3690

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

A Novel Fractal Image Compression Scheme
with Block Classification and Sorting Based
on Pearson’s Correlation Coefficient

Jianji Wang, Student Member, IEEE, and Nanning Zheng, Fellow, IEEE

Abstract—Fractal image compression (FIC) is an image coding
technology based on the local similarity of image structure. It
is widely used in many fields such as image retrieval, image
denoising, image authentication, and encryption. FIC, however,
suffers from the high computational complexity in encoding.
Although many schemes are published to speed up encoding,
they do not easily satisfy the encoding time or the reconstructed
image quality requirements. In this paper, a new FIC scheme is
proposed based on the fact that the affine similarity between two
blocks in FIC is equivalent to the absolute value of Pearson’s
correlation coefficient (APCC) between them. First, all blocks in
the range and domain pools are chosen and classified using an
APCC-based block classification method to increase the matching
probability. Second, by sorting the domain blocks with respect
to APCCs between these domain blocks and a preset block in
each class, the matching domain block for a range block can
be searched in the selected domain set in which these APCCs
are closer to APCC between the range block and the preset
block. Experimental results show that the proposed scheme
can significantly speed up the encoding process in FIC while
preserving the reconstructed image quality well.

Index Terms—Fractal image compression, Pearson’s correla-
tion coefficient, block classification, block sorting.

I. INTRODUCTION

RACTAL image compression (FIC) is an image coding
technology based on the local similarity of image struc-
ture. It was proposed by Michael F. Barnsley in 1988 [1],
and improved by Arnaud E. Jacquin in 1992 [2]. Jacquin’s
FIC scheme is called the baseline fractal image compression
(BFIC), which uses the partitioned iterated function system
(PIFS) to search the matching block pairs without human-
computer interactions. Since then, FIC has a quick develop-
ment and numerous FIC schemes have been published.
Traditional image coding technologies encode an image by
pixel-based and statistical methods, and FIC is an interesting
attempt at the structure-based image coding. FIC has been
used not only in image coding, but also in some interesting
image problems [3]-[9] and pattern recognition problems such

Manuscript received October 1, 2012; revised April 1, 2013; accepted
May 25, 2013. Date of publication June 17, 2013; date of current version
August 13, 2013. This work was supported in part by Program 973 under
Grant 2010CB327902 and the National Natural Science Foundation of China
under Grant 61231018. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Stefano Tubaro.

The authors are with the Institute of Artificial Intelligence and
Robotics, Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
jianjiwang @foxmail.com; nnzheng @mail.xjtu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2013.2268977

as facial recognition [10]. However, compared with traditional
image coding technologies, fractal compression suffers from
the high computational complexity in encoding.

Generally, one image is firstly partitioned into some square
blocks in FIC, and then these square blocks compose a set
called the pool. According to two kinds of size, an image is
partitioned into two different pools. The pool composed by
the blocks with larger size is called the domain pool, and the
other pool is called the range pool. The cells in the range
pool are the blocks to be encoded. The blocks in the domain
pool are contracted to the same size as the range blocks,
and then FIC takes the domain pool as a virtual codebook.
The matching domain block for each range block needs to be
searched. Exhaustive search of the matching block pairs costs
too much time, which is one of the major difficulties in BFIC.

Lots of works had been conducted to speed up the process
of searching the matching pairs in FIC in recent years
[11]-[22]. Some schemes were proposed based on a selected
part of the domain pool to reduce the search cost for a range
block [12]-[14]. For example, based on the spatial correlation
on the range and domain blocks, many fast FIC schemes were
proposed by searching the matching domain block from the
adjacent domain block of the current range block [13] or from
the adjacent domain blocks of the domain block which is the
matching block for the adjacent range block of the current
range block [14]. Classification was also applied in some fast
FIC schemes [15]-[18] to classify the domain blocks into some
different classes, then the matching block for a range block can
be searched from several classes closely associated with the
range block. Fisher’s fast FIC scheme proposed in 1992 [15] is
a typical classification scheme. Some other strategies, such as
synthesis with other technologies [19], and sorting with some
features [20], [21], were applied to speed up encoding in FIC.

Although numerous schemes were proposed to speed up
encoding in FIC, the encoding time is still too long so far.
For example, the encoding time for a 512 x 512 image with
4 x 4 range blocks is more than 20 seconds in the DRDC
scheme proposed by Riccardo Distasi er al in 2006 [18],
and the encoding time for a 256 x 256 image is more than
2.8 seconds in the DUFC scheme proposed by Yi-Ming Zhou
et al in 2009 [19]. Of course, it should be considered that the
number of pairwise block-comparisons for a 512 x 512 image
is 16 times more than the number of pairwise comparisons
for a 256 x 256 image in BFIC with the same partition.
Although these schemes should not be compared without
the same computer environment, they still show that there

1057-7149/$31.00 © 2013 IEEE

WANG AND ZHENG: NOVEL FIC SCHEME WITH BLOCK CLASSIFICATION AND SORTING

is a lot of work to do for speeding up encoding in FIC.
Moreover, some schemes, such as the variance-based block-
sorting scheme proposed by He et al in 2004 [20] and the
Fisher’s 72 classes scheme [15], are more efficient in encoding,
but the reconstructed image quality in these schemes cannot be
well preserved. Hence, a fast FIC scheme is required to speed
up encoding more efficiently and, to preserve the reconstructed
image quality better.

In this paper, a novel fractal compression scheme is pro-
posed to meet both the efficiency and the reconstructed image
quality requirements. This scheme is based on the fact that
the affine similarity between two image blocks is equivalent to
the absolute value of Pearson’s correlation coefficient (APCC)
between them [22], [23]. Firstly, all the domain blocks are
classified into 3 classes according to the classification method
proposed by Fisher in 1992 [15]. We will prove the Fisher’s 3
classes method is an APCC-based method in Section III in this
paper. Secondly, the domain blocks are sorted in each class by
APCCs between these domain blocks and a preset block. Then
the matching domain block for a range block can be searched
from the APCC interval in which these domain blocks have
the closer APCCs with APCC the range block has (all the
APCCs are computed with the preset block). Since both the
steps in our scheme are based on APCC which is equivalent
to the affine similarity in FIC, the reconstructed image quality
is well preserved. Moreover, the encoding time is significantly
reduced in our APCC-based FIC scheme.

The rest of this paper is structured as follows. The
concept of fractal image compression and the relationship
between affine similarity and APCC are briefly introduced in
Section II. In Section III, the strategy of choosing and clas-
sifying the domain blocks is introduced. In Section IV, we
focus on the APCC-based domain block sorting algorithm and
the method of searching the block pairs. The preset blocks
are trained offline in Section V. Several optimization methods
involved in the proposed scheme are introduced in Section VI.
The experiment results are shown in Section VII. Finally, the
conclusions are drawn in Section VIIL

II. BFIC AND AFFINE SIMILARITY

Jacquin’s FIC scheme is regarded as the baseline fractal
image compression (BFIC), in which the self-similarity of an
image is measured by the affine similarity in the partitioned
iterated function system (PIFS).

A. The Baseline FIC

As introduced in Section I, an image is firstly partitioned
into two pools according to two different sizes n x n and
2n x 2n in BFIC, one is the range pool filled with the non-
overlapping blocks with size n x n, and the other is the domain
pool. All domain cells are then contracted into size n x n by
averaging four pixels to one pixel. Then the range cells are
the blocks to be encoded, and FIC takes the domain pool as
a virtual codebook. The domain pool is called the “virtual
codebook” because it is only used during encoding but not
during the decoding process.

3691

To improve the reconstructed image quality, eight transfor-
mations are applied to all domain blocks to octuple the domain
block number. These transformations are Ty, 11, 1>, 13, Ta,
Ts, Tg, and T7, respectively, as introduced below [24]:

Ty: Identity.

