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Stochastic Extraction of Elongated Curvilinear
Structures With Applications
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Abstract— The automatic extraction of elongated curvilinear
structures (CLSs) is an important task in various image
processing applications, including numerous remote sensing, and
biometrical and medical problems. To address this task, we
develop a stochastic approach that relies on a fixed-grid,
localized Radon transform for line segment extraction and a
conditional random field model to incorporate local interactions
and refine the extracted CLSs. We propose several different
energy data terms, the appropriate choice of which allows us to
process images with different noise and geometry properties. The
contribution of this paper is the design of a flexible and robust
elongated CLS extraction framework that is comparatively fast
due to the use of a fixed-grid configuration and fast deterministic
Radon-based line detector. We present several different applica-
tions of the developed approach, namely: 1) CLS extraction in
mammographic images; 2) road networks extraction from optical
remotely sensed images; and 3) line extraction from palmprint
images. The experimental results demonstrate that the method
is fairly robust to CLS curvature and can accurately extract
blurred and low-contrast elongated CLS.

Index Terms— Curvilinear structure, line extraction, localized
Radon transform, conditional random field, mammogram, road
extraction, palmprint.

I. INTRODUCTION

HE task of automatic detection of straight lines and,
more generally, curvilinear structures (CLS) in images
is one of the fundamental problems in image processing and
pattern recognition. Typically, CLS extraction is required in
specialized line detection problems such as road detection
in remote sensing [1], [2] or vessel detection in medical
imaging [3]. In some image processing problems CLS detec-
tion is a necessary preprocessing stage when complex objects
are of interest that comprise distinct combinations of linear
features, such as spicule pattern analysis for cancer/mass
detection in mammography [4].
Recent decades have seen much interest in the design of
line and CLS extraction methods. Several notable multi-scale
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filtering techniques and directionally adaptive transforms
derived from multi-scale analysis, including steerable
filters [5], contourlets [6], [7], directionlets [8], have been
proposed for local feature extraction and can be employed
to address contours and CLS detection. Furthermore, multi-
scale local transforms like beamlets [9], feature-adapted
beamlets [10], ridgelets [11] and curvelets [12], have been
specifically designed to address the problem of line extraction.
Other approaches to line and CLS extraction include isotropic
non-linear filtering for wide line detection [13], line
profile analysis for CLS detection [14], and skeleton
extraction [15]. These methods, which perform well for
high-contrast CLS, rely on substantially different models and
assumptions.

In this paper we aim to address a general scenario of
content-rich images, i.e. where the CLS of interest appear
on some non-trivial background. Furthermore, we assume the
presence of additional noise factors such as, for instance,
those due to the imaging modality, poor illumination and weak
contrast between the CLS and non-CLS structures. Indeed, in
most natural images the CLS of interest suffer from various
kinds of noise and artifacts such as blur, occlusions, and
low-contrast. In some cases such as mammographic images the
strong blur transforms CLS from lines into ridges. More gener-
ally, from the point of view of CLS extraction we consider any
non-CLS structure in the image as noise. In the absence of
reliable geometrical properties of the considered lines we
assume the characteristic property of CLS to be: first, their
higher average brightness as compared to the background, and,
second, their local linearity. This ridge-like assumption does
not hold for an arbitrary kind of CLS, but for numerous line
extraction applications this assumption is true and allows the
recovery of line structures in the absence of strong geometrical
and/or edge-based evidence.

Our work is inspired by the promising results achieved
by Radon transform for digital line detection in mammo-
graphic [4] and remote sensing [16] applications. Since most
of the CLS of interest demonstrate a certain degree of
curvature and are considerably shorter than the entire image
size, we employ a localized version of the Radon transform
similarly to [17]. We perform image partitioning, required
for the localized transform, by defining a grid of overlapping
rectangular image regions of predefined size. Radon transform
is applied separately on each of the grid regions. Alternatively,
stochastic geometry approaches allow the analysed regions to
change in size and location in a random manner [18], [19].
However, although they offer more flexibility and are free
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Fig. 1. Results of Canny edge detection [22] (second row), multi-scale CLS
profile extraction [14] (third row) and contourlet shrinkage [7] (fourth row)
on mammographic (left), road network (centre), palmprint (right) images.

of undesirable cross-border effects, such approaches require
elaborate parametric fine-tuning and typically result in signif-
icantly higher computational complexity.

We propose a two-step stochastic approach for the extraction
of elongated CLS from images of natural and man-made
scenes affected by noise, blur, acquisition artifacts and the
presence of non-curvilinear structures. The aim of the first step
is to extract a wide set of line segments including the CLS of
interest. To this end we apply a localized version of the Radon
transform to each of the image regions over an overlapping
square grid and extract its first several maxima as line segment
candidates. In the second step, we extract continuous chains of
line segments by imposing a Conditional Random Field (CRF)
structure of local grid dependencies. Optimization is
performed stochastically via simulated annealing [20] using
a Markov chain Monte Carlo (MCMC) algorithm [20], [21].
We improve performance of the method by parallelizing
MCMC implementation via grid partitioning.

The developed stochastic approach is experimentally
validated in three distinct applications. First, we consider
the problem of CLS extraction from mammographic images.
This is a key step for mammogram coregistration, mass
detection, and other such medical image processing tasks.
As can be seen in Fig. 1 (first column) the CLS that are
present in this type of imagery suffer from high levels of blur
due to volume projections and tissue density. Consequently,
a standard edge detector (Canny’s method [22]), CLS extractor
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(Steger’s method [14]) and hard shrinkage in the contourlet
domain [7] fail to accurately identify the CLS locations.
The second considered application is road-network extraction
from high resolution remotely-sensed optical images. This
application plays a key role in urban and agricultural mapping,
coregistration, etc. A significant challenge in these type of
images is the presence of non-road CLS and geometrical
structures such as buildings, fields, tree canopies etc. The
characteristic property of roads that allows their extraction
on such a background is their continuity and elongatedness.
It is immediate from Fig. 1 (second column) that standard
techniques do not take these properties into account and there-
fore yield unsatisfactory results. More specifically, Canny’s
edge detector suffers from overdetection, and Steger’s method
results in an excess of discontinuities in the detected road
segments. As the third application we consider the palm line
extraction from palmprint images. This task is central in
biometric identification and matching of palm images. Fig. 1
(third column) illustrates that, whereas Canny’s detector is not
appropriate for the CLS extraction on these type of images
and contourlet shrinkage results in overdetection, Steger’s
CLS extractor achieves promising results (albeit with some
need for further refinement). These three applications present
essentially different CLS extraction cases with various kinds
of noise.

