are based only on the
70 remaining subjects.

V. SUBJECTIVE EVALUATION RESULTS

A. Rating Time Analysis

The average rating time of the 70 subjects was 23.4 minutes,
with standard deviation 8.2. Table II shows the average rating
times for each original image. Generally speaking, one expects
average rating time to increase with image complexity, because
subjects need more time to evaluate a complex image than a
simple one. For example, ‘tree’ and ‘woman’ are relatively
“simple” because the former is rather periodic and the latter
has relatively few connected regions, and both have smooth
boundaries. On the contrary, ‘people’, ‘tool’ and ‘Al’ are more
complex in the sense of having many recognizable features to
which one pays attention.

Figure 9 shows the relationship between subjective rating
scores and average rating times. The red line is a linear
regression fitting. It indicates that average rating time increases
with image similarity, which makes sense because it becomes
harder to see and evaluate distortion as similarity increases.
Both this and the higher rating time for more complex images
suggest that the subjects made serious efforts.

Another interesting result is the average rating time, over
all sessions, for the nth displayed test image, as function
of n. (Recall that the order of images is randomized for each
test session.) As shown in Fig. 10, the average rating time
decreases from almost 30 seconds for the first test image

Fig. 9. Average rating time in seconds vs. average subjective rating score
for the 315 test images. Regression function: avg. rating time = 3.92 ×
avg. subjective rating + 2.78.

Fig. 10. Average rating time as function of n.

to 4 or 5 seconds after rating around 50 test images. The
decline of average rating time indicates increasing familiarity
with the experiment as the test session proceeds. On average,
it takes about 50 images for a subject to be fully familiar with
the experiment.

B. Contextual Effects Analysis

As discussed in [24], contextual effects occur when the
subjective rating of a test image is influenced by prior images
presented to the subject, especially the previous test image.
To check whether our testing procedure suffers from strong
contextual effects, the following analysis is conducted. For
each test image in each test session, we plot the relationship
between:

i) The average rating score (over all sessions) of the
previous test image in this session.

ii) The difference between the rating score of the current
test image in the current test session and the average
rating score for the current test image over all test
sessions. This difference is called a “rating bias”.

If the testing procedure does not suffer from strong contextual
effects, the rating bias of the current image should have
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Fig. 11. Results of contextual effects test.

Fig. 12. Standard deviation of ratings. Regression function: std. dev. =
−0.39 × avg.2 + 0.46 × avg. + 0.07.

symmetric distribution around zero, no matter the average
rating score of the previous test image. The plot in Fig. 11
supports the hypothesis that the testing procedure is free from
strong contextual effects.

C. Standard Deviation of Rating Scores

The ratings of different images have different standard
deviations. Figure 12 presents a scatter plot showing the
standard deviation of the scaled rating scores for each distorted
image vs. its average rating score. The green solid line shows
a quadratic regression fit, with two red dashed lines giving
2σ confidence bounds. As one would expect, for low and high
similarity images, the standard deviations of rating scores are
relatively small, meaning subjects are more consistent with
their judgments. However, for images with moderate similarity,
the standard deviations of rating scores are relatively large,
showing less agreement among subjects.

Notice that since neither the lowest nor highest average rat-
ing scores are near zero or one, respectively, it does not appear
that the standard deviation estimates are affected significantly
by ceiling effects [39, p. 21].

Fig. 13. Subjective rating scores for ‘tree’ and ‘MRF’ coded with LCC and
LCC-CB.