T1: Orthogonal reflection about mid-vertical axis.

T»: Orthogonal reflection about mid-horizontal axis.
T3: Orthogonal reflection about first diagonal.

Ty: Orthogonal reflection about second diagonal.

Ts: Rotation around center of block, through +900,
Ts: Rotation around center of block, through + 1800,
T7: Rotation around center of block, through +2700.

Subsequently, for an arbitrary range block R, a domain
block D has to be searched so that one affine transformation
sD+o01 exists to minimize the squared L? distance with R,
where s and o are the affine scalar parameters and 1 is a
block with size n x n in which all pixels equal to 1, then

MSE(R, sD + 01) = |R — (sD + ol)|l» (1)

where |||, is the two-norm. Finally, the combination of (s, o,
index of D in the domain pool) constructs the PIFS subsystem
of R in BFIC, and all the subsystems of range cells group into
the PIFS of the original image.

Minimizing MSE in Eq. (1) by the least-squares method, we
can obtain the values of parameters s, o, and the simplified
energy function H as follows [23]:

maxH =
D

S =

Q Q
Uqw‘g Uq[\)‘g o

— 54ty @)

where uy and u, are the mean intensity of the blocks R and
D, respectively, o, is the standard deviation of the block D,
and oy, is the covariance between the blocks R and D. For the
range block R, maximizing H in the domain pool is equivalent
to minimizing MSE in Eq. (1). The three sub-equations in
Eq. (2) construct the expressions of the BFIC.

The reconstruction of the image is a process of iterative
computation. It achieves the attractor of the PIFS, which is a
fractal representation of the original image.

0= Ug

B. The Affine Similarity in BFIC

In Eq. (2), a hypothesis of oy, # 0 is made. In fact, if
op, = 0, the block D is directly proportional to the block 1.
Then the scalar multiplier s in sD + 01 can be added to the
offset 0 and set s = 0. Similarly, if oy = 0O, the block R is
directly proportional to the block 1, and then the block R can
be losslessly expressed by the block 1. Hence, the parameter
s in sD + o1 can also be set to 0.

If o # 0 and o, # 0, it has been proved in some papers
[22], [23] that the affine similarity between two image blocks
in FIC is equivalent to the absolute value of the Pearson’s
correlation coefficient (APCC) between them whether the
image measurement is MSE or SSIM [25], [26]. In fact, as in
Eq. (1), MSE between a range block R and a linear expression

3692

of the domain block D can be computed as following [22]:

MSEZ(R, sD 4 o1) = |R — (sD + o1)|3
3)

(o2
— 202 —) = a2(1 ~ p2y)
D

where oy, is the standard deviation of the block R, pg,, = :R;)
is the Pearson’s correlation coefficient between R and D, an?i
m = n X n is the number of pixels in the block. In the process
of searching a matching domain block for the range block R,
the values of m and al% are invariant. Hence, the most affine
similar block for R is the block having the largest absolute
value of Pearson’s correlation coefficient with R.

III. APCC-BASED BLOCK CLASSIFICATION

The absolute value of the Pearson’s correlation coefficient
(APCC) should be an efficient feature to speed up encoding
because the affine similarity between two blocks in FIC is
equivalent to APCC between them.

If the block numbers in the range pool and domain pool
are R,, and D,,, respectively, the number of pairwise com-
parisons is R,, x Dy, in the exhausting search in BFIC.

In BFIC, the original domain blocks with size 2n x 2n
are firstly contracted as the same size as the range blocks.
Then eight transformations are applied to them to octuple the
block number in the domain pool. According to the above
analysis, octupling the block number in the domain pool
leads to octuple the computational complexity in searching
the matching pairs. Hence, there is great potential to speed up
encoding by reducing the scale of the domain pool.

In 1992, Fisher proposed a FIC classification scheme to
speed up encoding, in which a method existed to cut short the
domain pool with classifying the domain blocks into 3 classes
[15]. We call it as the Fisher’s 3 classes method in this paper.
In Fisher’s scheme, every range or domain block is firstly
divided into four sub-blocks according to the mid-horizontal
axis and the mid-vertical axis, then all the range and domain
blocks are classified into 3 classes according to the means of
luminance in the four sub-blocks, or 24 classes according to
the order of the variances in four sub-blocks, or 72 classes by
combining the 3 classes method and the 24 classes methods.
In our scheme, only the Fisher’s 3 classes method is used.

In Fisher’s 3 classes method, for an arbitrary block in the
range or domain pool, suppose the sums of luminance in its
four sub-blocks are ap, a, a3, and a4, from the upper left to
the lower right, respectively. We have known that every block
D in the domain pool is transformed to eight blocks, D, D1,
D,, D3, D4, D5, Dg, and D7 by eight transformations Ty, 71,
T,, T3, T4, Ts, T, and T7 in BFIC. If a1, az, a3, and a4 vary
each other in D, there is one and only one block derived form
D meeting one of the three conditions in Eq. (4):

ay =z ax = as = a4
ay = ay > a4 > as “4)
ay z a4 z az = as.

Then block D is classified into one of the three classes in
accordance with the condition which one of its generated
block meets in Eq. (4), and the corresponding transformation
Tp which transforms D into this class can also be obtained.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

If some values are kept the same in aj, az, a3, and a4, two
or more of the generated blocks from D may meet two or all
of the conditions in Eq. (4). In this case, the block can be
classified into two or all classes.

Then we have the Lemma 1 as following:

Lemma 1: The Fisher’s 3 classes method is an APCC-based
block classification method.

Proof: For a block D in one of the three classes expressed in
Eq. (4), now we prove that an APCC-based block classification
method exists to classify D into the same class.

Construct three matrixes C1, C2, and C3 as following:

2 1 2 1 20
a=o b e Aale=[5]

Each number in the matrixes Ci, Cp, and C3 denotes
a square sub-matrix filling with the number. Suppose the
standard deviation is o for Ci, Cz, and C3, and the luminance
sums for the four sub-blocks in the block D are ay, az, a3,
and a4, respectively, and the standard deviation of D is oy,.

Next we classify block D by the APCC-based block classifi-
cation method in which D is classified into the class related to
the matrix in Cq, Cp, and C3 which has the maximum APCC
with D. Suppose the APCCs between D and three matrixes
are ACC1, ACC3, and ACC3, respectively, then we have

ACCy = |2a1 + az — 3a4l/(0c0y)
ACCy = 2a1 + az — 3a3|/(oc0p) - Q)
ACC3 =|2a1 + a4 — 3a3|/(o.0p)

For a; > a» > a3 > a4, we have

ACCy — ACCy =3(az — as)/(oc0p) > 0. (6)
If 2a; + a4 — 3a3 > 0,

ACCy — ACC3 = (az + 3a3 — 4as)/(oc0p) = 0. (7)
If 2a; + a4 — 3a3 <0,
ACCy — ACC3 = (4a1 + a2 — 3a3z — 2a4) /(o0p) > 0. (8)

Hence, for a; > ay > a3z > a4, whether 2a; + a4 — 3a3 is
greater than zero or not, we have

ACC) = ACC,

ACCy) = ACC3 ©)

Similarly, for a; > a» > a4 > a3, whether 2a; 4+ a4 — 3a3
is greater than zero or not, we have

ACCy > ACCy

ACCy > ACC3” (10

And, for a; > a4 > ap > asz, whether 2a; + a» — 3aq is
greater than zero or not, we have

ACC3; = ACCy

ACC3 = ACCy® (1D

Synthetic analysis bout the inequations (9), (10), and (11)
with considering the conditions that the equality holds, the
class of block D classified by the APCC-based block classifi-
cation method related to Cq, C», and C3 is kept the same as
the class classified by the Fisher’s 3 classes method.