The contributions of the paper are the design of a
general and flexible framework for elongated CLS extraction
complemented with MCMC parallelization, and its extensive
experimental validation. The designed extraction technique
(i) uses a CRF design on a fixed grid to significantly
reduce the MCMC complexity and optimization cost and
(i) forms a flexible framework whereby the selection of
distinct application-specific unary terms facilitate CLS extrac-
tion in images affected by a variety of noise factors, such as
blur, occlusion, low-contrast, and background clutter effects.
Our approach is significantly faster than full stochastic
methods that consider random objects at random loca-
tions [16], [18]. A MATLAB implementation of the developed
approach is available at the webpages of the authors.

The paper organisation is as follows. In Section II we
present the line segment extraction step. In Section III we
introduce the CRF structure, MCMC optimization procedure
and present the potential and unary energy terms. In Section IV
we give the outline of the proposed CLS extraction procedure
and MCMC parallelization. In Section V we present the
extensive experimental validation on three types of imagery,
and in Section VI we summarize the conclusions of this study.

II. LINE SEGMENT DETECTION

The first stage of the proposed CLS extractor establishes an
exhaustive set of line segments. The objective at this stage is to
detect all of the constituent line segments of all of the genuine
CLS present in the image. Hence, this initial step returns many
false positives which must be refined in the subsequent stages
of processing.

Both the Radon transform and its discrete counterpart,
the Hough transform, are popular and efficient tools for the
extraction of linear structures [4], [16], [23]. Nevertheless, they
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Fig. 2. Orientation-driven clique selection in the 3-by-3 neighbourhood on
an overlapping localized grid.

suffer from two major drawbacks when applied to CLS/line
extraction in real imagery. Firstly, the standard transforms
only address straight line detection,! whereas most of the
CLS structures present in real images demonstrate a certain
(and unknown) degree of curvature. Secondly, these global
transforms are applied to the whole image and, thus, naturally
favour longer lines over shorter ones. The first drawback
results in either complete or partial loss of curved lines,
whereas the second restricts the detection solely to longer
segments. In order to overcome these shortcomings we choose
to employ the localized Radon transform on a fixed grid. In this
way, shorter lines receive the same treatment as longer lines
and the curved structures can be approximated by a set of
shorter line segments.

The continuous Radon transform on a 2D domain X is
defined by an integral of a function f(xj,xp) over a straight
line defined by p - its distance from the origin (intercept)
and 6 - the angle its normal vector makes with the positive
Xi-axis [23] (which differs from the slope angle by
90 degrees):

Rf(p,@):/f(xl,xz)l[ple cosf —xpsinf] dxidxy, (1)
X

where I[-] is the indicator function. When applied to digital
images, the discrete Radon transform is better known as the
Hough transform [23]. It sums the intensities along a specific
angle @ and intercept p [23] in a finite image region.

Since the local Radon transform is implemented over a
fixed grid some loss of translational invariance is incurred.
This is most severe in situations where a line, of size similar
to that of the grid region, is cut in two halves by one of
the boundaries. Indeed, in the presence of sufficient noise,
the successful detection of such a line will depend entirely
upon it’s position. An overlapping fixed grid, employed here,
partially overcomes this problem by allowing the points close
to the boundaries to appear in several distinct regions of the
grid, cf. overlapping grid structure on Fig. 2. The grid scale
should be chosen with respect to the expected minimal size
(length) of the CLS present in the image. Note that the finer
the scale, the higher the allowed curvature of the detected
structures, but also the higher the sensitivity to noise.

Each node of the grid corresponds to a square region in
the image over which the discrete Radon transform is taken.
As illustrated in Fig. 3(a), the standard Radon transform (1)

N generalized Radon transform has been proposed to extend the standard
Radon transforms to modeling of curves of arbitrary shapes [24]. This allowed,
for instance, the formulation of parabolic and hyperbolic Radon transforms.
Such methods entail more complex direct and inverse transformations and are
applicable to specific classes of curves.
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(a) (b) (c)

Fig. 3. Maxima search_in an image region (inside orange boxes):
(a) correction introduced by Rf allows to take into account shorter segments
(green against red), (b) circular masks inside regions. (c) Considering the
distance and orientation in the neighbourhood (blue regions) to select a
segment in the current region.

favours lines that pass near to the centre of the analysed region.
This effect is undesirable since we employ the transform to
subimages whose location is selected in a fixed manner regard-
less of the presence of CLS and their positions. To address this
issue, we normalize the Radon transform Rf (p, 8) by a factor
equal to the length of a segment £ inside its supporting image
region at grid-node (ic, jc):

Rf(p,0)=Rf(p,0) / L(p,0,ic, jc). 2)

This normalization provides a fairer comparison between line
segments of different lengths. We only consider segments
which are at least one third of the region size. This disregards
shorter segments which are more vulnerable to noise.

For each node we extract the S-many line segment candi-
dates that correspond to the first S maxima of the normalized
transform Rf (p, ) and that are at least Ap or A@ apart. This
minimal distance criterion between the segment candidates
is introduced for the following two reasons. Firstly, CLS
are often wider than the one-pixel wide template employed
by the transform and are affected by noise/blurring. Accord-
ingly, the criterion treats such CLS as a single segment
candidate. Secondly, this arrangement allows the approach to
provide a larger variety of segments which can be crucial
when recovering poorly contrasted parts of the lines. In order
to increase the rotation-invariance we employ circular masks
inside subimages as illustrated by Fig. 3(b). Hence, we
consider the same number of distinct segments in each
direction.

III. LINE STRUCTURE EXTRACTION

The localized Radon transform employed in the first
stage extracts the CLS of interest together with many false
candidates of various origins, such as overlaps, non-curvilinear
geometrical structures, noise, etc. In order to select the relevant
segments from a largely redundant set of line candidates we
allow not more than one segment to remain per grid node
region. Defined on the overlapping grid this choice allows a
certain degree of segment overlap that is necessary to model
simple line intersections. More complicated intersections can
be modelled if an appropriately small scale is chosen.

To refine the segment configuration we consider a
CRF model [25] to describe the local dependencies on the
grid. A CRF is a form of undirected graphical model that
provides a probabilistic framework for labeling dependent
data fields. Specifically, a field (X,Y) on observations X
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and random variables (labels) Y is called CRF when the
random variables Y| X obey the Markov property: p(Y,|X, Yy,
w #v) =YX, Yy, w ~0v), where v and w are vertices in
the graph indexing Y, and w ~ v denotes the relationship of
neighborhood. The primary advantage of CRFs over hidden
Markov models (HMM) is their conditional nature, resulting
in the relaxation of the independence assumptions required
by HMMs in order to ensure tractable inference. Additionally,
CRFs alleviate the label bias problem [26], a characteristic
weakness of many conditional Markov models based on
directed graphical models, and perform very well in many real
labeling problems [25], [26].