D. Insensitivity of the ‘MRF’ Image to Distortion

As mentioned earlier, among the seven original test images,
the first six contain recognizable scenes while the last, ‘MRF’,
does not. From the experimental results, we found that human
observers are fairly sensitive to the amounts of distortion added
to the first six images, but are not so sensitive to the amounts
of distortion added to the ‘MRF’ image. Figure 13 illustrates
this finding by showing the subjective rating scores of both
the ‘tree’ and ‘MRF’ images coded with LCC and LCC-CB,
respectively. As can be seen, the subjective rating scores of
the ‘tree’ images increase monotonically with coding rate.
However, this is not the case for ‘MRF’ images. One possible
reason is that when viewing an image with a recognizable
scene, observers have a “ground truth” in mind with which to
compare. Hence, it is relatively easy for them to observe the
effects of increasing or decreasing distortion. However, if the
image contains unfamiliar or abstract content, e.g., the ‘MRF’
image, observers may have a hard time observing changes to
the distortion. For this reason, the ‘MRF’ image is not used
in the tests of the next two sections, i.e., in the subsequent
sections, there are 264 subjectively rated pairs of images to be
used as ground truth for testing metrics and other applications.

VI. TESTS OF BILEVEL IMAGE SIMILARITY METRICS

In this section, we analyze the performance of existing and
new bilevel image similarity metrics using the ground truth
obtained from the subjective experiments described above.
In addition, we analyze several similarity metrics designed
for grayscale images, namely, SSIM [15], an LBP-based
metric [18] and LRI [22]. Note that LBP is computed using the
eight surrounding pixels without interpolation. As suggested
in [18], only uniform patterns with less than or equal to two
0/1 transitions are labeled. Given two images, the LBP-based
metric value is the divergence between their LBP histograms.
From now on, it will be called the LBP metric. LRI-A is
applied with K = 4 and T < 1, where T < 1 guarantees that
all 0/1 transitions trigger non-zero LRI-A indices. While these
SSIM, LBP and LRI were not designed for bilevel images,
they can obviously be applied. Generally speaking, they have
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TABLE III

EXPERIMENTS WITH DIFFERENT WINDOW OVERLAPPING RATES

considerably higher computational complexity than the metrics
proposed in this paper.

The performance of each metric is evaluated using
Pearson and Spearman-rank correlation coefficients to rate its
consistency with the ground truth consisting of 44 distorted
versions of the six images in Fig. 1 with recognizable scenes.
(As mentioned earlier, we decided not to use ‘MRF’.) The
Pearson correlation is computed after nonlinear transformation
of metric values by the 5-parameter logistic model proposed
in [33] and shown below, with parameters chosen to maximize
correlation for the metric being evaluated. In particular, the
logistic model is:

Y = β1logistic(β2, (X − β3)) + β4 X + β5,

where X is a metric value, Y is the transformed metric value
and

logistic(τ, X) = 1

2
− 1

1 + exp(τ X)
.

This is the usual strategy that avoids penalizing a metric
simply for having a nonlinear relationship to the ground truth.

The next two subsections discuss the influence of window
size and overlapping rate, respectively.

A. Window Size Selection

In our experiments, each metric was evaluated with a variety
of n × n window sizes: n = 8, 16, 32, 64, 128, 256, 512.
Different metrics reacted differently to changes in n. We found
that APE gives the best performance with n = 64 and 128. For
small and large n, the performance decreases. We believe this
result is closely related to the size of foveal vision (2 degrees)
described in Section III, which under the environment of our
subjective experiment is approximately 0.7′′ or 90 pixels. We
found that GLD performs best for moderate window sizes
(n = 16 and 32). On the one hand, when the window size is
too small, the histogram is not robust. On the other hand, when
the window size is greater than 32, the histograms naturally
become more similar, even if the original and distorted images
do not. The performance of CC decreases monotonically as
n decreases, which is not surprising since small windows
are not robust to the consideration of connected components.
Finally, as a compromise, we choose window size 32 × 32
for all metrics evaluated in this section. However, this choice

is influenced by viewing distance and image resolution, and
might not be optimal if the experimental environment changes.

Note that while the intensity-based overlap metrics
mentioned in Section II were originally applied globally to
images, they can also be applied locally by computing and
averaging metric values for windows sliding across both
images, and in the results of this section, they are applied
with the same 32 × 32 window as the new metrics.