WANG AND ZHENG: NOVEL FIC SCHEME WITH BLOCK CLASSIFICATION AND SORTING

Z
A y

Fig. 1. The angles 6, y, and @w corresponding to Eq. (13).

Because Fisher’s 24 classes method and 72 classes method
are not APCC-based classification method, only the Fisher’s 3
classes method is used in our scheme.

In this paper, the domain pool without enlarging with the
eight transformations Ty, T1, T>, 13, T4, Ts5, Ts, and T7 is
called the crude domain pool, and the domain pool enlarged
with these transformations is called the BFIC domain pool. In
addition, we make the codes generated in the encoder of the
proposed scheme can be directly used in BFIC decoder.

In our scheme, for simplicity, every block is classified into
only one class according to priority order of class 1, class 2,
and class 3 expressed in Eq. (4) even if some sub-blocks of
the block have the same sum of luminance. Then the index of
the block D in the crude domain pool, the transformation on
D to the class it belongs to, and three domain classes filled
with the transformed domain blocks are retained to encode
an image. Other conditions, such as the redundant generated
blocks from the block D, are useless. Each range block is
also classified with the same method, and its matching domain
block is searched in the same class.

By this step, the total domain block number in the three
domain classes is only one eighth of the domain block number
in BFIC, which can greatly reduce the pairwise comparisons
between the range blocks and domain blocks. Moreover, all
the domain and range blocks are classified into 3 classes to
reduce the pairwise comparisons further. More importantly,
the reconstructed image quality is well preserved because the
Fisher’s 3 classes method is APCC-based.

IV. SORTING DOMAIN BLOCKS WITH APCC

To further reduce the computational cost in FIC, a new
method to sort the domain blocks with respect to APCC is
discussed below. In this paper, I"*" is the symbol of n x n
dimension image space. For example, for the grayscale images,
™™ is the discrete n x n dimension space with the integer
pixels lying in [0, 255]. Then a lemma is given as following:

Lemma 2: Suppose R, D € I"*". For an arbitrary non-zero
variance vector B € I"*™_if |[p(R, D)| — 1, then |[p(R, B)| —
[p(D, B)|. p(:,) is the Pearson’s correlation coefficient.

3693

40%f —

35%71

30%r T

25%

20%

15%r

Number of occurrences

10%

5%

0 1

0 01 02 03 04 05 06 07 08 09 1

APCC

Fig. 2. The histogram of the APCCs in PIFSs of 10 test images with range
block size 4 x 4. The 10 test images are baboon, boat, couple, F16, goldhill,
Lena, man, milk drop, pepper, and sailboat, respectively.

Proof: If APCC of a pair of R, D, and B equals to 1, the
lemma is obviously correct. If not, take R, D, and B as points
in m-dimension space (m = n x n), and suppose the vectors

connecting the points R, D, and B with the origin are r, d

and b, respectively. We have

lpR,D)[= |p(-R,D)[= | p(R, -D)|, 12)

so |p(-,-)| is an even function for its variables. Because

p(R, D) equals to the cosine of the angle between 7 and d
|p(R, D)| then equals to the cosine of the mlmmum angle 6

in both the angles one is the angle between 7 and d and the
other is between r and — d And let y be the m1n1mum angle
in both the angles: one is the angle between r and b, and
the other is between r and — b, and let @ be the mlnlmum
angle in both the angles: one is the angle between d and b,
and the other is between E and — ; as shown as in Fig. 1.
Then we have 0, w, w € (0°,90°] and

cost = [p(R, D)
cosy = [p(R, B)]
cosw = |[p(D,B)]|.

13)

According to the relationship between 6, v and w, we have

16 — y| <@ <min(90°,6 + y). (14)

For cosine is a monotonically decreasing function in [0°, 90°],

max (0, cos(@ + w)) < cosw < cos(f —). (15)
When |p(R,D)| — 1, we have cosf — 1, sinf — 0, then
hm cos(@ +) =

cosf

hm cos(@ —y) =

cosf—1

ligm X (cosfcosy — sinfsiny) = cosy
hén 1 (cosfcosy + sindsiny) = cosy.

(16)
Hence,

lim (17)

lp(R,D)|—

lp(R,B)| = lp(D,B)[.

lim
lp(R,D)|—1

3694

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

. Domain class 1 . Ordered domain 1
Crude classify . Sorting by .

Domain Pool o Domain class 2 APCC with Ordered domain 2

ranstorm | iy main class 3 Wi Ordered domain 3 \ Ordered domain i

R* <Interval[acc]

. . v

Range block | classify Doiailclljss ! Compute acc=APCC(B,R¥) / (-R)* <Interval[t]

R transform -R—>(-R)* APCC b:APCC(B,(-R)*)
Fig. 3. The flowchart of the proposed FIC scheme with block classification and sorting based on APCC.

According to Lemma 2, if the domain block D is a high-
quality matching block for the range block R, for an arbitrary
block B with non-zero variance, APCC between R and B is
close to APCC between D and B. Moreover, it can be seen
from Fig. 2 that the APCCs of about 70% of the matching
blocks are more than 0.9 in the PIFSs of 10 test images
with range size 4 x 4, and the APCCs of about 88.7% of
the matching blocks are more than 0.85, and the APCCs of
only 2.9% of the matching blocks are less than 0.8. There is
no occurrence with APCC less than 0.66 in Fig. 2. Based on
Lemma 2 and Fig. 2, a new APCC-based domain block sorting
method is proposed: a preset block B is used to sort the domain
blocks by APCCs computed between each domain block and
the preset block B. Then for a range block R, its corresponding
domain block can be searched in a set of domain blocks in
which the APCCs of these domain blocks are close to APCC
between R and B.

Since the domain pool has been simplified and classified
into 3 classes by Fisher’s 3 classes method, now we need
only sort each domain class independently. Then for a range
block R, the class to which R belongs should be computed.
Because APCC is an absolute value, both the blocks R and
—R need to be taken into consideration. Suppose the block R
is transformed into R* to match one class defined in Eq. (4),
and block —R is transformed into (—R)* to match the same
class. In fact, R* and (—R)* always match the same class, but
the transformation from R to R* and the transformation from
—R to (—R)* are generally different.

Take R* as an example, suppose acc is APCC between
R* and the preset block B. Then a set of domain blocks is
chosen for R* to search its matching domain block. The set
of domain blocks is chosen in the ordered domain class to
make APCCs between the preset block B and these blocks in
this set all around acc. That is to say, these blocks in this
set are selected from an APCC interval centered by acc in
this ordered domain class. Then the pairwise comparisons are
performed between R* and all the blocks in the set to search
the corresponding domain block for R*.

If the matching block for R* is D* in this set and
TR(R) = R*, Tp(D) = D* in which D is one block in
the crude domain pool and D* is derived from D, then
(Tr) "' Tp(D) is the matching domain block for the block R.
Because the eight transformations are closed for the inverse
operations and compound operations, Tr, Tp, (TR)*ITD IS
{To, T1, T, T3, T4, Ts, Tg, T7}. If the index of the block D
in the crude domain pool is 7, the index of (Tr)™'Tp(D)

in the BFIC domain pool can be calculated. Suppose it is
index(t, Tp(Tr)~"). Then the parameters s and o0 computed in
Eq. (2), and index (¢, Tp(Tr) ") compose the PIFS subsystem
for the block R. That is, (s, o, index(t, TD(TR)_l)).

Because the PIFS subsystem in the proposed scheme has
the same form with the PIFS subsystem of BFIC introduced
in Subsection A in Section II, the proposed FIC scheme does
not change the bit rates and compression ratios involved in the
compression of each image compared with BFIC.

In the above analysis we take R* as an example. Certainly,
(—R)* also needs to be considered because APCC is an
absolute value. The final matching block for R should be
chosen from both the matching blocks for R* and (—R)*.
The flowchart of this scheme is shown in Fig. 3.

