
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024 241

Neural Graph Refinement for Robust Recognition of
Nuclei Communities in Histopathological Landscape

Taimur Hassan , Member, IEEE, Zhu Li , Senior Member, IEEE, Sajid Javed ,
Jorge Dias , Senior Member, IEEE, and Naoufel Werghi , Senior Member, IEEE

Abstract— Accurate classification of nuclei communities is an
important step towards timely treating the cancer spread. Graph
theory provides an elegant way to represent and analyze nuclei
communities within the histopathological landscape in order to
perform tissue phenotyping and tumor profiling tasks. Many
researchers have worked on recognizing nuclei regions within
the histology images in order to grade cancerous progression.
However, due to the high structural similarities between nuclei
communities, defining a model that can accurately differentiate
between nuclei pathological patterns still needs to be solved. To
surmount this challenge, we present a novel approach, dubbed
neural graph refinement, that enhances the capabilities of existing
models to perform nuclei recognition tasks by employing graph
representational learning and broadcasting processes. Based on
the physical interaction of the nuclei, we first construct a fully
connected graph in which nodes represent nuclei and adjacent
nodes are connected to each other via an undirected edge. For
each edge and node pair, appearance and geometric features are
computed and are then utilized for generating the neural graph
embeddings. These embeddings are used for diffusing contextual
information to the neighboring nodes, all along a path traversing
the whole graph to infer global information over an entire nuclei
network and predict pathologically meaningful communities.
Through rigorous evaluation of the proposed scheme across four
public datasets, we showcase that learning such communities
through neural graph refinement produces better results that
outperform state-of-the-art methods.

Index Terms— Nuclei communities, graph representational
learning, histology images, colorectal cancer.

I. INTRODUCTION

WHOLE slide imagery (WSI) is becoming the gold
standard for monitoring cancerous growths as it allows

Manuscript received 9 March 2023; revised 30 September 2023; accepted 12
November 2023. Date of publication 8 December 2023; date of current version
15 December 2023. This work is supported by a research fund from Advanced
Technology Research Center Program (ASPIRE), UAE, Ref: AARE20-279,
Khalifa University, UAE, Ref: CIRA-2021-052, the Terry Fox Foundation,
Canada, Ref: I1037, and Mubadala, UAE, Ref: MuACPA 2023/2024. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Ming Shao. (Corresponding author: Taimur Hassan.)

Taimur Hassan is with the Department of Electrical, Computer, and
Biomedical Engineering, Abu Dhabi University, Abu Dhabi, United Arab
Emirates (e-mail: taimur.hassan@adu.ac.ae).

Zhu Li is with the Department of Computer Science and
Electrical Engineering, University of Missouri–Kansas City (UMKC),
Kansas, MO 64110 USA (e-mail: lizhu@umkc.edu).

Sajid Javed and Jorge Dias are with the Department of Electri-
cal Engineering and Computer Science, Khalifa University, Abu Dhabi,
United Arab Emirates (e-mail: sajid.javed@ku.ac.ae; jorge.dias@ku.ac.ae).

Naoufel Werghi is with the Center for Secure Cyber-Physical Systems
(C2PS), Khalifa University, Abu Dhabi, United Arab Emirates (e-mail:
naoufel.werghi@ku.ac.ae).

Digital Object Identifier 10.1109/TIP.2023.3337666

pathologists to objectively assess the full extent of malignancy
within the cellular tissues at an early stage [1]. Similarly, the
increased use of histology scans in computational pathology
enabled the researchers to develop automated tools that can
assist pathologists in analyzing the tumorous profiles across
multi-resolution histopathological landscapes [2]. Neverthe-
less, storing or transferring such large-sized slides poses a
significant challenge to clinicians in their daily routines. In
addition, analyzing such multi-gigapixel histology scans as a
whole is a practically infeasible and computationally ineffi-
cient process [3]. Therefore, the clinicians typically divide the
histology slides into non-overlapping patches for the given
magnification level in order to overcome the storage and com-
putational issues while objectively visualizing the cancerous
spread [4].