B. Window Overlapping Rate Selection

On the one hand, if windows are not overlapped, then
distortion in an image edge lying on the boundary between two
windows could be missed by the metric. On the other hand,
a high window overlapping rate can significantly increase
the computational load. In our experiments, we compared
overlapping rates of 0%, 25%, 50% and 75% for several
metrics; results are shown in Table III. We see that for all
metrics, except CC1, as window overlapping increases, the
performance measured by Pearson and Spearman-rank corre-
lation coefficients either stays constant or increases by small
amounts. (For CC1, performance can increase or decrease
a small amount as overlapping increases.) From now on,
except as noted in one place, we report results for 25%
window overlapping – the idea being that this may increase
robustness over no overlapping with only a modest increase
in computational load. When using the new metrics, the user
should weigh the advantages of larger overlap, versus the cost
of increased complexity.

C. Evaluation of Metrics

This subsection compares metric performance by reporting
the Pearson and Spearman-rank correlation coefficients with
the ground truth using 25%-overlapped 32 × 32 windows.
In Table IV, the newly proposed similarity metrics are com-
pared to the existing metrics designed for bilevel images,
e.g., intensity-based overlap metrics described in Table I and
SmSIM [14], as well as metrics designed for grayscale images,
i.e., SSIM [15], LBP [18] and LRI [22].

All but two of the existing intensity-based overlap metrics
(the first column in Table IV), have very competitive per-
formance. Compared to these intensity-based overlap metrics
and the baseline metric PE, the proposed APE gives better
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TABLE IV

METRIC EVALUATION (P = PEARSON, S = SPEARMAN)

performance, especially in Spearman-rank correlation coeffi-
cients. Surprisingly, SmSIM [14] performs a little worse than
the baseline metric, PE, meaning it is not a very effective
similarity metric. SSIM is designed to measure grayscale
image quality. Results in Table IV show that SSIM does not
provide satisfactory performance for scenic bilevel images.
Although LBP and LRI are designed to measure grayscale
texture similarity, results suggest that they are also capable of
measuring bilevel image similarity.

All three versions of APE outperform PE, proving that its
hypothesis is good. Specifically, the fact that APE and APE′
work better than PE and APE′′ indicates that foreground errors
are more visible than background errors, and should be penal-
ized harder. The fact that APE outperforms APE′ suggests that
dilation of the foreground is not necessary. Among the three
versions of bilevel gradient histogram metrics, BLD1 is the
worst, suggesting that multiplicatively combining eight terms
may cause over-penalization. Both BLD2 and BLD3 provide
very good results, suggesting that divergence is suitable for
comparing histogram similarity in this application. In addition,
BLD2 is the overall best similarity metric. CC1 and CC2 give
comparable performance to APE. We know CC2 is closely
related to PE. The fact that CC2 outperforms PE suggests
that the consideration of connected components helps predict
human judgments on scenic bilevel image similarity.

D. Combining Different Metrics

Since the different metrics assess complementary aspects,
one can expect to attain better performance by combining
them. After testing many combinations, the best we found are
shown in Table V.4 The formula for combining metrics Xi ,
i = 1, 2, . . . , m, is

Y =
m∏

i=1

X pi
i ,

where the Xi ’s are similarity metric values after nonlinear
transformation.

To train the parameters pi , for each combined metric, we
randomly choose N samples out of the 264 data points with
which to train. (Recall that the ‘MRF’ images are excluded

4Due to the limited amount of available testing data, we cannot claim that
the reported metric combinations are the overall best.

TABLE V

METRIC COMBINATION EVALUATION (WINDOW SIZE = 32 × 32,
WINDOW OVERLAPPING RATE = 25%)

from this experiment.) The remaining 264− N data points are
used in the testing phase. We choose N = 200, 132 and 66.
For each N , the experiment is repeated 100 times. The average
Pearson and Spearman-rank correlation coefficients, together
with their corresponding standard deviations, are reported
in Table V. (Though not reported in the table, it was observed
that for the first two-combined metrics, a 75% overlapping rate
resulted in noticeable improvements: increases of 0.02 in the
Pearson score and 0.01 or 0.02 in the Spearman score.)

