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Toward Robust and Unconstrained Full Range
of Rotation Head Pose Estimation
Thorsten Hempel , Ahmed A. Abdelrahman , and Ayoub Al-Hamadi

Abstract— Estimating the head pose of a person is a crucial
problem for numerous applications that is yet mainly addressed
as a subtask of frontal pose prediction. We present a novel
method for unconstrained end-to-end head pose estimation to
tackle the challenging task of full range of orientation head pose
prediction. We address the issue of ambiguous rotation labels by
introducing the rotation matrix formalism for our ground truth
data and propose a continuous 6D rotation matrix representation
for efficient and robust direct regression. This allows to efficiently
learn full rotation appearance and to overcome the limitations
of the current state-of-the-art. Together with new accumulated
training data that provides full head pose rotation data and a
geodesic loss approach for stable learning, we design an advanced
model that is able to predict an extended range of head orien-
tations. An extensive evaluation on public datasets demonstrates
that our method significantly outperforms other state-of-the-art
methods in an efficient and robust manner, while its advanced
prediction range allows the expansion of the application area.
We open-source our training and testing code along with our
trained models: https://github.com/thohemp/6DRepNet360.

Index Terms— Head pose estimation, full range of rotation,
rotation matrix, 6D representation, geodesic loss.

I. INTRODUCTION

HHEAD pose estimation follows the objective of predict-
ing the human head orientation from images and is a

crucial step in many computer vision algorithms. Applications
are wide-ranging and include attention estimation [1], [2],
[3], face recognition [4], [5], and the estimation of facial
attributes [6], [7], which again are vital features in driver
assistance systems [8], [9], [10], augmented reality [11],
[12], and human-robot interaction [13], [14], [15]. The vast
majority of present methods [16], [17], [18], [19], [20], [21],
[22], [23] narrow down the research issue to the estimation
of solely frontal poses with a limited rotation range. This
favors the leverage of the facial feature-richness and suitable,
widely available training datasets. However, in uncontrolled
application scenarios [24], [25], [26] head orientations are
likely to surpass the narrow angle range that most meth-
ods are trained for and, consequently, produce random and
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inaccurate head pose predictions. In view of extending the
prediction to the full area of rotation range, the current state
of research is challenged by two key limitations. The first is the
absence of comprehensive datasets that cover the full range of
head orientations [27]. The second equally decisive and often
neglected factor is an appropriate rotation representation, as it
significantly impacts the model’s ability to effectively learn the
connection between visual pose appearance and corresponding
parameterization [28]. For instance, the commonly used Euler
angle and quaternion representation suffer from ambiguity and
discontinuity problems that lead to an unstable training process
and a mediocre prediction performance if plainly applied [16],
[19], [23], [29]. This behavior even intensifies for stronger
rotations in the narrow range spectrum.

We overcome these limitations by proposing a rotation
matrix-based 6D representation for efficient and unconstrained
network training that we further enhance with a geodesic
based loss. Additionally, we take up the ambitious challenge
of predicting the full range of rotation by agglomerating new
training data with enhanced pose variation. For this matter,
we utilize the CMU Panoptic [30] dataset and apply an
automatic head pose labeling process to generate head pose
samples with focus on the back of the head. We combine these
samples with the popular 300W-LP [31] head pose dataset and,
together, receive a large scaled dataset with greatly expanded
head rotation variations. Finally, the training of our proposed
model on this new agglomerated data enables us to predict a
significantly extended range of head orientations. We examine
our approach in multiple experiments on public datasets that
testify our method state-of-the-art accuracy and remarkable
robustness in predicting challenging poses. At the same time,
it is able to handle a many times greater range of head pose
orientations compared to current methods from the literature.
Fig. 1 shows examples of orientation predictions from this
model for versatile head poses. To the best of our knowledge,
we are the first to tackle the full range of head pose estimation
in this extensive and conclusive way. In summary, we make
the following contributions:

• We introduce a simplified and efficient 6-parameter rota-
tion matrix representation for regressing accurate head
orientations without suffering ambiguity problems.

• We propose a geodesic distance approach for network
penalizing to encapsulate the training loss within the
Special Orthogonal Group SO(3) manifold geometry.

• We utilize the CMU Panoptic dataset [30] to expand
the traditional 300W-LP [31] head pose dataset with full
rotation head pose appearance.
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Fig. 1. Example images of predicted orientations of various rotated heads.