For the block R*, a set of domain blocks is required to
search its matching block in the corresponding domain class.
In this paper, a simple strategy is used to obtain the set. For
each block R*, we firstly find the block having the closest
APCC with the APCC R* has in the ordered domain class
(all APCCs are computed with the preset block B), then k
blocks near the block are selected for the final comparison.

V. TRAINING THE PRESET BLOCK

In the APCC-based block sorting method proposed in this
paper in Section IV, a preset block B is required to compute
APCCs with other blocks. In the proposed scheme, the preset
blocks are trained offline, and then they are directly applied
in the encoding process as auxiliary blocks.

From Lemma 2 in Section IV, each block in I"® with
non-zero variance can be chosen as B in theory. However,
experiment results indicate that it has a great impact on the
visual quality of the reconstructed image to choose different
blocks as the preset block B. Because the block D satisfying
|[p(R,D)| — 1 is usually hard to search for R, it is important
to choose a proper block as the preset block B to search the
best approximate D. Moreover, the domain pool is classified
into 3 classes and the search of the matching pairs in different
classes is absolutely independent. Hence, we can choose
different blocks as the preset blocks for different classes.

For a preset block B, to search the matching block for a
range block R, we firstly find these blocks D meeting the

Eq. (18) in this domain class:
lp(R,B)| ~ [p(D, B)| (18)

B and R are known in the encoding process, then the set of
D meeting Eq. (18) forms a structure C of R and B which is

WANG AND ZHENG: NOVEL FIC SCHEME WITH BLOCK CLASSIFICATION AND SORTING

Fig. 4. The structure C constructed by blocks D which satisfy Eq. (18) and
the structure / constructed by blocks D which satisfy Eq. (19).

a neighborhood of the surface of a double cone whose cone-
axis is the line through the origin and the preset block B,
and cone-angle is twice the arc cosine of APCC between the
blocks R and B. However, the blocks D satisfying Eq. (19)
only form a structure / of R and B which is a neighborhood
of one element of the double cone through the origin and R.
Fig. 4 shows the structures C and [constructed by Eqs (18)
and (19), respectively.

[p(R,D)| — 1. (19)

In Section IV, a set containing k domain blocks is selected
to search the final matching block for block R*. The blocks
in this set are likely to belong to the structure C of R* and B
because they are selected with APCCs close to APCC between
R* and B. Generally, because the set is selected with a few
blocks, the precondition of one block to enter the selected
small set is that this block belongs to C. However, the blocks
in [are just what we need, and [is merely a part of C.

If the number of the domain blocks in [/ is invariable, the
opportunity of these blocks in [to enter the selected domain
set may reduce when the block number in C increases. Hence,
it may need to enlarge the set to search the matching block
in [, which brings high computational complexity. If the set is
not enlarged, the searched matching block may not meet the
needs. Since there are usually lots of blocks beside the center
block or barycenter block of the domain class, which can lead
to a large structure C if we use them as B, both the center
or barycenter are not the appropriate blocks to be B, and B
should even be far away from them.

From another view, for its difficulty to search the exact D
to meet Eq. (19), the block B should be chosen to easy to
find a not accuracy but acceptable D from C. In this case,
[p(R,D)| < 1 and there is a non-zero angle & between the
line through the origin and R and the line through the origin
and D. If block B lies on the super-plane which passes through
the origin to separate the blocks R and D on its two sides and
has the same angle /2 with the line through the origin and
R and the line through the origin and D, the block D can be
easily searched. Hence, statistically, block B should be chosen
as the barycenter of the domain blocks from this view.

The above discussion draws two opposite conclusions. One
asks for the preset block to get away from the barycenter of

3695

TABLE 1
PROCEDURE OF TRAINING THE PRESET BLOCK

Step 1: Transform and classify all the blocks in S into 3 classes,
S1, S2 and S3, according to Eq. (4).

Step 2:
for every block s; in Sp
pi =0;

for every block s; in Sy
pij = |p(si, 55)l;
endfor
Sort S with p;; to an ordered sample set S7;
for every block s} in ST
P = ’P(ShS;)‘;
Interval = {q+1 nearest blocks with p;;in Si‘}\s;‘.;
for every block in; in Interval

l — . y .
pInte'r'val,i - ‘p(slvlnl)"
endfor
L — ! .
Pi = Pi + mlaxplntcr'ual,i’
endfor
endfor
t = arg max p;;
1
B1 = s

the domain class, and the other asks for taking the barycenter
as the preset block. Finally, we have no any choices but to
obtain the preset block B by training.

The target of training B is obvious: Find a block B in a
sample set S to maximize the sum of APCCs between each
original block and its matching block searched in an interval
generated by APCCs with B except the original block itself.
Because the three classes in Eq. (4) are absolutely independent
in the search process, their preset blocks can also be trained
independently. Table I shows the procedure of training the
preset block By for the first class.

All the data in Table I are defined except for g. In our
experiment, although it can generate different preset blocks
with different g, these blocks have almost the same efficiency
for encoding. The best preset block trained with ¢ =200 is
also one of the best preset blocks with g = 300.

We use a sample set containing 36 633 sample blocks with
size 4 x 4 and a sample set containing 77 805 sample blocks
with size 8 x 8 to train the preset blocks. The preset blocks
trained as in Table I for three classes expressed in Eq. (4)
with different sizes 4 x 4 and 8 x 8 are shown in Fig. 5,
respectively.

VI. ALGORITHM OPTIMIZATION

In Sections III and IV, the novel APCC-based FIC scheme
is proposed by two steps. In this section, we introduce several
optimization methods in the proposed scheme.

A. Optimization of the Energy Function

For a range block R, APCC between R and a domain block
D can be computed as Eq. (20):

ORrp
ORr0p

| o | = (20)

3696

o
T S,
(a) 4x4 preset blocks (b) 8x8 preset blocks

Fig. 5. The preset blocks trained for the first class, second class, and third
class from left to right, corresponding to the classes expressed in Eq. (4).
(a) Three preset blocks trained for 4 x 4 image blocks. (b) Three preset
blocks trained for 8 x 8 image blocks.

To search the corresponding domain block for block R,
these APCCs between R and some domain blocks need to
be computed. In the process, oy is kept invariant. Hence, the
energy function as Eq. (20) can be written as Eq. (21) to reduce

the computational cost:

0.2
H(R,D)= "%
O,

D

If the domain block D is standardized to make its standard
deviation equal to 1, then the maximization of APCC between

R and D is just equivalent to maximizing the absolute value
of the inner product between them. Here it is unnecessary to
standardize the range block R.

2y

B. Optimization of Block Classification

In the Fisher’s 3 classes method, each range or domain
block needs to be classified into one of the three classes
expressed in Eq. (4). For one given block, such as the range
block R, its corresponding class, and the transformation TR
which transforms R to R*, and the transformation 7_g which
transforms —R to (—R)™* need to be considered, in which R*
and (—R)* are kept the same meanings as in Section IV.

To find the class to which R belongs, and the transforma-
tions Tr and T_gR, the general method is to test the eight
transformations introduced in Subsection A in Section II on
the block R one by one, if one transformation transforms R
into one class expressed in Eq. (4), then this class and the
transformation are just what we need. This general method is
easy to implement but time-consuming to compute.

According to Eq. (4), the class R belonged to, the trans-
formation 7R, and the transformation 7_R are all determined
by the luminance sums of the four sub-blocks of R. In
the proposed scheme, we compute them offline and then
directly apply these results to classify blocks and find their
corresponding transformations. As mentioned in Section IV,
we find that R* and (—R)* always match the same class. If
the luminance sums of the four sub-blocks of R vary each
other, Tr and T_g are always different.