In our graphical model each grid node is assigned a label
indicating which of the maxima at this location pertains to
the extracted CLS configuration. For computational reasons
we consider the Potts model of size two. As illustrated in
Fig. 2, this corresponds to a 3-by-3 neighbourhood com-
prising the current grid-location and its eight closest neigh-
bours. To reduce the computational complexity incurred by
considering all possible cliques, the relevant clique is selected
adaptively based on orientation angle a of the current line
segment /. Specifically, we consider four kinds of cliques sup-
porting elongated CLS crossing the central region, cf. Fig. 2:

« horizontally oriented, o € [0, 22) U [157, 180),
« vertically oriented, a € [67, 112), and
« two diagonal directions, a € [22,67) or a € [112, 157).

Thus, for each segment candidate the considered neighbors are
selected differently and depend solely on its orientation angle.

The CRF assumption and Hammersley-Clifford theo-
rem [20], [21] allow the probability of a grid configuration
L to be written as a Gibbs distribution, namely

E(L) = % exp (— ZEn),

where Z is a normalizing constant and the sum in the exponent
gives the total energy with the summation taken over all
nodes of the grid. The local energy contribution E, at the
n-th grid location (i.e. containing segment /,,) is constructed as
follows:

Ey=Eally 1) =D+ X 71| Vil 1)+ Vi, 5],
all i

3)

where: D(l,) is the associated unary data term; and V; are the
potential energy terms with weight parameters y; controlling
their contributions. Note that the neighbouring segments [, ;¥
are chosen in accordance with the orientation of the current
segment [, see Fig. 2.

In the following subsections we introduce potential and
unary terms along with the energy minimization procedure.
Our flexible framework allows the unitary terms to be
designed according to the expected imagery properties such
as level of noise, blur, the presence of non-CLS geometry,
etc. As described below the potential terms originate from
the defining properties of curvilinear structures, namely low
curvature, continuity and elongatedness.
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A. Potential Data Terms

In most of the image processing applications the initial data
suffer a lot from noise, blur, volume artifacts, etc. To recover
realistic line structures from such data we have to rely on
several basic assumptions. In this work we rely on two central
assumptions. First, we assume that the CLS of interest are
sufficiently elongated and smooth. This means that at the
considered scale such lines should consist of, at least, several
segments with similar orientation. Second, we assume that the
gaps in the CLS, originating from strong noise or occlusions,
are small compared to the sizes of the CLS and that they do
not exceed the size of the considered grid region.

To induce realistic CLS configurations we consider inter-
action terms of two types. Firstly, we want to favour smooth
configurations with low degree of curvature, i.e. neighbouring
segments should have similar orientations. Secondly, we want
to favour continuous line structure, i.e. neighbours should be
connected. Hence, we introduce the following two penalties,
as below.

« Orientation penalty: As discussed above, the consider-
ation of a localized, rather than global, Radon transform
allows us to approximate lower order curves by line
segments. However, there may exist several line segments
with differing orientations, especially in blurry regions.
It is therefore sensible to constrain the orientations of
adjacent line segments. To this end, we penalize the angle
dissimilarity with the following term:

2
Vo(ln,l;r)z(min(la,,—a,ﬂ, 180—|an—a;|)/90) @)

where ay,, a, are orientations (in degrees) of the two line
segments /, and [,

« Distance penalty: In order to encourage the recovery of
missing/poorly-contrasted/occluded line parts and favour
continuous CLS, we penalize the segment discontinuities
proportional to the distances between the segments that
are considered as parts of the same structure:

min dist(x,y). 5)

Va (ln > l: ) =
xé€ly,, yelff
Note that contrary to approaches which allow segment
detection at random locations, such as, see [18] and [19], we
do not have to penalize overlap of the lines (this is due to the
deterministic grid-based generation of line candidates).
These penalties are assigned with weight parameters to
control their energy contribution. An example of the effect of
these penalties for the case of mammographic CLS extraction
is illustrated in Fig. 3(c). In this example appropriate weights
of the penalty terms enable the approach to take into account
both the distance and orientation in the neighbourhood (blue
regions) and to arrive at a suitable choice of segment in the
considered region (orange): the third strongest Radon maxi-
mum (shown in green) is chosen against the first maximum
(red) — which is poorly oriented — and the second maximum
(yellow) — which is poorly located (i.e. distant from its
neighbouring segments shown in blue).
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Fig. 4. Inner and outer (background) regions (at horisontal orientation)
employed to calculate the Bhattacharyya distance d(/).

B. Unary Data Terms

The role of the unary data term is to capture the likelihood
that a segment exists in the current grid location. This is
performed independently for each segment extracted by the
localized Radon transform, given the observed data. For flex-
ibility, unary terms can take different forms according to the
specific application. In the following we consider several kinds
of unary terms and specify where they can be appropriate.

We start with a unary data term that is appropriate for
data which contains high levels of noise and little geometric
structure. In this scenario, contrast alone cannot be used to
distinguish between the background and the ridge-like CLS.
Thus, a likelihood based on template matching is appropriate
and we first define a quantity

> > Rf(p.9)

pel, O€ly

> > Rf(p.0)’

all p all 0

dg (lc) =

where (p., 6.) are the coordinates of the segment /. in the
Radon transform space, I, = [p. — Ap,pc + Apl, Iy =
[0, — A, 0. + AO], and the summation in the denominator
is taken over all possible values of p and @ inside the current
region (ic, j.). Here, dg(l;) estimates the probability of a seg-
ment bundle centred in (p., 6,) against all possible segments in
the analyzed image region. Owing to the normalization term in
the denominator, this segment probability assignment is locally
contrast-invariant and robust to local histogram stretching.
We define the Radon unary data term as:

Dr(le) =1 —2dg(l), (6)

which takes values in (—1, 1) and is smaller for the strongest
lines in the region and greater for weaker lines.