• We create a new head pose prediction model that sur-
passes the prediction range of current methods and at the
same time achieves lower errors on common test datasets.

• We demonstrate the superiority of our approach in
accuracy and robustness in multiple experimental setups.

• We conduct an ablation study to evaluate the impact of
each component of our model on the achieved results.

Fig. 2 shows an overview of our proposed method. Each
component will be explained in detail in the following sec-
tions. Inspired by the 6D representation that is used in our
approach, we call our network 6DRepNet. An earlier version
of this work was published in [32], where we presented an
initial approach for 6D-based narrow angle prediction. In this
version, we enhance this previous work with an improved
training procedure, propose an approach for tackling the
prediction of the full range of orientation, and provide a more
detailed model including an extensive comparison with the
state-of-the-art, error analysis and ablation studies.

Our training, testing code, and trained models are made
publicly available to facilitate research experimentation and
practical application development.

II. RELATED WORK

In recent years, facial analysis along with vision-based
head orientation prediction emerged with the rise of neu-
ral networks. Current methods are commonly divided into
landmark-based and landmark-free approaches. Landmark-
based methods [33], [34], [35], [36] detect facial landmarks as
a primary step and subsequently recover the 3D head pose by
aligning the predicted landmarks with a standardized 3D head
model [37], [38]. Under ideal circumstances, this approach
can lead to very accurate head orientation estimations, but it
is highly dependent on the precise predictions of the landmark
positions. Also, it requires the target head to be shaped similar
to the head model to achieve an accurate alignment. Other
methods surmount these constraints by directly predicting 3D
facial landmarks, from which the head pose can be straight-
forwardly determined based on the localized landmarks [39],
[40], [41]. However, 3D landmarks and their 2D counterparts
are only located in the facial area. Head poses with significant
occlusions and particularly strong rotations only reveal little
or no visible facial area, making landmark-based methods
more prone to failure [42], [43]. Landmark-free approaches
overcome these limitations by directly estimating the head
pose from the images in an end-to-end fashion. These methods

commonly use deep neural networks to formulate the ori-
entation prediction as an appearance-based task. As one of
the first of its kind, HopeNet [16] presented an RvC [44]
approach by binning the target angle range to combine a
cross-entropy and a mean squared error loss function for Euler
angle prediction. Along with this classification approach, they
at the same time reduced the predictable rotation range within
± 99 degrees for yaw, pitch, and roll. Later, QuatNet [19]
adapted the cross-entropy paradigm with limited prediction
range and proposed to split classification and regression into
separate network branches. One branch is used for classifying
the Euler angles and the second one regresses the pose in
quaternion representation. Similarly, HPE [18] treats classi-
fication and regression separately and averages the outputs
as a pose regression subtask. WHENet [29] keeps the single
branch strategy, switches to an EfficientNet [45] backbone and
increases the number of bins for the yaw network branch to
extend the predictable angle range. Whereas FSA-Net [17]
proposes a network with a stage-wise regression and feature
aggregation scheme for predicting Euler angles. TriNet [46]
adapts this method, but estimates the three unit vectors of the
rotation matrix instead of Euler angles and incorporates an
additional orthogonality loss to stabilize the predictions. MFD-
Net [21] likewise follows the rotation matrix representation
but uses its Fisher distribution to model rotation uncertainty
and to find its maximum likelihood. Another probabilistic
approach was proposed by Liu et al. [47] who train on Gaus-
sian label distributions. Whereas FDN [20] targets optimized
feature extraction by proposing a feature decoupling method
to explicitly learn discriminative features of different head ori-
entations. DDD-Pose [22] seeks to diversify the training data
by proposing an advanced augmentation scheme. The current
state-of-the-art results are achieved by RankPose [23] closely
followed by MNN [48]. RankPose uses paired training samples
to introduce a ranking loss for penalizing incorrect ordering
of the Euler pose estimation. MNN and img2pose [49] predict
the rigid transformation between the head and the camera.