Suppose the luminance sums of the four sub-blocks of R are
r1, r2, r3, and rq, respectively. Some examples about the class,
the transformation 7R, and the transformation 7_gR related to
different orders of rq, rp, r3, and r4 are listed in Table II, in
which the class 1, class 2, and class 3 are defined according
to Eq. (4), respectively. There are 24 cases in total according
to the order of rq, rp, r3, and ry4.

C. The Compound Transformations

In Section IV, if the matching block for R* is D* and
Tr (R) = R*, Tp(D) = D*, then (TR)*1 Tp (D) is the matching

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

TABLE I
SOME EXAMPLES ABOUT THE CLASS, THE TRANSFORMATIONS 7R AND
T_R RELATED TO DIFFERENT ORDERS OF r{, 17, r3, AND r4 IN BLOCK R

order class TR T-r
rizro>rg>ry class 1 Tp Ts
ri2ra>ra>ry class 3 T3 T

class 3 T Ts
class 2 Th To
class 2 Ty Ty

TQ2T3 2T 2T
T32T4A 2T 2T1
T4Z2TQ2T1 2T3

domain block for the block R. The compound transforma-
tion (TR) 'Tp € {To, T1, T», T3, Tu, Ts, Ts, T7} can also be
computed offline. Then the results are directly applied in the
encoding process. There are 64 cases in total for (7)™ Tp,
with 8 cases in 7r and 8 cases in Tp.

VII. EXPERIMENT RESULTS AND ANALYSIS

To verify the performance of the proposed APCC-based
block classification and sorting FIC scheme, the experi-
ments are performed on 16 standard test images with size
512 x 512, 2 standard test images with size 1024 x 1024, and
a standard test image with size 256 x 256. The peak signal-to-
noise ratio (PSNR) is used to measure the reconstructed image
quality for different schemes with different partitions. All the
demos in this paper are implemented using C++ language, and
the experiments are run on the computer environment: CPU
[3-2100 and windows XP OS.

A. Experiment on the Preset Blocks

In Section V, the training method for the preset block is
introduced, and the preset blocks for three classes with dif-
ferent sizes are shown in Fig. 5. In our experiment, compared
with the center blocks which are the average blocks in each
domain class, and the barycenter blocks which are the blocks
with the maximum first-moment of APCC in each domain
class, and the farthest blocks from the barycenter blocks
which have the minimum first-moment of APCC in each
domain class, the trained preset blocks offer an overwhelming
advantage in generating the reconstructed images with high-
est PSNR values. Even if some reconstructed images with
highest PSNR values are not generated by the trained preset
blocks, their PSNR values are very close to PSNR values
of the reconstructed images generated by the trained preset
blocks. The comparison with different preset blocks in several
512 x 512 images are shown in Table III, in which the range
size is 8 x 8, and the domain step-length is 8 pixels, and
k = 100.

B. Analysis of Computational Complexity

In the proposed scheme, the executing time in entire encod-
ing process includes four parts. The first part is kept almost
the same for natural images with the same size and image
partition. It includes the time to construct the range pool
and domain pool, and the time to compute the means and
variances of domain blocks, and the time to standardize all the
domain blocks. The second part is the time to classify and sort

WANG AND ZHENG: NOVEL FIC SCHEME WITH BLOCK CLASSIFICATION AND SORTING

316
313
31 =

@ 307

ho2

% 30.4

o —4&— dstep=1
30.1 —©— dstep=4

—— dstep=8
29.8 —+dstep=16
295
29.2 ,
1 40 70 100 130 160

k
(a) PSNR (dB), k, dstep.

Fig. 6.

3697

5001

400+

—4&— dstep=1
—&— dstep=4
— dstep=8
—+— dstep=16

300

time(ms)

2001

L L L L L ,
0 20 40 60 80 100 120 140 160
k

(b) time (ms), k, dstep.

The curves with the reconstructed image quality computed by PSNR or the encoding time against the interval length k in four different image

partitions with dstep = 1, 4, 8, and 16 for 512 x 512 image pepper. (a) The relation curves for PSNR, k, and dstep for 512 x 512 image pepper. (b) The

relation curves for encoding time, k, and dstep for 512 x 512 image pepper.

TABLE III
PSNR OF THE RECONSTRUCTED IMAGES WITH DIFFERENT PRESET
BLOCKS FOR IMAGES LENA, MILK DROP, GOLD HILL, PEPPER, AND F16

PSNR center barycenter farthest trained
gold hill 29.48 29.50 29.41 29.69
Lena 31.54 31.51 31.47 31.81
milk drop 34.40 36.18 35.97 36.27
pepper 30.93 30.88 30.95 31.39
F16 27.21 27.29 27.54 27.48

the domain blocks in each class. The third part for each range
block is the time to compute its mean and variance, and the
time of classification, and the time to select its domain set.
The last part is the time to perform pairwise comparisons to
search the final matching block for each range block.

As an example, the 512 x 512 image Lena with range size
4 x 4 and dstep = 8 is used to discuss the time involved in
the encoding process.

The domain pool in the proposed scheme is the crude
domain pool defined in Section III, which only has one eighth
of the block number of the BFIC domain pool. Hence, the
first part of encoding time related to domain blocks is about
one eighth of the corresponding time in BFIC. The first part
of encoding time related to range blocks is kept the same as
BFIC because the range pool in the proposed scheme is as
same as in BFIC. For the image Lena mentioned above, the
first part of encoding time is about 2.5 ms.

Since the results of classifying blocks with different order of
luminance sums in the sub-blocks have been obtained offline
as in Table II, the classification of domain blocks needs only
compute their luminance sums in the four sub-blocks for each
block, which spends little time. In this paper, the quicksort
method [27] is used to sort the domain blocks in each class.
For the image Lena mentioned above, the second part of
encoding time is about 1.5 ms.

The third part encoding time is kept the same for one range
block whether how many blocks are chosen in its domain
set. The reason is that we only find the beginning index and
the end index in the ordered domain class to construct the
domain set. For the image Lena mentioned above, this part

of encoding time is about 6.9 ms, in which the runtime to
construct the domain set by the binary search algorithm is
about 3.3 ms.

The main encoding time is still appeared in the last part.
We have to perform the pairwise comparisons to search the
final matching domain block for a range block. The number of
pairwise block-comparisons in which one range block involved
is 2k with the selected domain set containing k blocks: k for
R and the other £ for —R. Compared with BFIC in which
one range block is compared with all the blocks in the BFIC
domain pool, the proposed scheme can significantly reduce
the computational complexity. For the image Lena mentioned
above, the block number in the BFIC domain pool is 32768. If
we choose k equal to 20 in the proposed scheme, the number of
pairwise block-comparisons in BFIC is as 32768/40 = 819.2
times as that of the proposed scheme. If k is set to 100, the
number of pairwise comparisons in BFIC is as 32768/200 =
163.84 times as that of the proposed scheme. The last part of
encoding time for encoding the image Lena is 15.6 ms with
k = 20, and 65.7 ms with k = 100.

C. The Relationship Between Different Parameters

In this paper, a domain set with k blocks is selected for each
range block during encoding. Larger k enlarges the domain
set, which can improve the reconstructed image quality, but
the computational complexity for encoding an image is also
increased. Hence, we must find a balance between the com-
putational cost and the reconstructed image quality.

The domain step-length dstep between two adjacent domain
blocks in the image partition also has an important impact
on the computational cost in the encoding process. In BFIC,
it generates more domain blocks with a smaller domain
step-length, which can improve the visual quality of the
reconstructed images with increasing the computational cost
in searching the matching pairs. However, in the proposed
scheme, it can not be directly drawn the same conclusion.