An alternative unary data term is appropriate when the
geometry and contrast of the considered lines are sufficiently
high, e.g., in the case of road detection in remotely sensed
optical images. This unary data term evaluates the dissimilarity
between the texture inside the line segment / and an outer
(background) region comprising two parallel lines located at
distance p on both sides of the current segment position
(as in Fig. 4). For example, if the distance p is set to
one, then the two parallel lines are adjacent to the current
segment. In general, the value of p is chosen such that the
outer stripes are sufficiently far from the current segment
in order to identify wide lines correctly. The Bhattacharyya
distance dp(l) [27] is used as the dissimilarity metric between
pixels in the considered segment and in the outer stripes.
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This distance measures the distributional similarity of two
continuous random variables. If we assume that the pixel
intensities over two separate short line regions originate from
two independent Gaussian variables ny ~ N (,u,-n,aizn) and
ny ~ N(Uout, aozu,), the Bhattacharyya distance is defined as

dp(ni, ny) = l (tin — ,uout)z . l n 20in0out
' 4 O'izn + 0()2ut 2 ‘71’%1 + Uozut '

where the means x and variances o2 are replaced by their

standard sample estimates [27]. Note that the Gaussianity
assumption is accurate if we consider two homogeneous
regions of an optical image and may be wrong for different
acquisition modalities. The choice of metric is motivated by a
good track record of performance in various object detection
applications [19]. An alternative is, for example, to consider
the Student 7-test statistic to estimate the dissimilarity in the
means [18]; however, this is variance-insensitive. Distance dp
takes values from O for the exact same distributions to +oo.
We then construct a Bhattacharyya unary data term as
follows:

ifdp(X1, X2) < dp

exp(l — %&’Xﬂ) — 1, otherwise,

1— dp(X1,X7)
do ’

Dp (lc) = {

where X is the set of pixels of the line segment /., and X» -
of the two outer lines. Here dy is a sensitivity parameter:
the higher its value, the more selective the data term is.
The distance Dp(l.) takes values between —1 for perfect
radiometric contrast between the line and the background
stripes, and 1 for the exact same statistical patterns in the
different regions (poor contrast).

C. Energy Minimization

Once the energy (3) with all the involved data terms have
been formulated, the refined line structure is recovered by opti-
mizing the CRF configuration, i.e. finding the labels that yield
the smallest total energy. Various optimization techniques have
been developed in recent decades to address this challenging
and time-consuming problem, see [28]. Standard graph-cut
techniques based on expansion and swap moves cannot be
applied to the energy (3) due to the non-regularity of the
considered potential terms (see below). Methods designed for
non-submodular energies based on the roof duality and its
extensions [29] have empirically been found inappropriate to
the considered optimization problem since they fail to label a
large portion of nodes. Loopy belief propagation [30] exper-
imentally failed to converge to a stable label configuration.
Therefore, we apply a MCMC optimization with simulated
annealing [20] to optimize the CRF configuration.

MCMC is a general method for obtaining random samples
from a probability distribution for which direct sampling is
difficult or unfeasible. For our problem we employ a point
processes that uses an MCMC sampler to search for the
configuration which minimizes the energy E. The sampler
simulates a discrete Markov chain that converges towards
an equilibrium state around the minimum energy configu-
ration [20]. In a Metropolis algorithm at each iteration the
current label configuration is locally perturbed according to
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a predefined proposal density. The resulting configuration is
then accepted as a new state of the chain with a certain
acceptance probability depending on the energy difference of
the two configurations and a relaxation parameter T called
temperature. The values if T depend on time ¢ and approach
zero as t — o0o0. The described MCMC procedure with a
predefined procedure of decreasing T constitute MCMC with
simulated annealing.

The employed MCMC procedure is initialized with a
configuration that, at each node, gives the maximum value of
the unary data term. It then proceeds iteratively by selecting
at random (uniformly over all the grid nodes) a grid-location
and proposing at random (uniformly over all the segment
candidates) a new segment [, from the list of line segments
associated with this grid-location. A new configuration /,, is
accepted and replaces the current /. with the acceptance
probability 6 = min(1, exp((E.—E;)/T)). The resulting chain
of configurations corresponds to the Metropolis-Hastings pro-
cedure [21] with a uniform proposal distribution. One iteration
of the approach is completed once all of the nodes have been
visited at least once by the iterative process. The temperature
parameter T is decreased at each iteration. This encourages
more exploratory behaviour during the early stages; i.e., it
accepts states with higher energy with non-zero probability for
the sake of better exploration. As it decreases, the temperature
becomes more prohibitive until, as it approaches zero, the
algorithm only accepts states with less energy. The iterative
process is stopped when the process stabilizes, i.e. when
the proportion of relabelings performed during an iteration
becomes small.

IV. CLS EXTRACTION ALGORITHM

The outline of the proposed detector is presented in Fig. 6.
The first part of the algorithm (lines 2-5) is directly paral-
lelizable, since the operations are performed independently in
each node of the grid. The second part (lines 7-17) cannot
be parallelized directly, since the update of sites in MCMC
has to be performed sequentially to ensure convergence [20].
This second part of the algorithm is the most time consuming,
and in order to accelerate it without violating the convergence
conditions we resort to image partitioning. At each MCMC
iteration we split the grid into NG similarly-sized grid parts.
To be able to run MCMC separately and in parallel we have
to ensure the proper independence of nodes in each of the
grid parts with nodes from all other parts. To this end we
“freeze” the MCMC state in nodes whose segment selection
is affeted by nodes from more than one grid parts; due to the
use of 3-by-3 neighbourhood it suffices to leave out stripes
of single-node width, as demonstrated in a simple case of
NG = 4 on a square grid in Fig. 5. More specifically, at the
beginning of each iteration we first randomly select a new
seed for partitioning (red in Fig. 5), and then identify the
NG sets of nodes, where MCMC can be parallelized (blue,
green, yellow, pink in Fig. 5). The selection of blocked nodes
(black in Fig. 5) is done in a regular manner to arrive at
NG sets of nodes of similar size. Since, typically, multiple
MCMC iterations are performed and the seeds of partitioning
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Fig. 5. Partitioning of a square grid into NG = 4 parts (blue, green, yellow,
pink) of similar sizes to parallelize MCMC.

1 define an overlapping rectangular grid of square regions on the image;
// line segment detection
for all grid nodes (ic,j.) do

perform the discrete Radon transform R f;

find the first S-many maxima of the transform;

calculate the unary data terms for the S segments;

initialize MCMC by setting /. as the segment with maximal value

of unary term;

[ NV N

// line structure extraction
6 set temperature 7 := Tj, acceptance ratio A :=1;
while A > M, do

7 reset counters changed := 0, total := 0;
while not all grid nodes have been visited do
8 total := total + 1;
9 randomly select a node (i.,j.) on the grid;
10 randomly select a new candidate ,, for the node (i, jc);
11 calculate energies E. and E, in the relevant cliques based on
l. and [,,, respectively;
12 generate a uniform u ~ U|0, 1];
if v < min(1,exp((E. — E,,)/T)) then
13 accept the candidate . = [,,;
14 L changed := changed + 1;
15 identify acceptance ratio A := changed/total;
16 apply geometric temperature decrease 7' := T x T;

// post-MCMC thresholding
for all grid nodes (i, j.) do
17 L remove weak segments with E. < Mpresh.