In general, frequent approaches in the area of head pose
estimation achieved continuous improvement over the recent
years, yet they still lack of comprehensive solutions for
predicting the full range of head pose rotation. First, it became
a common convention to split up the continuous rotation
variables into bins to convert the problem into a classification
task in order to stabilize the predictions [16], [18], [19], [20],
[29]. However, this is problematic as pruning segments of
angles into bins will consequently lead to a loss of information.
Apart from that, this constraining approach is commonly
combined with reducing the target space [16], [18], [19], [20],
[29] which eliminates the opportunity of tackling full rotation
estimation. A few works overcome these limiting factors by
using the rotation matrix as a more suitable rotation repre-
sentation [21], [46], [50], but neither deal with more efficient
ways of regression nor address its potential for expanding the
prediction range. As a consequence, the area of full head pose
prediction is still rarely explored yet. WHENet [29] was one
of the first to approach full yaw prediction by extending the
bin range for the yaw angle and proposing a wrapping loss
to handle the influence of the gimbal lock. However, their
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Fig. 2. Overview of the proposed method.

Fig. 3. Data samples from 300W-LP dataset with different rotation
parameterization.

method still tightly restricts pitch and roll within ± 99 degrees.
The same restriction is applied by Viet et al. [50] in their
multitask approach, where they face detection and head pose
estimation. As rotation representation, they use the rotation
matrix and follow the same computational extensive approach
as TriNet [46] to obtain orthogonality.

III. METHOD

In the following, we will give details about our proposed
method. We start with preliminary information about different
rotation representations. Based on its insights, we propose a
rotation parametrization scheme to overcome the limitation
of the related works. As an accompanying measure, we will
introduce a geodesic distanced based loss to precise and
stabilize the network penalty for training.

A. Preliminaries

In general, the orientation of a rigid body in the
three-dimensional space can be described by multiple kinds
of mathematical representation. The most common and widely
used one is the Euler angle representation that is used to
describe the rotation around each axis of the coordinate system

(typical denoted as yaw, pitch, roll). Despite its intuitiveness,
Euler angles face limitations when it comes to the specific
orientation state, where the second elemental rotation reaches
90 or −90 degrees. Given this setup, yaw and pitch align
on the same plane and create infinitive solutions for the same
rotation state. This behavior is known as gimbal lock as the
first and third axis are locked under this particular condition.
The gimbal lock represents the extreme case for the limitations
of Euler angles. However, the dependency between first and
third angle is a fundamental property of Euler angles, that
just becomes stronger the more the pitch reaches the gimbal
lock state. As a consequence, the Euler angle representation
does not behave in the same continuous form as its visual
appearance counterpart that has a detrimental impact on the
performance of neural networks.

Another type of orientation is called axis-angle represen-
tation, which consists of a unit vector v = (x̃, ỹ, z̃) that
defines the axis of the rotation and an angle θ that describes
the magnitude of its rotation. Closely related to the axis-
angle representation, another type called rotation quaternions
q with also four parameters q0, q1, q2, q3 can be derived by
q0 = cos( θ

2 ), q1 = x̃ sin( θ
2 ), q2 = ỹ sin( θ

2 ), q3 = z̃ sin( θ
2 ).

Quaternions and the axis-angle representation are not affected
by the gimbal lock, but they still have an ambiguity that is
introduced by their antipodal symmetry with −v = v and
−q = q, respectively. As a result, every orientation can be
described by two different representations that are maximum
far apart. A more comprehensive notation is the rotation matrix
R3x3 that consists of 9 parameters. Despite its increased
number of parameters, it comes with the crucial advantage
that it provides a continuous representation with a unique
parameterization for each rotation. Fig.3 shows an example of
two dataset samples with similar pose appearances. Yet, their
Euler angle and quaternion ground truth are parameterized
very differently. Only the rotation matrices reflects the similar-
ity in the pose appearance. In SO(3) the matrix representation
R is sized 3 × 3 with an orthogonality constraint R RT

= I ,
where RT is the transposed matrix and I the identity matrix.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (1)
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One could now try to regress the rotation matrix directly, but
this would require finding all nine parameters that at the same
time satisfy the orthogonality constraint. The orthogonality
can also be enforced in a sequential step by either using the
Gram-Schmidt process or the singular value decomposition
(SVD). The SVD is an extensive approach for finding those
orthogonal vectors that are the nearest to the predictions. The
Gram-Schmidt method requires discarding one vector in order
to recreate the orthogonal matrix from the remaining two.