The relationship between the reconstructed image quality,
parameter k, and the domain step-length is shown in Fig. 6 (a).
The curves shown in Fig. 6 (a) depict the PSNR values of
the reconstructed image against the block number k in the
domain set for image pepper in four different partitions with

3698

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

PSNR=36.46

PSNR=35.17

PSNR=32.98

a) The reconstructed images with the encoding time equal to 26.5 ms

PSNR=38.06

PSNR=36.27

PSNR=34.56

b) The reconstructed images with the encoding time equal to 76.6 ms

Fig. 7.

The reconstructed images for 512 x 512 images Lena, pepper, and man with £k = 20 and k& = 100 in the proposed scheme, respectively. The range

blocks are partitioned with size 4 x 4 and dstep = 8. (a) The reconstructed images with the encoding time equal to 26.5 ms. (b) The reconstructed images

with the encoding time equal to 76.6 ms.

dstep = 1, dstep = 4, dstep = 8, and dstep = 16,
respectively. It can be seen that a positive correlation exists
between the parameter k and the values of PSNR of the
reconstructed images.

Moreover, an interesting trend can be obtained from
Fig. 6(a): when k gets a small value, the reconstructed image
quality with dstep = 16 is not worse than the reconstructed
image quality with dstep = 8, and even better than the
reconstructed image quality with dstep = 1 and dstep = 4.
When k gets a little larger, the reconstructed image quality is
better in the curve with dstep = 8. Further analysis indicates
that the predominance of dstep = 1 or dstep = 4 just can
be shown with a larger k. The reason can be found from
Fig. 4: the blocks in the selected domain set are near the
structure C, but the blocks we want just lie on or near [. If
there are too many domain blocks with a smaller dstep, the
blocks near [may be hard to enter the domain set containing
only k blocks, thus the reconstructed image quality is likely
to get worse. Certainly, for a large k, the scheme can also
improve the image quality with increasing the number of the
domain blocks.

The curves depicting the encoding time against the para-
meter k with different image partitions for image pepper are
shown in Fig. 6(b). They correspond to dstep equal to 1,
4, 8, and 16, respectively. From Fig. 6(b) we can see that
an approximate linear relation exists between the parameter k
and the encoding time. Moreover, the time difference becomes
larger with larger parameter k for different dstep.

According to Fig. 6, PSNRs of the reconstructed images
of pepper with dstep = 16 are very close to PSNRs of the
reconstructed images with dstep = 8 when k < 90. Hence, if
we use a small k to speed up encoding, we can let dstep = 16
to accelerate encoding further. Generally, it is a good idea to
set dstep as the side length or twice of the side length of the
range block with a not large k in the proposed scheme.

For image partitions with different block sizes, the
conclusions drawn above are also kept. For example, if the
range blocks are partitioned with size 4 x 4, we can encode
a 512 x 512 image with a small k£ and set dstep as the side
length or twice of the side length of the range block.

The reconstructed images for 512 x 512 images Lena,
pepper, and man with range size 4 x 4 are shown in

WANG AND ZHENG: NOVEL FIC SCHEME WITH BLOCK CLASSIFICATION AND SORTING

Fig. 7 for k = 20 and dstep = 8, and for £k =
100 and dstep = 8, respectively. We can see in Fig. 7
that the reconstructed image quality is hard to distinguish in
human visual system (HVS) for different encoding time 26.5
ms and 76.6 ms.

D. Analysis About Classification in the Domain Pool

In Section III the domain pool is classified by Fisher’s 3
classes method. It seems that the purpose of classification is
only to speed up encoding. In fact, it not only speeds up
encoding but also improves the reconstructed image quality
when k is not large.

If the domain pool is not reduced and classified by the
Fisher’s 3 classes method, the number of blocks which meet
the condition of D in Eq. (18) increases for the range block
R and preset block B. It may reduce the probability of the
blocks meeting Eq. (19) to enter the domain set containing
only k blocks, which may lead to search a poor matching
block for R. By classifying the domain pool using the Fisher’s
3 classes method, the domain blocks are greatly reduced. It
retains only one eighth of the blocks in the BFIC domain pool.
Moreover, almost all the domain blocks which have higher
probability to match with the transformed range blocks are
remained according to Fisher’s 3 classes method.

A double cone and a conic section perpendicular to the
central axis of the double cone are shown in Fig. 8. The
edge of the conic section is a circle and each element of the
double cone goes through the circle by one point. We project
all the domain blocks meeting Eq. (18) in BFIC through the
lines connecting these blocks and the origin on the super-plane
braced by the conic section. As in Fig. 8, the domain blocks
meeting Eq. (18) in BFIC now all lie on a neighborhood of
the circle on the same super-plane. According to the order
of the luminance sums in the four sub-blocks, one domain
blocks in BFIC can be classified into 24 classes. However,
the transformed range blocks are definitely classified into
the three classes expressed in Eq. (4), which are only one
eighth of all the 24 classes. Hence, the domain blocks meeting
Eq. (19) only lie on a small part near the circle, which means
the other 21 domain classes are useless. If we only retain the
domain blocks in the three classes in Eq. (4) for encoding, little
effect could appear in the visual quality of the reconstructed
image. Furthermore, the remained domain blocks are classified
into three classes to increase the matching probability in each
class. By contraries, if the domain blocks in other 21 classes
are also retained, the blocks meeting Eq. (19) are hard to enter
the domain set including only k blocks.

We name the scheme as the only-sorting scheme which
directly sorts the domain pool according to Section IV without
classifying the domain pool by the Fisher’s 3 classes method.
Compared with the only-sorting scheme, the block classifica-
tion and sorting scheme is much more efficient and effective.
The curve shown in Fig. 9 (a) depicts the relationship of the
parameter k between the proposed block classification and
sorting scheme and the proposed only-sorting scheme with
range block size 8 x 8 and dstep =16 for image pepper.
Each point (k1, k2) on the curve means that the reconstructed

3699

Fig. 8. The conic section of the cone meeting Eq. (18) for a range block R
and the preset block B.

images have the same PSNR value for £ = k1 in the block
classification and sorting scheme and k = k2 in the only-
sorting scheme. It is easy to see that the only-sorting scheme
needs more blocks in the selected domain set to reach the same
PSNR value, the reason is that it must enlarge the domain
set to eliminate the impact of too many domain blocks in
the only-sorting scheme. The curve for the comparison of the
encoding time in two schemes is shown in Fig. 9 (b), we can
see that the encoding process in the block classification and
sorting scheme is much faster than in the only-sorting scheme
to reach the same PSNR values.

E. Comparison of Different Schemes

In this subsection, the proposed APCC-based classification
and sorting scheme is compared with some other fast FIC
schemes: the Fisher’s 72 classes scheme (Fisher72) [15],
the HOG-based clustering scheme (HOG-FIC) [16], Kovacs’s
classification scheme (Kovacs) [17], the variance-based sorting
scheme (VBFC) [20], the one norm-based kick-out scheme
(kickout) [21], and the only-sorting scheme proposed in
Section IV in this paper (only-sorting). All these schemes,
except kickout scheme, are implemented with the optimized
energy function introduced in Subsection A of Section VI,
which provides a fair comparison of performance between
them.

For a natural image with size 512 x 512, if the range block
is partitioned with size 8 x 8 and the domain step-length is
chosen as 16 pixels, the encoding time is about 2.1 s in BFIC.
If the range size is 4 x 4 and the domain step-length is 8
pixels, the encoding time is about 8.7 s in BFIC. However,
MSE energy function is used to speed up encoding in the
kickout scheme. Although the encoding time in the kickout
scheme is less than the encoding time in BFIC with MSE
energy function, the efficiency of the kickout scheme can not
catch up with BFIC using the optimized energy function. For
example, it needs 2.4 s and 16.4 s, respectively, to encode
512 x 512 image Lena with range size 4 x 4 and 8 x 8.

The comparison of these schemes for 512 x 512 image
Lena with range block size 4 x 4 and dstep = 8 are shown
in Fig. 10.