The accurate extraction of nuclei communities plays a
critical role [5] towards effectively evaluating the cancerous
progression within cellular tissues. A nucleus is a middle
portion of the cell controlling the genetic information, cell
division, protein synthesis, and cellular growth [6]. Moreover,
a community is defined as a group or cluster of nuclei that have
the same type. Apart from this, communities, representing
different types of nuclei, form a community network within
the histopathological landscape [7]. Many researchers have
proposed sophisticated architectures to detect these communi-
ties in order to perform tissue phenotyping [5] and cancerous
prognosis [3] tasks. The recent wave of methods also explored
few-shot learning and incremental learning paradigms to
achieve good detection performance at the inference stage
while training the models with limited data [8]. However,
to the best of our knowledge, either these methods cannot be
scaled to the clinical settings due to architectural design con-
straints [5], or they are vulnerable in extracting the granularity
of the tissue structures depicted within the histology images
[4]. Graph-based methods have also been widely explored
for recognizing the nuclei communities represented within
the histology scans. The performance of these methods is
relatively better than the other approaches [9]. However, these
frameworks still face difficulty in distinguishing the close
contextual and textural appearances of nuclei communities
within the WSI landscape [6], [10].

To address the above-mentioned limitations, this paper pro-
poses a neural graph refinement scheme, as shown in Figure 1,
that forms a nuclei community network via a fully connected
graph in which each node represents a nucleus, and adjacent
nodes are connected to each other via an undirected edge.
Through iterative refinement across a whole path traversing
the graph, contextual information is diffused, and edges are
updated via learned schemes until convergence.
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Fig. 1. Schematic illustration of the proposed framework. At first, we perform initial recognition of nuclei within the WSI patches via a pre-trained detection/
segmentation model (A). Afterward, we generate a fully connected community graph in which each nucleus is represented as a node and is connected with
other nuclei through an undirected edge. To traverse the graph for nuclei label refinement, we generate a Hamiltonian path from the community graph in a
breadth-first search manner (B). For each node within the path, we generate the node and edge feature embeddings through neural networks and broadcast these
embeddings within the whole graph for a fixed number of iterations. After propagating the embeddings in each iteration, we also utilize their representations
to classify each edge (connecting the two adjacent nodes within the graph) as active or non-active. This edge classification retains connections between similar
nodes (nuclei) while removing the links between heterogeneous nodes. This edge refinement also leads to the production of loose (disconnected) nodes within
the graph. These loose nodes are then subsequently reclassified by exploiting their latent homogeneity (C). Finally, the reclassified nodes aid in producing the
updated community graph, which is compared with the ground truth labels (D).

The proposed scheme can be coupled with any detection
or segmentation model to drastically improve its performance
toward recognizing the heterogeneous and homogeneous
nuclei communities within the histopathological landscape.
Similarly, the featurization block of the proposed scheme can
be integrated with any edge classification, graph partitioning
and clustering method to retain only the purest homogeneous)
nuclei within the graph, whereas the rest of the connections
between heterogeneous nodes (belonging to different nuclei
categories) are eliminated. The integration of proposed scheme
with the graph partitioning and clustering methods also opens
a door for the proposed scheme to be applied to a vast variety
of applications involving graph processing and graph represen-
tational learning. Apart from this, the extent of the proposed
system is tested across four public benchmark datasets con-
taining a wide variety of nuclei structures. The proposed
framework has outperformed state-of-the-art methods toward
accurately recognizing the nuclei communities in a diversified
histopathological landscape across all these four datasets.

II. RELATED WORKS

Many researchers have worked on extracting nuclei com-
munities using histology images. In the following, we present
a brief overview of the main approaches. We refer the readers
to [11] for a detailed survey.

A. Classical Methods
Initial methods designed for monitoring cancerous patholo-

gies were based on handcrafted features related to the shape,
texture, and spatial characteristics of the nuclei communities
depicted within the WSI patches [12]. For example, Nguyen
et al. [13] analyzed the shape features to differentiate benign
and malignant nuclei within prostate WSI patches. Yuan et al.
[14] extracted the lymphocytes and stroma tissues from the
histology scans by computing the morphological features.
Although classical machine learning methods were widely
used for diagnosing cancerous pathologies, the robustness of
these methods was confined to minimal experimental settings
due to the subjectiveness of the extracted features. Therefore,
when exposed to a wider variety of tissues within WSIs, their
performance deteriorated drastically [15].