B. 6D Representation

In section III-A we show that a key aspect for tackling
direct orientation predictions is the use of an appropriate
rotation representation that is unambiguously interpretable by
neural networks. For this matter, we use the rotation matrix
representation as a superior alternative to Euler angles, quater-
nions, and axis-angles. Inspired by Zhou et al. [28], we satisfy
the orthogonality constraint by performing the Gram-Schmidt
mapping inside the representation itself, which avoids exten-
sive post-processing. We simply drop the last column vector
of the rotation matrix that reduces the 3 × 3 matrix into a 6D
rotation representation

gGS =

 | | |

a1 a2 a3
| | |

 =

 | |

a1 a2
| |

 , (2)

which has been reported to introduce smaller errors for direct
regression [28]. Then, the predicted 6D representation matrix
is mapped back into SO(3) with

fGS =

 | |

a1 a2
| |

 =

 | | |

b1 b2 b3
| | |

 , (3)

where the resulting column vectors are defined as

b1 =
a1

||a1||
,

b2 =
u2

||u2||
with u2 = a2 − (b1 · a2)b1,

b3 = b1 × b2. (4)

Hereby, the last column vector is simply determined by the
cross product that ensures that the orthogonality constraint is
satisfied for the resulting 3 × 3 matrix:

As a result, our network has only to predict 6 parameters
that are mapped into a 3 × 3 rotation matrix in a subsequent
transformation process that incorporates the orthogonality
constraint as well.

C. Geodesic Loss

The l2-norm is the commonly used loss function for
head pose related tasks. However, using the Frobenius norm
for measuring distances between two matrices would break
with the SO(3) manifold geometry. Instead, the shortest path
between two 3D rotations is geometrically interpreted as the
geodesic distance. Let Rp and Rgt ∈ SO(3) be the estimated
and the ground truth rotation matrices, respectively, then the

geodesic distance between both rotation matrices is defined
as:

Lg = cos−1

(
tr(Rp RT

gt ) − 1

2

)
. (5)

In the following, we will use this metric as a loss function for
our neural network to compute accurate distance information
between the predicted and ground truth orientation.

IV. EXPERIMENTS

We perform an extensive evaluation of our method.
We begin the specification of our used datasets, evaluation
metrics and implementation setup, followed by a compre-
hensive comparison with other state-of-the-art methods in
cross-dataset and intra-dataset tests. Further analysis includes
a detailed error analysis and ablation studies on used loss
functions and backbones.

A. Datasets

We conduct our evaluation with the aid of different kinds
of data. The most common and public available datasets are
300W-LP [31], AFLW2000 [51], and BIWI [52].

300W-LP: 300W-LP consists of 66,225 face samples
collected from multiple databases including LFPW [53],
AFW [54], HELEN [55] and iBUG [56] that are further
enhanced to 122,450 samples by image flipping. It is based
on around 4000 real images. The ground truth is provided in
the Euler angle format. For training, we convert them into the
matrix form.

AFLW2000: The AFLW2000 dataset contains the first 2,000
images from the ALFW dataset annotated with the ground
truth 3D faces and the corresponding 68 landmarks. It con-
tains samples with large variations, different illumination, and
occlusion conditions.

BIWI: The BIWI dataset includes 15,678 images that were
created in a lab environment with 20 participants. In this
dataset, the head takes up only a small area in the images.
Hence, we use the MTCNN [57] face detector to loosely crop
the heads from the images. All of the above listed datasets
provide, due to their nature of annotation, only samples with
a frontal view of the faces (mostly between −99◦ and +99◦

range of yaw). Therefore, they cannot be used for the training
of the entire head orientation range.

CMU Panoptic: Therefore, we utilize another dataset called
CMU Panoptic [30] that makes it possible to generate anno-
tated head images with full rotation appearances. In this
dataset, a variety of subjects perform arbitrary tasks inside a
dome, that is equipped with 31 evenly arranged HD cameras.
The main focus of this dataset is to capture the subject’s
poses, but it also provides 3D facial landmark annotation
and camera intrinsicts and extrinsics. This enables to extract
head pose annotation from all the different camera angles, that
was initially harnessed by Zhou and Gregson [29]. There are
30 sequences public available with multiple subjects per scene,
that are standing in a ring with each subject being oriented
towards the center of the dome. When extracting the head
crops with only accepted those with a minimum size of 320 for
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Fig. 4. Dataset distribution.

both axis, which gives us a dataset with 113914 samples in
total. Because of the subject’s spacial setup, the majority of
the samples are ones showing the back of the head. Samples
with frontal face view are likelier to be sorted out by too
small sized, as these face images were taken from more far
distance. Therefore, we create a combination of the 300W-LP
and the CMU Panoptic dataset that includes 236,364 data
samples spanning the entire range of yaw rotation. The range
of pitch is slightly expanded as we also use the samples that
are generated from cameras attached to the ceiling of the CMU
Panoptic dome. The distribution of this new training data is
shown in Fig. 4. It should be noted that we use the Euler angles
for presentation purposes that cannot exactly represent the
distribution of visual appearance in the dataset, as discussed
in section III-A.