Fig. 6. Pseudocode for the proposed elongated CLS extractor.

are selected randomly on each iteration, the effect on conver-
gence of the preferential treatment of the blocked nodes is
negligible.

Theoretical considerations require the cooling schedule
in MCMC to be logarithmic [20], but as in many appli-
cations [18], [21], we employ the geometric descent to
accelerate the convergence at the possible cost of worse
global exploration. The iterative process is stopped when the
configuration stabilizes, i.e. when the proportion of accepted
line candidates within a given MCMC iteration goes below a
threshold Mtop.

Note that in the developed algorithm the segment candidates
compete solely with those located at the same node of the
grid. Accordingly, after the MCMC procedure each node of the
grid contains a line segment. Sporadic, disjoint segments can
survive when all the candidates at the given grid node interact
weakly with their neighbours due to acquisition noise, low
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contrast or absence of lines at the considered scale. To remove
these we introduce a post-MCMC thresholding (line 17) to
remove weakly interacting segments.

V. EXPERIMENTAL EVALUATION

In this section we experimentally validate the developed
CLS extraction approach to confirm its performance and
flexibility. To this end we present three case-studies. The first
application is in mammographic image analysis, where the
extraction of CLS is required for image coregistration and/or
spicule detection — both of which facilitate the detection
of malignancy. The second application is the extraction of
road networks from remotely sensed optical images— this
plays an important role in urban planning, traffic control,
maps updating, etc. Finally, we present the results of the
developed technique in palm line extraction which is one of the
critical problems in palm image alignment and the underlying
biometric feature extraction.

The three applications, considered here, originate from
different domains— medical, remote sensing, and biometrical
image analysis. Each case presents different levels and types
of noise. Furthermore, the CLS in each case possess different
geometrical and statistical properties. Together, these examples
thus represent a suitably wide variety of challenges for the
proposed CLS extraction approach. In each of the case-
studies we begin with a brief application-specific state-of-the-
art overview, and then present the experimental results and
comparisons.

Throughout the experiments the construction of the energy
term is adapted according to the selection of appropriate
unary data terms. Therefore, the penalty weights (y,, v4)
will be different in order to achieve a discriminative energy
representation. The choice of these parameters poses, in fact,
a challenging problem. In case of complete data (ground truth
with labels), these parameters can be estimated by stochastic
gradient [31]. This algorithm converges locally, i.e. strictly in
the neighborhood of the initial set of parameters. In incomplete
data scenario, the weight parameters have to be estimated
simultaneously with the label configuration that minimizes
the total energy E. The standard approach to such problems
is the Expectation-Maximization (EM) algorithm. Neverthe-
less, due to various complexity and feasibility issues the
EM algorithm and its variants are not well adapted and there is
no guaranty of convergence toward the maximum likelihood
estimation. A partial estimation may consist of formulating
inequality-based constraints on the y-parameters to arrive at
improved estimates within the same iterative MCMC process,
see [18]. In this paper, however, we do not consider the weight
parameter estimation problem and take their values as known
a priori, like in [19] and [32].

Also, the remaining data sensitive parameters— grid scale
and post-processing threshold will vary throughout this
section. Otherwise, the same parameter configuration, which
is robust to resolution and does not require adjustments when
changing applications, is employed, namely: square grid with
1/3 overlap of the node regions, as in Fig. 2; [0, 180) angle
range for the Radon transform with a step of one degree;
distance between Radon maxima of at least Ap = 5 or
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AO = 5; § = 5 candidate segments per region, MCMC
procedure is set with 7p = 1,7 = 0.975 and the stopping
threshold of Mo, = 0.01. Finally, we report the compu-
tation times achieved in a MATLAB implementation with
CPU-parallelized Radon transform/maxima calculation and the
described above MCMC parallelization with NG = 4 after,
typically, 30—40 MCMC iterations on a Core-i7 2.7GHz,
8Gb RAM, Windows 8 system.

A. CLS Extraction From Mammographic Images

Mammography is the most widely spread tool for breast
cancer monitoring. The purpose of automatic mammographic
image processing is to facilitate the work of medical person-
nel in detection, classification, and measuring of anatomical
features such as masses and CLS. The extraction of the
latter poses a challenging image processing problem due
to their low contrast, variable widths and partial occlusions
caused by volume projections occurring during 2D image
acquisition of a 3D object. Accurate CLS extraction is of
interest for various mammographic image processing problems
including registration [33], mass detection by linear structure
removal [34] and microcalcification detection [34]. Extrac-
tion of CLS is of particular significance in spiculated mass
detection [4], [35], since, as has been noted in [35], almost
half of the malignant masses in mammograms are surrounded
by a radial pattern of spicules. Various methods for CLS
detection have been proposed: based on lines/binning opera-
tors [35], template matching [35], global Radon transform [4],
Dual-Tree Complex Wavelets [36], contourlets [37], open-
ended active contours (snakes) [38], etc. More detailed
overviews of approaches and their limitations can be found
in [35], [38], and [39].

In this study we focus on CLS extraction; its subsequent
classification is outside of the scope of this work and can be
achieved by various methods, such as, e.g., principal com-
ponent analysis [35] or random forests [36]. Mammographic
images are not geometrically regular and contain a lot of
blurry and non-curvilinear structures [35], [36]. Therefore, we
employ the Radon unary data term (6).

Experiments were performed on images from the Digital
Database for Screening Mammography [40]. Throughout this
subsection (unless specified otherwise) we employ an over-
lapping grid of square regions with widths equal to 50 pixels,
penalty weights (y,, y4) = (2.0, 0.25), and the postprocessing
threshold of Minresh = 1.3. We analyzed over 50 cranio-caudal
and mediolateral-oblique view mammograms obtained at
50 micron resolution, containing various CLS, several results
were earlier reported in [41].

1) Synthetic Images: We first present a set of synthetic
experiments where the goal is to evaluate the accuracy of
CLS extraction in the presence of a typical mammographic
background. To this end we consider a normalized mam-
mographic image (MI) of healthy fatty tissue, see Fig. 7(a),
and a monochrome synthetic image (SI) comprised of elon-
gated CLS with different length and curvature, see Fig. 7(b).
We perform CLS extraction on an overlapping grid with square
regions of s3 = 47 pixels on the two images separately
and then on a weighted mixture 0.9 x MI + 0.1 x SL
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(b)

(©)

Fig. 7. CLS Extraction results on overlapping grid with square regions
of s3 = 47 pixels size on (a) 1000 x 1000 mammographic image (MI)
with healthy tissue, (b) 1000 x 1000 synthetic image (SI) with CLS, and
(c) weighted mixture 0.9 x MI 4 0.1 x SL

We observe that applied to SI the CLS extraction is quite
accurate though slightly angular due to the underlying line
segment approximation. In accordance with the selected scale
some CLS parts, like those in the leaf (right bottom) and letter
‘s’, are not detected due to high degrees of curvature. When
applied to the mixture, we expect most of the CLS comprising
SI to be extracted along with CLS present on MI. Note that
not all the CLS from SI remain CLS in the weighted mixture
since some CLS can vanish in regions where MI has bright
patches and/or CLS of its own. Nevertheless, to numerically
evaluate the (pixel-level) extraction accuracy we take SI as the
ground truth for detection.