B. Deep Learning Methods
Deep learning has significantly improved cancer progression

monitoring using histology images by enhancing the extraction
and the classification of the nuclei communities [16] and
cellular tissue pathologies [3]. For example, Kim et al. [17]
used a pre-trained segmentation model along with principal
component analysis and discrete wavelet transform to seg-
ment cellular pathologies from the patched histology images.
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Graham et al. [5] developed Hover-Net [5], which contains
residual blocks and distance encoders to perform simultaneous
segmentation and classification of nuclei communities from
the WSI patched sequences. Similarly, Tripathi and Singh [18]
used a conjunction of CNN features that are fed to the mul-
tilayered perceptron to recognize nuclei types. Unsupervised
classification of cell communities has also been attempted.
Representative works are reported in [19].

C. Graph-Based Methods
Despite advancing the state-of-the-art in computational

pathology, deep learning methods are still vulnerable to high
correlation within textural and contextual representations of
the whole slide imagery, which limit their capacity to dis-
criminate different grades of cancerous tissues. To address
these challenges, researchers investigated the utilization of
graph-based approaches in cancer image analysis [9], [20]. For
example, Ramirez et al. [20] employed graph convolutional
networks to classify different types of cancerous pathologies.
Lu et al. [6] proposed SlideGraph+ to predict human epidermal
growth factor receptor-2 (HER2) from the breast cancer H&E
stained whole slide images. SlideGraph+ represents the multi-
gigapixel WSI into an undirected graph by first clustering the
WSI patches that depict similar tissue structures using the
Delauney triangulation scheme [21]. The constructed graph
is then passed to the custom graph neural network architec-
ture, which extracts distinct feature representation via edge
convolutional layers to predict the presence of HER2 patterns.

Although these recent frameworks evidenced the importance
of the network representation as reflected in the superior
performance compared to their predecessors. There is still
a significant performance gap to bridge toward reaching a
thoroughly reliable system.

III. CONTRIBUTIONS

We present a novel neural graph refinement (NGR) scheme
that iteratively exploits the homogeneity within the cellular
tissue pathologies in order to robustly extract the nuclei
communities within the whole slide images. The accurate
recognition of the nuclei communities also enables screening
and grading of the colorectal cancer severity and facilitates the
pathologists towards timely mitigating cancer spread by giving
effective prognosis. More specifically, the main contributions
of this work are:

• This paper presents a novel, ordered, continuous, and
iterative neural graph refinement scheme that formulates
a whole path to traverse a complete community graph
in order to diffuse cellular contextual information within
colorectal cancer whole slide imagery for improving the
nuclei community recognition.

• In addition to this, the proposed NGR scheme can be cou-
pled with any clustering and graph partitioning scheme to
separate homogeneous and heterogeneous nuclei types by
analyzing their associations within the latent space (see
Sections VI-A.7 and VI-A.8 for more details).

We also want to highlight that in our previous work [10],
we pioneered investigating a message-passing network for cell
classification in the whole slide images. In that preliminary
investigation, we constructed the nearest neighbor graph such
that the nodes represent the nuclei centroids, and the adjacent
nodes are formed through K nearest neighbor connectivity.

Moreover, for each node and the set edges connecting it with
the neighboring nodes, we compute distinct feature messages
that transmit the contextual information to the adjacent nodes
while updating the nodes’ connections.