As shown in Fig. 10, VBFC has high efficiency in encoding,
but the reconstructed image quality can not be well preserved.

3700
1200 352
308
1000
264
800 20
i)
600 E 176
o

132
88
44

400

200

0O 50 100 150 200 250 300 350 400
k1

0
0 17.5 35 52.5 70 87.5 105122.5140
t1(ms)

1

(a) Comparison on parameter k. (b) Comparison on encoding time.
Fig. 9. Comparison between the proposed scheme and the only-sorting
scheme for image pepper. The parameters 71 and k1 are the encoding time and
the size of the selected interval in the proposed scheme, ¢2 and k2 correspond
to the only-sorting scheme. In each point on the curves they have the same
PSNR value of the reconstructed images in both two schemes. (a) Comparison
on parameter k. (b) Comparison on encoding time.

401
391

381

w
3
T

—S— VBFC
A Fisher72
—H&— only-sorting
—P>— Kovacs
—*+— proposed

PSNR
in BFIC

PSNR(dB)
w
(o>}

w
a
T

©w
5
T

- I
o

w
»
T

L L L J
0 100 200 300 400 500 600
time(ms)

32

Fig. 10. Comparison with different schemes for 512 x 512 image Lena with
range block size 4 x 4 and dstep = 8.

The Fisher72 scheme just lies a point in Fig. 10, which
means it can not keep a balance between the reconstructed
image quality and efficiency when we need. In addition, PSNR
in Fisher72 scheme is 37.27 dB and the encoding time is
62.2 ms in Fig. 10. In the proposed scheme, PSNR of the
decoded image is 37.32 dB with k = 44, and the encoding
time is 41.8 ms. When the encoding time in the proposed
scheme is about 61.8 ms which is near the encoding time
in the Fisher72 scheme, the parameter k equals to 76 and
PSNR of the reconstructed image is up to 37.82 dB. More
experiments show that each point in the Fisher72 scheme is
below the curve related to the proposed scheme for all the test
images.

In Kovacs’s scheme, the range and domain blocks are
classified according to the polar angle and the normalized root
mean square error (NMRS). Because both of the features are
not equivalent to the affine similarity in FIC, the reconstructed
image quality can not catch up with the proposed scheme when
the encoding time is kept the same.

The reconstructed images in the only-sorting scheme have
lower values of PSNR when the encoding time is kept the same
as in the proposed block classification and sorting scheme.

The HOG-FIC scheme can not encode the image within
600 ms because it needs more time to extract HOG feature
and classify blocks by K-means clustering algorithm online.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

291

28.51

281

2751

—6— VBFC
A Fisher72
—+H&— only-sorting|

—b— Kovacs
—*— proposed

PSNR
in BFIC

o

PSNR(dB)

0 20 40 60 80 100 120 140 160 180 200
time(ms)

Fig. 11. The average time/PSNR comparison for different schemes on 16
512 x 512 images with range block size 8 x 8 and dstep = 16.

As shown in Fig. 10, the proposed scheme has a fastest
accelerating rate to get close to PSNR in BFIC, and PSNRs in
the proposed scheme are always on the top of these schemes
when the encoding time is less than 0.6 s. Moreover, it is
clear that the reconstructed image quality is very close to the
reconstructed image quality in BFIC when the encoding time
is about 0.3 s, about 1/29 of the encoding time in BFIC with
only 0.3 dB image quality loss compared with BFIC.

The average time/PSNR comparison for different schemes
on 16 images with range block size 8 x 8 and dstep = 16 is
shown in Fig. 11. All the 16 images are with size 512 x 512,
and they are aerial, baboon, barbara, Blonde, boat, bridge,
couple, Elaine, F16, goldhill, house, Lena, man, milk drop,
pepper, and sailboat, respectively. From Fig. 11 we can also
see that the curve related to the proposed block classification
and sorting scheme is always on the top of all the points or
curves of these schemes.

The overall comparison with a larger time interval for image
goldhill with range size 4 x 4 and dstep = 8 in different
schemes is shown in Fig. 12. Obviously, the proposed scheme
is the fastest speed climber from the beginning point. From
the starting point to the end point, the curve corresponding
to the proposed scheme is always on the top of these fast
FIC schemes. The PSNR value of the end point on the curve
of the proposed scheme is 37.21 dB. In Kovacas’s scheme,
when the classification number of polar angle and NMRS are
set to 3 and 4, respectively, the encoding time is 1.41 s and
PSNR value of the reconstructed image is 37.25 dB, which is
the closest value to 37.21 dB. For a 512 x 512 image, the
encoding time of 1.41 s is too long.

Furthermore, for these schemes, such as Fisher72, Kovacs,
and VBFC, the encoding time increases greatly for images
with larger size. Take the 512 x 512 and 1024 x 1024 images
Elaine with range size 8 x 8 and dstep = 16 for example, the
encoding time is 198.4 ms in the Fisher72 scheme to encode
1024 x 1024 image Elaine, which is about 10.8 times for it
to encode 512 x 512 image Elaine (only 18.3 ms). It spends
4.07 s to encode the 1024 x 1024 image Elaine when both
the classification numbers are set to 10 in Kovacs’s scheme,
which is as 25.6 times as the encoding time for it to encode

WANG AND ZHENG: NOVEL FIC SCHEME WITH BLOCK CLASSIFICATION AND SORTING

3701

TABLE IV
COMPARISON OF THE DIFFERENT FIC SCHEMES FOR 1024 x 1024 IMAGES WITH RANGE SIZE 8 x 8

VBFC Fisher72 Kovacs (k1, k2) Proposed BFIC kickout
k=655 (35,35 (7,8 (4,5 k=10 k=44 k=492 k=1000 k=max
Elaine PSNR(dB) 35.11 36.07 36.08 37.00 37.15 35.11 36.07 37.00 37.09 37.13 37.34 37.34
Time(s) 12.5 0.198 1.12 6.04 11.2 0.043 0.117 1.01 1.73 3.72 37.9 72.2
Man PSNR(B) 27.35 28.77 28.80 29.79 2995 2779 28.81 29.8 29.9 29.92 30.19 30.19
Time(s) 3.60 0.204 1.17 6.33 11.7 0.043 0.118 1.00 1.82 3.52 37.9 71.8

381

37

36

o
o -
’325 3507
L —&— VBFC
A Fisher72
34 —&— only-sorting
—P>— Kovacs
b —*— HOG-FIC
33 —*— proposed
PSNR
in BFIC
32 L L L L L J
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
time(s)

Fig. 12. The overall comparison with a larger time interval for image goldhill
with range size 4 x 4 and dstep = 8.

321
31
301
@ 20t —©o— VBFC
k) A Fisher72
nz: —H&— only-sorting|
2 28t —P>— Kovacs
—*— proposed
PSNR
27 in BFIC
26
25 \ \ \)
0 10 20 30 40 50 60
time(ms)

Fig. 13. Comparison with different schemes for 256 x 256 image cameraman
with range block size 4 x 4 and dstep = 8.

the same image with the same classification numbers (only
159 ms). It spends 3.77 s when k = 200 in VBFC to encode
1024 x 1024 image Elaine, which is 62.5 times more than
the encoding time when k = 200 for 512 x 512 image Elaine
(only 60.4 ms). In the proposed scheme, the encoding time
for k = 10 is 43.3 ms to encode 1024 x 1024 image FElaine,
which is as 4.4 times as 9.9 ms to encode 512 x 512 image
Elaine, and when k = 44 it is 117 ms to encode 1024 x 1024
image Elaine, which is as 4.3 times as 27.0 ms to encode
512 x 512 image Elaine.

It shows PSNRs and the encoding time for images Elaine
and man with size 1024 x 1024 in different schemes in

Table IV, from which we can see that PSNR values are still
higher in the proposed scheme than other schemes when they
have the same encoding time for the two images with size
1024 x 1024.