The best combination n found is APE + BLD2, where
APE measures the overall accuracy of the distorted image
to the original, while BLD2 quantifies the contour similarity.
The motivation behind this combination is similar to that for
SmSIM [14]. Similarly, PE + CC2 also provide accuracy infor-
mation and are complementary to BLD2. The combination
of LBP + LRI + BLD2 also gives comparable performance.
However, as the computational load of LBP and LRI are much
higher, this combination is not suggested. The fact that all of
the best combinations include BLD2 suggests that the bilevel
gradient histogram contains information that is important to
predicting human perception of scenic bilevel image similarity.

VII. ASSESSING BILEVEL IMAGE DISTORTION

This section uses the ground truth and new similarity
metrics to compare the performance of several lossy bilevel
compression methods and to assess the relative severity of
several types of distortion, including random bit flipping,
dilation and erosion.

A. Comparing Lossy Compression Algorithms

As mentioned earlier, one important application of
similarity metrics is to judge the performance of
compression algorithms. In this subsection, we use both
the metrics and the ground truth to compare the four lossy
compression algorithms used in the subjective experiment,
namely, Finite State Automata (FSA) [36], Lossy Cutset
Coding (LCC) [34], [35], Lossy Cutset Coding with
Connection Bits (LCC-CB) [34], [35] and Hierarchical
LCC (HC) [37].

Figure 14 shows the subjective rating scores of the
reconstructed images produced by the four lossy bilevel
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Fig. 14. Points show average subjective rating vs. coding rate of four different
coders. Lines connecting points are for visual grouping. To show the relative
severity of the three types of distortion, their average subjective rating scores
are shown as short horizontal lines for different degrees of distortion of each
type. (Red: random bit flipping with different probabilities. Blue: dilation.
Black: erosion.) The horizontal positioning of these lines has no significance.

Fig. 15. Objective metric scores of bilevel images with different types of
distortion. (See the Fig. 14 caption for details.)

compression algorithms, averaged over the six images with
recognizable scenes in Fig.1, and plotted vs. coding rate in bits
per pixel (bpp). As can be seen, HC has the best performance
at all coding rates. The runner-ups are two versions of Lossy
Cutset Coding (LCC-CB and LCC). FSA has the lowest
rating scores at each coding rate, although its difference to
LCC at low coding rates is negligible. Moreover, the plot for
HC suggests that coding at rates between 0.04 and 0.06 bpp
is quite attractive, as higher coding rates do not substantially
increase the subjective rating scores, while lower rates suffer
a significant drop.

Next, as an application of objective similarity metrics,
Fig. 15 compares the same four lossy compression methods on
the basis of the new metric with the best performance, namely,
the combination APE + BLD2 (computed using 32 × 32 win-
dows and 25% window overlapping rate). (The metric values
plotted are those obtained after the nonlinear transformation
that maximizes the Pearson correlation.)

Compared to the subjective rating scores in Fig. 14, Fig. 15
preserves the relative relationship of the four compression
methods. However, one can see the relative sizes of the gains

from one coding method to another are not always accurately
reflected in the objective metric values. For example, according
to the ground truth results in Fig. 14 at rates approximately
0.04 bpp, the subjective rating score for LCC is a little better
than FSA, LCC-CB is considerably better than LCC, and HC is
considerably better than LCC-CB. Figure 15 shows the same
relationship. However, the advantage of HC with respect to
LCC-CB is smaller and the advantage of LCC with respect to
FSA is larger.