In this paper, we present a more robust and structured
solution that exploits the homogeneity between the nuclei
community by coupling neural featurization process with
edge classification, graph partitioning and clustering schemes
in order to well-discriminate similar textured nucleus types
within the histopathological landscape. The main distinctions
between the proposed framework with our previous work [10]
are: 1) We employ a fully connected graph of the nuclei
community whereby we explicitly connect each node with
every other node based on the vicinity in the space of features,
whereas in our previous work, we used a graph constructed
with the nearest neighbor technique in the spatial domain.
With the so-constructed graph, we enhance the pruning and
the retaining of the edge between, respectively, heterogeneous
nodes (belonging to different communities) and homogeneous
nodes (belonging to the same community). 2) Rather than
transferring node and edge features in the form of mes-
sages to selected node pairs in a K -nearest neighbor graph,
we developed an iterative broadcasting scheme propagating
node and edge features across the whole graph. Apart from
edge classification, we also integrated the featurization process
of the proposed scheme with traditional graph partitioning and
clustering methods for performing the nucleus classification
tasks. See Sections VI-A.7 and VI-A.8 for more details. 3) The
contextual information is diffused to the neighboring nodes
across a Hamiltonian path traversing the whole graph, ensuring
thus ordered analysis and neighborhood continuity. In our
previous work, the nodes were browsed in an arbitrary fashion
according to their arrangement in the nearest neighbor graph
structure. 4) Consistently with the Hamiltonian path concept,
we propose a novel scheme in which the adjacent nodes are
decomposed into downstream nodes (that receive embedding
information) and upstream nodes (that send embedding infor-
mation) depending on their relative positions in the traversal
path with respect to the current node. 5) The node and edge
features are updated across each broadcasting iteration through
seven learnable multilayered perceptrons (MLPs) rather than
non-trainable message-passing networks [10]. 6) We propose a
new classification stage, where we re-classify the loose nodes
generated during the graph refinements by analyzing their
latent space homogeneity with each nuclei cluster.

The rest of this paper is organized as follows: Section IV
explains the proposed scheme in detail. Section V presents
the details about the experimental protocol, while Section VI
showcases the detailed validation of the proposed framework
through various experiments and its comparison with state-of-
the-art methods using different metrics. Section VII concludes
the manuscript while highlighting the future directions.

IV. PROPOSED METHOD

The proposed scheme is divided into four phases, as shown
in Figure 1. In the first phase, the initial recognition of the
nuclei communities is performed using the pre-trained detec-
tion or segmentation models. In the second phase, the centroids
of the detected cells are utilized in generating a fully connected
graph of the nuclei communities from which we derive a
Hamiltonian path that browses the whole graph. This traversal
path allows us to operate on each node within the community
to extract its appearance and geometrical features. In the third
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Fig. 2. Working schematic of the initial feature extraction pipeline. (A) Initially detected nuclei. (B) Construction of the fully connected community graph.
(C) Generation of the traversal path P (in yellow) starting at v1. (D) Establishing neighborhood av , in the form of a bounding box around the nucleus (e.g., the
neighborhoods av2 and av3 of v2 and v3). (E) Computation of initial node feature vectors from the neighborhood av via deep feature extractor N (e.g., the
ho
v2

and ho
v3

). From the neighborhoods av and the initial feature vectors, we compute the edge descriptor e0
v2,v3

aggregating the appearance edge features
(Da ), spatial edge features (Ds ) and geodesic edge features (Dg). The traversal path, the neighborhoods, the node feature vectors, and the edge descriptor
are then used to construct and initialize the adjacency network A.

phase, appearance and geometrical features are updated and
propagated across the graph for a fixed number of iterations.
In each iteration, we also classify each link, connecting two
adjacent nodes, using node and edge features to enforce
maintaining (respectively eradicating) links between homo-
geneous (respectively heterogeneous) nodes. This procedure
also generates loose nodes (i.e., nodes having no connection
with any other nodes) in the updated community graph. We
assign these loose nodes to their corresponding community by
searching their closest (homogeneous) nuclei cluster within the
latent feature space. Lastly, in the fourth phase, we compare
the refined communities in the WSI patches with their ground
truths to evaluate the degree of improvements achieved by
the proposed scheme as compared to the initial results. While
the last phase is actually an assessment phase and cannot be
qualified as part of our detection and classification scheme,
we put it in the pipeline because it employs a non-classic
metric for the evaluation. A detailed description of all four
phases is presented in the subsequent sections.