To arrive at the numerical accuracies of the CLS extraction
on Fig. 7(b), (c), we dilate the detected CLS using a disk of
radius three, and compare them to the ground truth. To evaluate
the accuracy of the results we plot a receiver operating charac-
teristic (ROC), that reports the fraction of true positives out of
the total actual positives, called true positive rate (TPR), vs. the
fraction of false positives out of the total actual negatives,
called false positive rate (FPR), at various parametric settings.
To reduce the impact of mammographic lines on the reported
FPR we take into account solely the extracted lines located
within 10-pixel radius from any white pixels in SI. In Fig. 7(b)
the obtained TPR is equal to 0.765 and FPR = 0.022; and
on the mixture, Fig. 7(c), TPR = 0.741 and FPR = 0.024.
The results of a more representative study with four different
weighted mixtures are summarized in Fig. 8. For each of the
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Fig. 8. ROC curves of CLS extraction of a synthetic image (SI) from
weighted mixtures of SI with a mammographic image (MI), see Fig. 7. Each
curve presents six results at different grid scales with square regions with a
side of (from left to right on each curve) s = 65, so = 56, s3 = 47, 54 = 38,
s5 =29, and s¢ = 20 pixels.

mixture-images we have evaluated the extraction results at six
different scales with regions of sizes in range from 20-by-20 to
65-by-65 pixels. Each accuracy measurement (TPR, FPR) has
been averaged over five reruns of the developed CLS extractor;
this is necessary due to the stochastic nature of the developed
approach. Fig. 8 shows that the extraction accuracy increases
with the weight of SI in the mixture— this growth is very
fast for SI weight values between 0.05 and 0.1, and is almost
saturated with SI proportion above 0.3. Fig. 8 also shows that
the finer the scale (smaller region size) the larger the TPR
as well as FPR. The results of method [4] are not presented
in Fig. 8 due to a different parametrization. Furthermore, the
results are quite different from those obtained by our method:
for mixtures the average TPR is slightly higher - in range
from 0.88 to 0.94 at the expense of significantly higher FPR
which is above 0.08. The average observed computational
time for the proposed method is in range from (on average)
t; = 42 seconds (scale s1) to tg = 186 seconds (scale sg) on
the 1000 x 1000 images used here.

2) Real Images: In Fig. 9 we present four typical results
on 1000 x 1000 pixels regions of interest: (a)-(c) with spicu-
lation/architectural distortions and (d) of healthy tissue with
CLS. In the second column we report maps with all the
detected line segments after the line segment detection step.
Here the intensities are proportional to the value of their
Radon energy term. We observe that all CLS that are visually
present in the image are contained in the maps along with
a number of false positives. This observation empirically
validates the applicability of the local Radon transform for
segment detection in this type of highly blurred image. In the
third column we present the CLS extraction results, where
the intensities correspond to the energies (3) scored by the
line segments. We observe that the majority of the false
positives have been discarded; however some possibly false
positives remain. These results can be further processed by
removing the shorter line-segment chains if such structures are
deemed irrelevant. This is demonstrated in the fourth column
where each CLS is assigned a unique colour. To arrive at
this result we have employed a deterministic clustering by
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Long CLS Global Radon

Fig. 9. CLS extraction on 1000 x 1000 pixels mammographic images (a)-(c) containing spiculated masses or architectural distortions (with red dots marking
their centres) and (d) healthy tissue with CLS, from left to right: images after local histogram enhancement (for visualization only), all extracted Radon
segments, all extracted CLS, long CLS with colour coding, result of the global Radon transform enhancement [4].

combining segments at adjacent grid positions with penalties
Volli,l) < 0.1 and Vy(l1,l2) < 5, and retaining solely
the CLS constructed of five or more segments. We observe
that this manipulation has significantly reduced the noise but
might be undesirable in some cases since it removes short true
positives.

Visually, the star-like CLS clusters forming around the mass
centres (depicted schematically by red dots in Fig. 9(a)-(c)) are
quite evident. At the same time in the healthy tissue image,
Fig. 9(d), the CLS do not extend from any single point and
are almost parallel, slowly converging to the nipple, which is
characteristic of healthy linear features on mammograms. For
comparison, in the fifth column we present the results of the
global Radon filtering method [4]. Note that due to the similar
methodological component employed (Radon transform) the
method in [4] is the most relevant comparison. Furthermore,
methods in [35]-[37] do not recover elongated connective
CLS, and active contours in [38] require manual initialization
in the form of mass/CLS position specification. It is immediate
that the proposed method performs much better in extracting

continuous and low-contrast CLS and in that sense suffers
significantly less from the detection noise. Both the proposed
method and that in [4] have a single ‘physical’ parameter: in
our method - the expected minimal length (i.e. grid scale), and
for [4] - the expected width of the CLS. From an operational
point of view the minimal length parameter is less restrictive
and detection of structures at different distances from the
sensor. Specifically, for our method, the same grid specification
was used for all images, whereas we had to tune the width
parameter of the global Radon method in [4] from w = 12 to
w = 25 because the detection results vary appreciably.

B. Road Network Extraction

The problem of road network extraction from aerial or
satellite imagery plays an important role in image processing
for various applications, such as image coregistration, building
detection, urban planning, and agricultural and forestry
mapping. All of these applications can benefit greatly from the
development of unsupervised, reliable, and computationally
fast road network extraction methods. The development of
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such techniques is hindered by several problems, namely: the
heterogeneous nature of road materials results in different
radiological patterns of roads; the various types of occlusions
(shadows, buildings, tree canopies); and the varying road width
present in the same scene. As such, standard line, edge and
ridge detection techniques [23] are inappropriate for road
detection, see in [42] and [43].

A representative range of approaches have been designed to
extract road networks: from region growing [1] and dynamic
programming [42] to endpoint tracking [44], and Hough
transform-based detection with Gabor-filtering [16]. Junction-
based road-network extraction represents another promis-
ing research direction undertaken recently to extract roads
from optical urban (i.e. highly structured) scenes [45] and
SAR imagery [2]. A completely different stochastic approach
considers an image as a stochastically generated configuration
of a certain kind of geometrical primitives, such as lines,
circles, ellipses, etc. This approach has given rise to a range of
stochastic techniques, such as active contours [32] and marked
point [18], [19], [46] processes. Some of these techniques
report very accurate results but they suffer from the need
for operator input [1] or they require very computationally
expensive stochastic optimization [18], [32]. For example,
processing a typical 1000 x 1000 pixels scene by stochastic
techniques can take from several minutes [46] to over an
hour [18].