B. Evaluation Metrics

We use two different evaluation metrics to quantify the head
pose estimations error. The first one is the most common Mean
Absolute Error (MAE) of the Euler angles,

MAE =
1
N

N∑
i=1

(|xg − x p|), (6)

where N is the number of face images and xg and x p represent
the ground truth and predicted pose parameters, respectively.
Secondly, we calculate the Mean Absolute Error of the vectors
(MAEV) of the rotation matrix. This metric was introduced
by [46] in order to surpass the limitations of the Euler
representation and to provide a more meaningful picture of
the appearance differences between predicted and ground truth
orientation. The MAEV defines the angle error between the

three vectors of the rotation matrix,

MAEV =
1
N

N∑
i=1

cos−1
(

vg · vp

|vg||vp|

)
, (7)

where N , again, is the number of face images in the dataset
and vg and vp are the ground truth and the predicted head
orientation vectors.

C. Implementation Details

We implement our proposed network using PyTorch [58].
As backbone, we choose ResNet50 [59] to enable a fair
comparison with other methods [16], [19], [22], [23], [46], that
chose the same feature extractor. The backbone’s weights are
pretrained with the ImageNet [60] dataset. For the final layers,
we choose a single fully connected layer with 6 outputs. The
network is trained for 80 epochs with a batch size of 80 using
the Adam optimizer with a learning of 1e−4. To exploit
full generalization potential, we also extensively augment our
training data using Albumentations [61] by applying random
horizontal flipping, random scaling and cropping, random
rotation up to [−45, +45] degrees, random occlusions, and
further image color operations including random blur, random
brightness contrast changes, and random RGB shifts.

D. Comparison With State-of-the-Art

In this section, we conduct a comprehensive compari-
son with the state-of-the-art. We start with a cross-dataset
evaluation to analyze our model’s generalization capabilities,
followed by an intra-dataset experiment and a detailed error
analysis for further performance assessment.

1) Cross-Dataset Evaluation: In our first experiment,
we want to evaluate our approach against the state-of-the-
art methods. To the end, we train two models. The first
model (6DRepNet) will strictly follow the common training
convention by using the synthetic 300W-LP dataset for training
and the two real-world datasets AFLW2000 and BIWI for
testing. This will provide comparable information about our
method’s performance of directly regressing a diminished rota-
tion matrix. For another model (6DRepNet360) we change the
training setup by replacing the 300W-LP dataset for training
with our combined dataset (CMU + 300W-LP) for full rotation
appearance training. The remaining training configuration will
remain the same to place the focus on the impact of the
enriched training data for the evaluation. We provide numerical
results in Mean Absolute Error (MAE) of the Euler angles
and in Mean Absolute Error of the rotation matrix vectors
(MAEV). Most of the current state-of-the-art methods don’t
provide the MAEV for their results, so we retest these methods
that have been open sourced and calculate the MAEV based
on the converted rotation matrices for each test sample.

Table I shows the results from the two model setups along
with the results from other methods from the recent literature.
For better interpretation, we added an extra column (R) to
show which methods are trained to predict a larger range of
rotations and which ones restrict their predictions to frontal
poses. From the 15 listed methods, only two approached the
exceeding of narrow angle range head pose estimation.