Figure 16 shows the four ‘tree’ images coded at rate
approximately 0.04 bpp with different compression algo-
rithms. Also shown are the corresponding subjective, objective
(APE + BLD2) and PE rating scores Note that the objective
metric values and PE are after non-linear transformation and
are intended to match the subjective rating scores. From this
example, one can observe several things. First, the objective
metric values match the subjective rating scores significantly
more than PE. Second, while according to the ground truth
the FSA and LCC images have nearly the same similar-
ity, the natures of their distortion are different. The FSA
image appears noisy, while the LCC images appears to have
incomplete structure. Finally, while the HC image is rated
significantly higher than the LCC-CB image, the LCC-CB
image actually looks quite good when viewed on its own.
However, subjects did not rate it nearly as highly as the HC
image because when viewed side-by-side with the original,
differences can be easily seen in the LCC-CB image, but
not in the HC image. We believe the differences mentioned
above between the ground truth and objective metric values are
partially caused by the specific form of the nonlinear transfor-
mation. They might be reduced by better transformations or
by future improvements to objective bilevel image similarity
metrics.

B. Comparing the Impact of Different Types of Distortion

One can also use the ground truth and objective similarity
metrics to make judgments on the relative severity of the
different types of man-made distortion that were introduced
in the test images in the subjective experiment. Accordingly,
Figure 14 shows the subjective rating scores due to random
bit flipping, dilation and erosion with those due to the four
compression algorithms. One can see that all three kinds of
man-made distortions seriously impact image similarity, even
at their lowest levels; specifically, they give subjective rating
scores of 0.55 or less. Random bit flipping with probability
only 0.01 has a subjective rating score similar to HC with
the lowest coding rate. Morphological transformations, i.e.,
dilation and erosion, with two or more iterations have very
low similarity based on human perception. Also note that there
is a large gap between the scores for one and two iterations
of the morphological transformations. The gap is illustrated
visually in Fig. 17, where one sees that the second iteration of
dilation or erosion has a larger visual effect than the first. The
corresponding numerical results are shown below each image
in Fig. 17. Another interesting fact is that people are more
tolerant of dilation than erosion, which suggests that people
have lower tolerance to incomplete structures.
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Fig. 16. The ‘tree’ image coded at approximately 0.04 bpp with four lossy compression algorithms. Three different ratings are shown below the coded
images.

Fig. 17. Dilation and erosion added to the ‘tree’ image. The ratings shown at the bottom are the same as in Fig. 16.

Similarly, in Fig. 15, the objective metric values due to
the three types of distortion overlap with those due to the
four compression algorithms. The objective metric values,
subjective rating scores and PE’s are also shown in Fig. 17.
One can easily see that the objective metric values match the
subjective rating scores much better than PE.

VIII. CONCLUSIONS

In this paper, we presented a study of scenic bilevel image
similarity, including a subjective experiment to obtain ground
truth and development of new objective metrics to quantify
bilevel image similarity consistent with human perception.

In the subjective experiment, seven scenic images were each
distorted in forty-four ways, including random bit flipping,
dilation, erosion and lossy compression. To produce subjective
rating scores, the distorted images were each viewed side-
by-side with the corresponding original by 77 subjects. The
processed rating results are then used as ground truth for
testing metrics and other applications.

Based on hypotheses about human perception of bilevel
images, we proposed several new objective bilevel image simi-
larity metrics. These include Adjusted Percentage Error (APE),
Bilevel Local Direction (BLD), Connected Components Com-
parison (CC) and combinations of such. The performance of
these and pre-existing metrics was then assessed in terms of
Pearson and Spearman-rank correlation with the ground truth

obtained in the subjective experiment. It was found that the
BLD metric outperformed all previous metrics, and also, that
the overall best performance was achieved by the combination
APE + BLD, attaining Pearson and Spearman-rank correlation
coefficients as high as 0.93 and 0.92, respectively. These are
significantly better than the best of the pre-existing metrics,
namely, 0.90 for LBP, and 0.84 for LBP or LRI, respectively.

The ground truth and the best new metric (APE + BLD)
were then used to compare the performance of four compres-
sion algorithms, and to assess the severity of the various kinds
of distortion.
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