The typical characteristic of the road in urban imagery is
its high contrast, thinness, connectivity and elongatedness as
compared to the other objects present in the scenes, such
as trees, buildings, smaller objects, etc. Thus we employ the
Bhattacharyya unary data term which highlights highly con-
trast line segments. We present experiments on road network
extraction in semi-urbanized zones on several images from
Google Maps (© Google) of size 400 x 500 and with
approximately 0.5 metre-per-pixel ground resolution. In this
subsection we employ an overlapping square grid with side
equal to 30 pixels, energy weights (y,,y4) = (0.75,0.5),
unary data term sensitivity parameter dy = 0.3, and a post-
processing threshold Minresh = —1. We have performed exper-
iments on over 20 high resolution images with various road
networks and three typical extraction results are presented in
Fig. 10. We observe that the segment extraction via Radon
transform with Bhattacharyya unary data term Dp (/) identify
the road CLS well with only a few undetected segments.
Note that some of these undetected roads originate from
occlusions or low contrast and might be identified by varying
the grid scale. A comparison with the general CLS extraction
technique [14] confirms high appropriateness of the developed
method to road extraction. Specifically, we observe that our
method tolerates small gaps and higher degrees of curvature
than the benchmark [14]. The average computation time is
just below 5 seconds of which around 1.5 seconds is needed
for the line segment extraction step, lines 1-5 in Fig. 6, and
3 — 3.5 seconds for the MCMC iterations.

We perform a further comparison with five state-
of-the-art line-detection techniques: multi-scale CLS
profile extractor [14], active contours [32], two reversible jump
MCMC-based techniques [18], [19] and a jump-diffusion
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Fig. 10. Road network extraction results on Google Maps images (©Google).
From top to bottom: initial images, ground truth (manual extraction) of the
road network, detected Radon segments maps weighted with (1 — Dg(1))/2,
extraction results weighted with exp(—E,), and multi-scale CLS profile
extraction [14] result.

approach [46] on a 650 x 900 ‘Road’ image (©IGN) [19],
courtesy of F. Lafarge, available at http://www-sop.inria.
fr/members/Florent.Lafarge/benchmark/, see Fig. 11. The
latter three techniques employ stochastic configurations, and
their characteristic difference with the approach developed in
this paper is the random number of objects in the analysed
scene. Whereas after the MCMC process convergence this
number is equal to the number of grid nodes in the developed
approach. This may be reduced later on if none of the
candidate segments at any of the grid locations is assigned
a sufficiently strong energy (cf. thresholding in line 17 in
Fig. 6). On this image we employ the same parametric setting
except for a smaller size of square grid (15 pixels) and an
increased weight of the orientation term y, = 1.2 due to high
connectivity and curvature of the processed road network. The
lines in the outer regions are taken at distance p = 3 pixels,
which corresponds to the average road width of 4-6 pixels.
A numerical comparison is presented in Table I, where the
results of the benchmark techniques are reported as in [19].
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Fig. 11. (a) ‘Road’ image (©IGN) from [19], (b) the ground truth map
and (c)-(h) detection results.

TABLE I
QUANTITATIVE RESULTS OBTAINED ON THE ‘ROAD’ IMAGE

[ Algorithm [ TPR | FPR | Time |
Proposed method 0.709 | 0.053 13 sec
Steger [14] 0.611 | 0.048 2 sec
Verdie et al. [19] 0.637 | 0.004 15 sec
Lafarge et al. [46] 0.658 | 0.013 381 sec
Lacoste et al. [18] 0.812 | 0.006 155 min
Rochery et al. [32] 0.490 | 0.013 60 min

Note that the developed approach does not estimate the widths
of line segments. Our method detects some lines inside the
road which are aligned accurately (due to the orientation
penalty) and that are sufficiently long, i.e., at least several
times longer than the side of the employed localized Radon
transform window. The designed method is not appropriate
for detecting the side lines of the roads (edges). To present
an adequate comparison with methods [18], [19], [32], [46]
that estimate the road widths the detection results reported
by our method and Steger’s approach [14] were dilated with
radius r = 4 at the post-processing stage. Table I shows that
the proposed method achieves a higher TPR at the expense
of an increased FPR. This difference is partially due to the
above mentioned issue of CLS widths: template matching with
various widths is more efficient and accurate at the expense
of a sharp increase of computation complexity. Indeed, the
most relevant improvement can be seen in computation time.
Note that the computation times of the benchmark techniques
are taken from [19], although they were obtained on a dif-
ferent hardware system and can therefore only serve as a
rather rough comparison. It is immediate that the proposed
approach performs significantly faster than methods [18], [46].
The technique in [19] gives a comparable computation time;
however, its results were obtained in a massively parallelized
CUDA-implementation with a specialized GPU card. Whilst a
similar kind of implementation is possible for the developed
approach, it is beyond the scope of this work. It is also
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worth noting that the method in [19] employed a preliminary
partitioning of the image that specified the probability of
finding objects in its regions. This helped to further reduce
the computational load. The method proposed in this paper
has been employed without any preliminary classification and,
thus, we believe that the increase of FPR is partially due to
this difference.

C. Palmprint CLS Extraction

In this section we consider the third application for the
developed CLS extractor — line detection on palmprint
images. This task plays the key role in biometric person
verification and identification based on palmpints [47].
Line information (principal lines and, more generally, CLS)
is generally regarded as a good discriminative feature for
palmprint-based identification [47], [48]. Indeed, robust palm-
print verification systems based solely on CLS have been
developed. As such, the extraction of palm CLS and principal
lines is a problem area which continues to enjoy much
activity and interest. Zhang et al. [49] built a principal line
detector based on local filtering with thick-line operator filters.
Duta et al. [50] used a series of morphological operations to
detect principal lines from feature points. Zhang et al. [51]
employed overcomplete wavelet representation together with
directional context modeling approach to recover principal line
features, Wu et al. [48] applied directional filters with smooth-
ing to palm line feature extraction. Huang et al. [47] designed
a method based on modified finite Radon transform filtering,
followed by direction and energy-based post-processing, in
order to identify principal lines.