A. Initial Cell Detection and Classification

In the first stage, we perform the initial detection and clas-
sification of nuclei communities using conventional detection
and segmentation models, such as Faster R-CNN [22], Mask
R-CNN [23], and Hover-Net [5]. The detection models rec-
ognize and localize the nuclei communities through bounding
boxes, while the segmentation models localize them through
masks. We also derive the bounding boxes from these masks
by analyzing the minimum and maximum extent of each con-
nected component representing each nuclei type. These initial
nuclei recognition contain a large number of misclassifications
since these models employ region-based [22], [23], and edge-
based [5] searches, which are susceptible to a high contextual
and textural correlation between cellular tissue structures [5],
[8], as evident from Figure 1(A).

B. Graph Decomposition and Traversal

In this stage, we construct a fully connected (complete)
undirected graph from the initially recognized nuclei within
the WSI patches. We also derive the traversal path and
compute the initial node and edge feature vectors. Afterward,
we encapsulated all these entities into a structure that we
dubbed the Adjacency Network. Figure 2 illustrates the pro-
posed scheme. More details are presented in the subsequent
sections.

1) Complete Graph Construction: We initially construct a
fully connected graph G(V, E), where V is the set of the
nodes representing the detected nuclei and E are the related
edges (see Figure 1-B, and Figure 2-B). A fully connected
graph is a complete graph in which every pair of distinct
nodes is connected by a unique edge. Each node v inherits
the bounding box of the associated nuclei, which we refer to
as the node neighborhood av . This neighborhood is defined in
terms of coordinates of the left upper corner of the bounding
box (xv, yu), its width wv , and height hv .

2) Path Generation: After constructing G, we derive from
it a Hamiltonian path P, starting at any arbitrary node vs
and traversing the whole graph without passing through the
given node v more than once (see Figure 2-C). We construct
P in a simple breadth-first manner (see Algorithm-1). P allows
us to define the concept of downstream and upstream nodes
with respect to the current node v. The downstream nodes
are the nodes in P, adjacent to v, that come before v in the
path. The upstream nodes are the adjacent nodes to v in P,
which come after v. For instance, in Figure 2 (C), where
vs = v1, the downstream and upstream nodes for v3 are v1 and
(v2, v4), respectively. The path P also allows us to propagate
the information about the node features across the whole graph
G in a continuous and ordered fashion. More details will be
described in Section IV-C.

3) Adjacency Network Initialization: To extract the node
and edge features and elegantly store them, we introduce
the concept of an adjacency network. An adjacency network,
A, is a structure that encompasses the traversing path P
augmented at each node v with both node’s and edge’s
descriptors. The node descriptor is the initial feature vector
(ho

v) derived from the node neighborhood av via a deep feature
extractor N . The N model and its training are described in
Section IV-E. The edge descriptor ev,u is a feature vector
describing the connectivity between the pair of nodes (v, u).
This vector ev,u is an aggregation of appearance edge features
(Da), spatial edge features (Ds), and geodesic edge features
(Dg) (i.e., ev,u = [Da, Ds, Dg]). The visualization of ho

v and
ev,u are shown in Figure 2 (E). The detailed descriptions of
Da , Ds , and Dg are presented below:

a) Appearance edge features: Da evaluates the similarity
appearance between a pair of neighborhoods, which we define
in terms of the Euclidean distance between the node feature
vectors (ho

v) and (ho
u).

Da = ||ho
v − ho

u ||. (1)

b) Spatial edge features: Ds measures the spatial close-
ness of the neighborhoods associated with the two nodes v
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Fig. 3. Graphical illustration of the proposed neural graph refinement (NGR)
scheme. (A) Generated path P, (B) fully connected community graph, (C)
showcases the outcome of the first NGR iteration (notice the pruned edges),
(D) shows the outcome of the second NGR iteration (notice the further pruned
edges). (E) shows the final NGR iteration where loose nodes are highlighted.
(F) shows the retained nuclei community.

Algorithm 1 Adjacency Network Initialization

and u via their bounding boxes’ parameters.