The curves with PSNR values of the reconstructed
images against the encoding time for the 256 x 256
image cameraman with range block size 4 x 4 and
dstep = 8 in different schemes are shown in Fig. 13.

VIII. CONCLUSION

The over-long encoding time in fractal image compression
is one of the major difficulties for its application. Although
many researches were published to speed up encoding of
FIC, the encoding time is still long, and in some schemes
the reconstructed image quality becomes unacceptable. Based
on the conclusion that the affine similarity between two
image blocks in FIC is equivalent to the absolute value of
Pearson’s correlation coefficient between them, a new FIC
scheme is proposed in this paper. Firstly, the Fisher’s 3 classes
method, which has been proved to be an APCC-based block
classification method in this paper, is used to greatly reduce
the number of blocks in the domain pool and classify the
remaining domain blocks into 3 classes. Secondly, the domain
blocks are sorted by APCCs between each domain block and
the preset block in each class, and then the matching block
for a range block is searched in a domain set selected by
APCC with the preset block. Experiment results show that the
proposed scheme can greatly reduce the encoding time with
preserving the reconstructed image quality well.

REFERENCES
[1] M. F. Barnsley and A. E. Jacquin, “Application of recurrent iterated
function systems to images,” Proc. SPIE, vol. 1001, pp. 122-131,
Nov. 1988.
A. E. Jacquin, “Image coding based on a fractal theory of iterated
contractive image transformations,” IEEE Trans. Image Process., vol. 1,
no. 1, pp. 18-30, Jan. 1992.
M. Pi, M. K. Mandal, and A. Basu, “Image retrieval based on his-
togram of fractal parameters,” IEEE Trans. Multimedia, vol. 7, no. 4,
pp. 597-605, Aug. 2005.
[4] J. H. Jeng, C. C. Tseng, and J. G. Hsieh, “Study on Huber fractal image
compression,” IEEE Trans. Image Process., vol. 18, no. 5, pp. 995-1003,
May 2009.
M. Ghazel, G. H. Freeman, and E. R. Vrscay, “Fractal image denoising,”
IEEE Trans. Image Process., vol. 12, no. 12, pp. 15601578, Dec. 2003.
M. Ghazel, G. H. Freeman, and E. R. Vrscay, “Fractal-wavelet image
denoising revisited,” IEEE Trans. Image Process., vol. 15, no. 9,
pp- 2669-2675, Sep. 2006.
S.S. Wang and S. L. Tsai, “Automatic image authentication and recovery
using fractal code embedding and image inpainting,” Pattern Recognit.,
vol. 41, no. 2, pp. 701-712, 2008.

[2]

[3]

3702

[8]
[9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

S. G. Lian, “Image authentication based on fractal features,” Fractals,
vol. 16, no. 4, pp. 287-297, 2008.

K. T. Lin and S. L. Yeh, “Encrypting image by assembling the fractal-
image addition method and the binary encoding method,” Opt. Commun.,
vol. 285, no. 9, pp. 2335-2342, 2012.

X. Tang and C. Qu, “Facial image recognition based on fractal image
encoding,” Bell Labs Tech. J., vol. 15, no. 1, pp. 209-214, 2010.

B. Wohlberg and G. de Jager, “A review of the fractal image coding
literature,” IEEE Trans. Image Process., vol. 8, no. 12, pp. 1716-1729,
Dec. 1999.

H. Hartenstein, M. Ruhl, and D. Saupe, “Region-based fractal
image compression,” IEEE Trans. Image Process., vol. 9, no. 7,
pp. 1171-1184, Jul. 2000.

T. K. Truong, C. M. Kung, J. H. Jeng, and M. L. Hsieh, “Fast fractal
image compression using spatial correlation,” Chaos Solitons Fractals,
vol. 22, no. 5, pp. 1071-1076, 2004.

X. Wang, Y. Wang, and J. Yun, “An improved fast fractal image
compression using spatial texture correlation,” Chin. Phys. B, vol. 20,
no. 10, pp. 104202-1-104202-11, 2011.

Y. Fisher, E. W. Jacobs, and R. D. Boss, “Fractal image compression
using iterated transforms,” Image Text Compress., vol. 176, pp. 35-61,
May 1992.

W. R. Schwartz and H. Pedrini, “Improved fractal image compression
based on robust feature descriptors,” Int. J. Image Graph., vol. 11, no. 4,
pp. 571-587, 2011.

T. Kovacs, “A fast classification based method for fractal image encod-
ing,” Image and Vision Computing, vol. 26, no. 8, pp. 1129-1136, 2008.
R. Distasi, M. Nappi, and D. Riccio, “A range/domain approximation
error-based approach for fractal image compression,” IEEE Trans. Image
Process., vol. 15, no. 1, pp. 89-97, Jan. 2006.

Y. Zhou, C. Zhang, and Z. Zhang, “An efficient fractal image coding
algorithm using unified feature and DCT,” Chaos Solitons Fractals,
vol. 39, no. 4, pp. 1823-1830, 2009.

C. He, S. Yang, and X. Huang, “Variance-based accelerating scheme for
fractal image encoding,” Electron. Lett., vol. 40, no. 2, pp. 1052-1053,
2004.

H. N. Chen, K. L. Chung, and J. E. Hung, “Novel fractal image encoding
algorithm using normalized one-norm and kick-out condition,” Image
Vis. Comput., vol. 28, no. 3, pp. 518-525, 2010.

C. He, X. Xu, and G. Li, “Improvement of fast algorithm based on
correlation coefficients for fractal image encoding,” Comput. Simul.,
vol. 12, no. 4, pp. 60-63, 2005.

J. Wang, Y. Liu, P. Wei, Z. Tian, Y. Li, and N. Zheng, “Fractal image
coding using SSIM,” in Proc. 18th ICIP, Sep. 2011, pp. 245-248.

A. E. Jacquin, “Fractal image coding: A review,” Proc. IEEE, vol. 81,
no. 10, pp. 1451-1465, Oct. 1993.

[25] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Process. Lett., vol. 9, no. 3, pp. 81-84, Mar. 2002.

[26] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave
it? A new look at signal fidelity measures,” IEEE Signal Process. Mag.,
vol. 26, no. 1, pp. 98-117, Jan. 2009.

[27] C. A. R. Hoare, “Quicksort,” Comput. J., vol. 5, no. 1, pp. 10-16, 1962.

Jianji Wang (S’11) received the B.S. degree in
applied mathematics from the School of Science,
Xi’an Jiaotong University, Xi’an, China, in 2003,
and the M.E. degree in computer science and engi-
neering from the School of Electronic and Informa-
tion Engineering, Xi’an Jiaotong University, in 2007,
where he is currently pursuing the Ph.D. degree with
the Institute of Artificial Intelligence and Robotics.
His current research interests include fractal image
coding and image processing.

Nanning Zheng (F’06) received the B.E degree
from the Department of Electrical Engineering,
Xi’an Jiaotong University, Xi’an, China, in 1975, the
M.E. degree in information and control engineering
from Xi’an Jiaotong University, in 1981, and the
Ph.D. degree in electrical engineering from Keio
University, Tokyo, Japan, in 1985. He is currently
a Professor and the Director of the Institute of
Artificial Intelligence and Robotics, Xi’an Jiaotong
University. His current research interests include
computer vision, pattern recognition, computational
intelligence, image processing, and hardware implementation of intelligent
systems. He has served as the General Chair for the International Symposium
on Information Theory and its Applications in 2002 and the General Co-Chair
for the International Symposium on Nonlinear Theory and its Applications in
2002. Since 2000, he has been the Chinese representative on the Governing
Board of the International Association for Pattern Recognition. He currently
serves as an Executive Editor of the Chinese Science Bulletin. He was a
member of the Chinese Academy Engineering in 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