Since the focus of this paper is CLS extraction, the further
problem of palm print matching or verification will not be
addressed here. In fact, once the CLS extraction is performed,
the procedures employed in, say, [47] can be adapted to
perform principal line selection and matching. Only minor
post-processing is required for the adaptation: since the
designed framework extracts lines (object level) rather than
line pixels, we suggest to detect the latter by rank order
thresholding (similar to that presented below) in the proximity
of the detected line segments.

The CLS contained in palmprint images correspond to the
intensity valleys rather than ridges as was the case in the previ-
ous applications. Therefore, to avoid modifying the framework
we invert the palmprint images as a preprocessing step. The
palmprint images do not suffer from any particularly strong
source of noise. Nevertheless, as can be seen in Fig. 12 (left
and middle columns), the use of both the Bhattacharyya and
the Radon unary term results in excessive over-detection inclu-
sive of weak and short secondary lines (wrinkles). To improve
on a better performing Radon term result, we constrain the
segment selection by considering the perpendicular profiles of
each line segment. In particular, we take the average values of
a set of parallel segments (at distances 1, ..., L on both sides
of every detected segment, where L is the segment length), find
the rank of the current segment in the set, and exclude it from
the set of candidates if it lies below a predefined threshold
(0.8 in this section). Indeed this is close in spirit to the
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Fig. 12. Identified long CLS (top) from a palmprint image and the
extracted candidate line segments (bottom) obtained with Bhattacharyya unary
data term (left), Radon unary term (middle), and Radon term after rank
thresholding (right).

Radon maxima selection employed in the first step. However,
the analysis of ranks takes into account the relative strength
of the segments across grid region borders and discards weak,
local maxima. Moreover, the rank-based thresholding reduces
the number of segments in the input of the second extraction
step by at least a half. This reduction provides a significant
acceleration in the optimization step. Some results obtained
using rank thresholding are presented in Fig. 12 (right column)
and empirically confirm the improvement in CLS extraction
performance. In the following, we employ the Radon unary
term after rank thresholding.

For the experimental validation we employ the high resolu-
tion images from the COEP palmprint database [52]. We run
elongated CLS extraction on centrally positioned regions of
interest with the following parameters: overlapping square
grid with 30-by-30 pixels regions, penalty weights (y,, y4) =
(1.0,0.2), and the postprocessing threshold of Mipesh = 1.
Three typical results are presented in Fig. 13. In the second
row, the extraction results are overlaid on the inverted initial
palmprint images with segment intensities proportional to
the final energy exp(—E,). The third row shows the long
CLS extracted by the clustering introduced in Section V-A.
We observe that the principal lines are accurately extracted
with a noticeable presence of weaker CLS detection (wrin-
kles) on the more challenging second image. Note that a
complete removal of wrinkles in complicated cases cannot be
obtained without application-specific postprocessing, like the
directional thresholding proposed in [47]. In the fourth row of
Fig. 13 we present a comparison with the multi-scale line pro-
file extraction method [14] and in the fifth the contourlet hard
shrinkage result [7]. It can be seen that the proposed method
yields the most satisfactory results. Compared to the pixel-
level extractor [47], the designed framework requires more
computation due to a different detection goal, namely object
extraction. The results in Fig. 13 are obtained in approximately
2 sec (first two images) and 2.5 sec (third image), whereas
in [47] the reported time is within 1 sec. Methods [14] and [7]
required around 0.3 sec and 80 sec respectively to obtain the
presented results. Note that, compared to results in
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Fig. 13. Palmprint CLS extraction results on centrally positioned regions of
interest: in first two columns 500 x 500 pixels, and in the third— 750 x 750.
From top to bottom: initial images (inverted, histogram stretched), extraction
results weighted according to the energy exp(—Ej), identified long lines with
colour coding, result of multi-scale CLS profile extraction [14] and contourlet
shrinkage [7] result.

Section V-A, the appreciably lower computation time reported
by the developed method comes from the rank-based optimiza-
tion complexity reduction.

We finally validate the robustness of the developed frame-
work to rotations and scale variations. Note that both of these
can have big affects on CLS extraction but neither are usually
known a priori. Specifically, rotation invariance is necessary
due to a common lack of information on optimal image
orientation/alinement, and a certain degree of scale tolerance
within a reasonable range of values is crucial from the
implementation point of view. In Fig. 14 we present extraction
results obtained at the 30-by-30 pixels region scale at four
orientations: (a) & = 30, (b)a =45,(c)a =75,and (e) a =0
degrees. We observe that the detection results are very sim-
ilar; numerical comparisons confirm over 90% of agreement
between the results. Note that due to the stochastic nature of
the approach some variations within 2 — 5% (depending on
data complexity, scale, etc.) can be expected when applied
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Fig. 14. Palmprint CLS extraction after rotation by a degrees (first row),
and at different grid-region sizes (second row). (a) a = 30, 30 x 30. (b) a =
45, 30 x 30. (¢) & = 75, 30 x 30. (d) @ = 0, 20 x 20. (¢) & = 0, 30 x 30.
(f) a =0, 40 x 40.

to the same data with the same parameter configuration. The
results at three different scales in Fig. 14(d)-(f) show that less
robustness is apparent with respect to the scale parameter.
Three principal lines are extracted at all three considered
scales, with slight variations in details; weaker and shorter
CLS (wrinkles) are more affected. Such variations are to be
expected due to the key role of the segment length parameter
in the extraction procedure. These experiments confirm that
the designed extraction framework demonstrates a high level
of rotation invariance and a reasonable tolerance to scale.

VI. CONCLUSIONS

We have here proposed an automatic approach to elongated
CLS extraction from images affected by noise, blur, and low
contrast. The flexible framework, designed here, efficiently
combines the fast deterministic Radon-based line segment
detection with the stochastic Markov chain Monte Carlo
optimization procedure. Furthermore, the conditional Random
Field model successfully captures and incorporates local inter-
actions. Since optimization is performed over a partitioned
grid this enables a parallelized architecture which further
improves computational performance. The developed method
demonstrates good rotation invariance and scale tolerance for
elongated and curved CLS extraction in the presence of noise.

Experiments demonstrate the efficiency of the approach in
three different CLS extraction applications, namely: mammo-
graphic image analysis, road network extraction, and palm line
detection. We observed that, with an appropriate choice of
unary data term, the proposed automatic technique performs
successfully on images with various geometrical properties and
types of noise. Experimental validation on blurred, curved, and
low contrast CLS confirm the robustness and flexibility of the
proposed framework.

As a future extension of the work we envisage the develop-
ment of a multi-scale approach that automatically selects the
optimal grid-scale at each location using criteria such as the
one discussed in, for example, in [53].
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A MATLAB implementation of the developed approach
is available at the authors’ webpages https:/sites.
google.com/site/vlkryl/ and http://www.homepages.ucl.ac.uk/~
ucakjdb/.
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