Ds =

[
2(xu − xv)

hu + hv

,
2(yu − yv)

wu + wv

]
. (2)

c) Geodesic edge features: Dg measures the algebraic
geodesic distance between the two nodes in the path P. Here,
we approximate this distance by the signed length of the
sequence between the two nodes defined as follows:

Dg = dPu − dPv, (3)

where dPu is the length of the sequence of nodes from the
start node vs in the path P to the node u, and dPv is the length
the sequence of nodes from vs in the path P to the node v.
Also, note that the commutative property does not hold for
the edge descriptor, i.e., ev,u ̸= eu,v . Afterward, ev,u is passed
to the initial feature extractor N 0

e to generate the initial edge
descriptor e0

v,u . The N 0
e model and its training are described in

Section IV-E. The adjacency network initialization algorithm
is depicted in Algorithm-1.

C. Neural Graph Refinement
The proposed neural graph refinement (NGR) is an iter-

ative scheme that analyzes the homogeneity between nodes

(i.e., nuclei communities) by propagating their deep feature
representations across the graph. At each iteration k, the
proposed scheme traverses the path P, performing, at each
node v, two tasks: a) updating the edge connection between
the node v and its adjacent nodes, and b) updating the node
descriptor for the next iteration.

1) Edge Connection Update: The edge descriptor defining
the connection between the node v and an adjacent node u is
updated using a learned feature extractor model, N p

e , fusing
node and edge descriptors of the previous iterations, as shown
below:

ek
v,u = N p

e (hk−1
v , hk−1

u , ek−1
v,u ). (4)

The N p
e model and its training are described in

Section IV-E. Next, the newly updated edge descriptor is
passed through the binary classifier N c

e , which outputs yv,u ∈

{0, 1}. yv,u = 1 indicates that the edge between node v and
u is preserved, and yv,u = 0 indicates that the edge between
v and u is eliminated due to large heterogeneity between the
latent representation of both nodes.

2) Node Vector Update: The node vector update is per-
formed by first partitioning the adjacent nodes into two groups
which we dub downstream nodes (Ds) and upstream nodes
(Us). The downstream nodes are nodes in the traversal path
P that come before the current node v, whereas the upstream
nodes are those which come after v. Considering the algebraic
geodesic distance (Eq. 3), the two groups can be differentiated
by a negative Dg and a positive Dg for (Ds) and (Us),
respectively. For example, in Figure 2 (C), we can observe
that for the node v3, Ds and the Us are composed of v1,
and (v2, v4), respectively. The proposed partitioning of nodes
into Ds and Us aims to incorporate the complete contextual
information into the node descriptors while embedding the
sequential geodesic aspect of the path P.

We first update the node descriptors, for a node v, separately
for each group by deriving two deep feature vectors hk

Dsv and
hk

Usv as follows:

hk
Dsv =

nDs∑
u∈Ds

NDs(h0
v, hk−1

v , ek
v,u), (5)

hk
Usv =

nUs∑
u∈Us

NUs(h0
v, hk−1

v , ek
v,u), (6)

where nDs denotes the number of downstream nodes, nUs
denotes the number of upstream nodes, NDs and NUs represent
the feature extractor models associated to the downstream and
the upstream groups, respectively. Here, it should be noted
that we use two different models, NDs and NUs , to generate
downstream and upstream node descriptors w.r.t node v,
respectively. This is because the edge descriptors ek

v,u and
ek

u,v are not necessarily identical. Section IV-E provides more
details about these models. The two deep feature vectors are
derived by integrating the previous node descriptor hk−1

v , the
current edge descriptor ek

v,u , and also the initial node descriptor
h0

v . The rationale for including this third component is to keep
a certain balance with respect to the initial cell partition.

In the next stage, hk
Dsv and hk

Usv are concatenated and are
fed to the feature extractor model N p

n to generate the node
vector update for the current iteration k. More details about
the models are in Section IV-E.

hk
v = N p

n ([hk
Dsv , hk

Usv ]). (7)
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Algorithm 2 Neural Graph Refinement

hk
v embeds a rich contextual and history exposure allowing the

best discrimination of the heterogeneous node pairs (v, u) and
eventually breaking the links between them. On the opposite,
if the nodes (v, u) are homogeneous, it builds stronger latent
space associations that can strengthen the edge features and
aid in retaining the connection between them.