2382 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

TABLE I
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON THE AFLW2000 AND BIWI DATASET. ALL MODELS ARE TRAINED ON THE 300W-LP

DATASET. RESULTS FROM METHODS WITH POSITIVE I ARE GENERATED BY OUR OWN TESTS. METHODS WITH NEGATIVE I ARE NOT OR ONLY
PARTIALLY OPEN-SOURCE. THEIR RESULTS ARE CLAIMS FROM AUTHORS. METHODS WITH POSITIVE R TARGET THE PREDICTION OF A

WIDER RANGE OF ROTATION

Fig. 5. Example images with converted Euler angle visualization from the AFLW2000 dataset (first row) and the CMU Panopic test dataset (second row).

a) 6DRepNet: The table demonstrates that our model
that was solely trained on the 300W-LP dataset outperforms
all other methods on the AFLW2000 test dataset and surpasses
the current top performer RankPose on AFLW2000 in Euler
and vector errors. Besides the overall error rate, our model
achieves top performing results for the pitch and roll error
and equal results to the best reported yaw error. This indicates
a very stable network learning, resulting in robust prediction
properties. On the BIWI dataset, it achieves competitive results
in respect to MAE and best results in respect to MAEV. The
latter ought to be considered with caution, as there are no
MAEV results reported for the MAE top performers.

b) 6DRepNet360: Our second model, 6DRepNet360,
achieves very competitive results on AFLW2000 and even
new state-of-the-art results on BIWI by surpassing WHENet-V
by 3%. Noticeably, this model only differs in its training
data, where the added data aims to expand the predictable
detection range of the yaw rotation. Yet, these samples include
numerous stronger pitch rotations than 300W-LP (see Fig. 4).
We argue that these samples benefit the model’s performance

for processing the challenging poses from the BIWI dataset,
as the error for the pitch is reduced by 33% compared
to our the solely on 300W-LP trained model. Remarkably,
WHENet is also trained for wide yaw predictions and is
therefore most suitable to compare it with our 6DRepNet360.
While WHENet is reported to perform even worse than its
300W-LP equivalent WHENet-V, our 6DRepNet360 model
achieves over 20% lower error rates on AFLW2000 and over
a 10% higher accuracy on BIWI. We believe that our choice
of the 6D rotation matrix as rotation representation instead
of WHENets Euler angle has a major impact on our superior
results. In terms of rotation representation, TriNet is the most
similar method to ours. But in contrast to our 6 parameter
approach, they predict the entire 9 parameter rotation matrix
and use an SVD to find an orthogonal-constrained solution.
We argue that our more efficient approach leads to a higher
reported accuracy.

Fig. 5 shows qualitative results from our 6DRepNet360
model. The first row illustrates prediction on test images from
the AFLW2000 dataset with strong varieties of background,
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TABLE II
EULER ERROR COMPARISONS WITH THE STATE-OF-THE-ART METHODS

ON THE70/30 BIWI DATASET. RESULTS FROM METHODS WITH
POSITIVE I ARE GENERATED BY OUR OWN TESTS. METHODS

WITH NEGATIVE I ARE NOT OR ONLY PARTIALLY
OPEN-SOURCE. THEIR RESULTS ARE CLAIMS

FROM AUTHORS

TABLE III
VECTOR ERROR COMPARISONS WITH THE STATE-OF-THE-ART

METHODS ON THE70/30 BIWI DATASET. RESULTS FROM METHODS
WITH POSITIVE I ARE GENERATED BY OUR OWN TESTS.

METHODS WITH NEGATIVE I ARE NOT OR ONLY PARTIALLY
OPEN-SOURCE. THEIR RESULTS ARE CLAIMS

FROM AUTHORS

TABLE IV
MODEL PERFORMANCE ON THE CMU PANOPTIC + 300W-LP COMBINED

DATASET. 70% OF THE DATASET IS USED FOR TRAINING AND THE
REMAINING 30% FOR TESTING. RESULTS FROM METHODS WITH

POSITIVE I ARE GENERATED BY OUR OWN TESTS. METHODS
WITH NEGATIVE I ARE NOT OR ONLY PARTIALLY

OPEN-SOURCE. THEIR RESULTS ARE CLAIMS
FROM AUTHORS

lightning, and camera angle. The second row shows test
results with very strong head rotations from the CMU Panoptic
test set that exceed the common pm 99 degrees restrictions.
In contrast to AFLW2000, it is captured in a laboratory envi-
ronment with consistent lightning conditions and background.
Nevertheless, 6DRepNet robustly predicts the head poses from
varying camera angles. A very noteworthy example is the
rightmost test image, as it presents a very challenging instance.
While for frontal faces even stronger rotated poses provide
meaningful features, visual cues are in this example mainly
restricted to the head’s shape. Yet, our model is able to predict
reliable orientations even for these challenging kind of head
poses.

2) Intra-Dataset Evaluation:
a) BIWI: In a second experiment, we follow the conven-

tion by FSA-Net [17] and randomly split the BIWI dataset in

TABLE V
ANALYSIS OF THE INFLUENCE OF DIFFERENT LOSS FUNCTIONS

L M SE AND GEODESIC LOSS Lg ON THE MAE

a ratio of 7:3 for training and testing, respectively. Table II and
Table V show our results compared with other state-of-the-art
methods that followed the same testing strategy. We retested
those models, that provide source code information, for an
additionally MAEV error report. The remaining results are
claims by the authors. It demonstrates that our method outper-
forms all other methods by a margin of more to 10%. In terms
of the individual rotation angles, our approach produces very
consistent results by achieving the best results on yaw and
roll, and equal results to the state-of-the-art DDD-Pose for
the pitch angle. This supports the observed robustness in
the cross-dataset evaluation and demonstrates, that achieving
stable accurate results for all three angles does not only depend
on the trained dataset, but rather on our proposed method itself.
This is also reflected in Table V, where our approach achieves
the best overall MAEV results as well as for each single vector.

b) CMU panoptic + 300W-LP: In a final experiment,
we evaluate our model in an intra-dataset test on our combined
dataset that comprises the data from the CMU Panoptic and the
300W-LP dataset. To this end, we randomly split the dataset
into 70% training data and 30% test data. To the best of our
knowledge, Viet et al. [50] and WHENet are the only methods
that published test results on CMU Panoptic. However, [50]’s
prediction pipeline additionally includes face detection and
their test set comprises solely samples from CMU Panoptic.
Therefore, the comparison ought to be considered with cau-
tion. More similar to our experimental approach, WHENet
tests on a combination of CMU Panoptic and 300W-LP, but
its size and composition are not specified. Thus, our results
are mainly for future reference, and we will publish our test
list to provide other methods with the capability of precise
comparison.

3) Error Analysis: To receive a more detailed impression of
our model performance, we conduct an error analysis with four
other state-of-the-art methods (HopeNet, FSA-Net, RankPose,
TriNet) where we split up the errors on the AFLW2000 of
range [−99◦, 99◦] into intervals of 33◦. All models were solely
trained on 300W-LP. The results are shown in Fig. 6 where
each Euler angle is illustrated in a separate graph. It gives
insight that in general the prediction error for all methods
increases with stronger rotations. It is conspicuous, though,
that this error increase is much lower for 6DRepNet compared
to all the other methods, especially for the pitch and roll. While
Table I shows that our model overall outperforms RankPose by
3%, this detailed error analysis illustrates that our 6DRepNet
achieves over 60% smaller error rates for extreme pitch and
roll rotations. This is yet another confirmation that our model
does not only achieve state-of-that results, but at the same time
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Fig. 6. Error analysis for angle intervals on the AFLW2000 dataset.

provides very robust predictions even in extremely challenging
test cases. We argue that the significant error reduction for
pitch and roll can be attributed to our model’s efficient learning
capabilities, enabling accurate predictions even with a limited
amount of large-angle training samples (see Fig. 4).

E. Ablation Study

In the following, we will analyze how each of our model’s
remaining components impacts our reported results. This
includes the backbone, that is responsible for the feature
extraction, and our proposed loss function, which differs from
other methods in the literature.

1) Loss Function: Most current methods use the Mean
Squared Error (MSE)

L M SE =
1
N

N∑
i=0

(yp − ygt )
2 (8)

for calculating the loss in the training procedure. We argue
that the geodesic distance gives a better feedback about
the distance between prediction and ground truth and, thus,
is better suited to be used as a loss function. To prove this,
we conduct another experiment where we repeat our previous
tests, but this time we train our network with the MSE distance
loss and with a combination of MSE and the geodesic loss
Lg (see Eq. 5). Table III shows these results compared to
our models trained with geodesic distance loss. It states that
the network with geodesic loss penalty performed significantly
better than the one that used MSE and slightly better than the
combination of MSE and Lg .

2) Rotation Formalisms: We evaluate the performance of
various rotation formalism by using a ResNet50 backbone with
single final fully connected layer. This layer comprises three
output neurons for the Euler-based model, four neurons for
the quaternion-based model, six for the 6D formalism and
nine for the rotation matrix based model. All models are
trained using MSE loss, except for an additional 6D-based
model, which utilizes the proposed Geodesic distance-based
loss. The results are presented in Table VI and indicate the
highest error for the Euler angle-based model, followed by
the quaternion- and rotation matrix-based models. The 6D

TABLE VI
ANALYSIS OF VARIOUS ROTATION FORMALISM

Fig. 7. Comparison of MAE for various rotation formalism based on
a ResNet50 backbone and MSE loss. For the proposed 6D representation,
an additional series with Geodesic loss is provided. All results are based on
the AFLW2000 test set.

formalism-based models archive the best results, in which the
Geodesic loss model outperforms the MSE model in Yaw,
Pitch and Roll error rates. These findings support our claim
that the 6D rotation representation in combination with the
Geodesic-based loss facilitates efficient training and yields
highly accurate rotation prediction models. To further analyze
the training process, we illustrate the test performance of the
trained models on the AFLW2000 test set across training
epochs in Fig. 7. It demonstrates that, as early as epoch five,
the 6D-based model with Geodesic loss surpasses all other
models across all epochs, showcasing its rapid convergence
rate. This finding is coherent with our strong results for strong
pitch and roll rotation in Fig 6.
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TABLE VII
COMPARISON OF THE MAE BETWEEN THE DIFFERENT BACKBONES

Fig. 8. Euler angle error for the CMU Panoptic + 300W-LP test set.

3) Backbone: In a final experiment, we analyze the impact
of the chosen backbone on the results. Our results from
Table I already proved the superiority of our 6D rotation
matrix approach over other methods using the same backbone.
Nevertheless, we want to evaluate the impact of the number
of parameters on our results. In Table VII we compare our
previous results with a model that was trained with the smaller
ResNet18. It is remarkable, that our model that was trained
on the 50% smaller backbone ResNet18 still achieves better
results on the AFLW2000 dataset than all other methods from
Table IV except one. For the BIWI dataset, the accuracy
compared to ResNet50 is reduced only by a very small
margin. This confirms that our model’s overall performance
is predominantly accounted by our 6D rotation representation
and hardly by the used backbone. Moreover, it shows that
the commonly used ResNet50 is not necessary for achieving
proper accuracy, as the more efficient ResNet18 reports similar
performance. This becomes an important aspect, when the
head pose estimation is used in settings with limited com-
putational resources.

F. Limitations

Our model achieves accurate and robust prediction for an
extended range of rotation. This especially applies for the yaw
angle, which encounters the strongest rotations in common
application scenarios. However, the roll and pitch can also
reach strong rotations, that are only marginally represented
in our training data (see Fig. 4). This can lead to reduced
robustness and accuracy in application scenarios with unusual
camera angles and head poses. To analyze this, we degreewise
calculated the error of our 6DRepNet360 model on the test
set of our CMU Panoptic + 300W-LP 70/30 split from
section IV-D.2. The results are shown in Fig. 8 and illustrate
that the error rate for the yaw angle is consistently low, while

the roll and pitch error rate increase with stronger rotations.
This demonstrates that there is still a lack of training and
also test data for this extended range of rotations. In our test
set, only three samples exceed [−100,+100] degrees in roll
and only five samples exceed [−100◦,+100◦] in pitch. In our
experiments, we approached this limitation by performing
image rotation augmentation that synthetically expands the
roll and pitch range. Further, the CMU Panoptic dataset
is taken in laboratory settings with similar background and
lightning conditions. Additional data with stronger variation
could therefore benefit the generalization performance as well.

V. CONCLUSION

In this paper, we tackle the major challenge of uncon-
strained full rotation head pose estimation that is a rarely
explored research subject yet. First, we formulate a continuous
6D rotation matrix representation for an unambiguous and
continuous appearance parameterization. This approach forms
the basis for a stable and precise network training that we
further optimize by introducing a geodesic distance based loss.
With the use of the CMU Panoptic dataset, we accumulate
a more comprehensive head pose dataset that exceeds the
common public dataset in variety and size and allows us
to create a model that is able to predict full head pose
rotations. We evaluate our approach in multiple experiments
that demonstrate that our 6D rotation representation achieves
superior performance compared to the state-of-the-art and is
able to efficiently learn the full range of head pose orientation.
We complete our study with an ablation study to analyze
the impact of the rotation representation, backbone and loss
function on our results.
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