The full NGR algorithm is depicted in Algorithm 2. Figure 3
depicts the outcome of each NGR iteration, through which
we can analyze how the links between heterogeneous nodes
are pruned while the links between homogeneous nodes are
retained.

3) Loose Nodes Assignment: The NGR scheme produces
subgraphs of connected nodes encompassing the different cell
categories and a set of loose nodes having no connections. To
re-classify these loose nodes, we utilize their node features,
generated through N , to derive the latent features, and then
we assign to it the class of the closest node, in the connected
cohorts, based on a simple Euclidean distance as depicted in
Algorithm 3.

D. Comparison With the Ground Truths
We evaluate the recognition performance of the proposed

scheme by comparing the centroids of the recognized nuclei
with the ground truths. The performance scores are then com-
pared with the state-of-the-art solutions as discussed further in
Section VI.

Algorithm 3 Loose Nodes Assignment

TABLE I
DETAILED DESCRIPTION OF THE TRAINABLE NETWORKS WITHIN THE

PROPOSED FRAMEWORK. THE ABBREVIATIONS ARE: ’FCL’:
FULLY CONNECTED LAYER, ’W/O’: WITHOUT

E. Trainable Feature Extraction Models

In total, we used seven trainable networks in the proposed
scheme to extract node and edge features and classify the
links between heterogeneous and homogeneous nuclei. Table I
reports the detailed architecture of these models. All of these
models are trained using categorical cross-entropy loss func-
tion, except N c

e , which is trained using binary cross-entropy
loss function. A further description of these models and their
training strategy is discussed in the subsequent sections.

1) Initial Node Encoder: The node encoder (N ) is respon-
sible for generating the feature embeddings from the detected
nuclei. Here, we utilize the bounding boxes of the detected
nuclei to crop them out from the WSI patches. Each cropped
area is then resized and passed to N to generate initial node
features. N is typically a pre-trained classification network
that contains a feature extractor and a classification head
consisting of fully connected layers. We train this network first
to recognize nuclei categories from the cropped nuclei patches
extracted from the WSI patches (in the training set) using
the provided nuclei annotations. After training, we remove
the classification head from N and use it as a node feature
extractor.

2) Initial Edge Encoder: The initial edge encoder (N 0
e ) is

responsible for generating the initial edge descriptor using
the appearance and geometric features that are expressed in
Eq. 1, 2, and 3. Architecturally, N 0

e is a four-layered multilayer
perception (MLP), in which we also append a fully connected
layer during training to tune its weights for classifying the
nuclei categories within the training WSI patches. The input
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which it takes to predict these nuclei categories is the edge
descriptor ev,u that has the size of 1 × 4. Moreover, to train
N 0

e , we compute ev,u for each nuclei category across the
training samples of each dataset and store them on disk to
formulate a training set for N 0

e . After tuning the weights of
N 0

e towards recognizing the nuclei categories, we remove the
fully connected layer from it and use it as a feature extractor.

3) Edge Update Encoder: The edge update encoder (N p
e )

updates the edge features across the graph network within
the NGR scheme. In each iteration k, the input to N p

e is a
concatenated representation of node and edge features from
the previous k − 1 iteration, as expressed in Eq. 4, which
produces updated edge features of size 1 × 4112. This model
is a four-layered MLP appended with a fully connected layer
at the end for nuclei classification. We train this model with
the initial feature vectors h0

v , h0
u , and e0

v,u derived from training
data. After training, we remove the classification head to use
the model as a feature extractor.

4) Node Downstream and Upstream Encoders: The down-
stream node encoder NDs is another four-layered MLP that
generates the feature embeddings from the downstream nodes
using the current kth iteration edge update embeddings from
node v to u, i.e., ek

v,u , initial node embeddings (generated
through N ), i.e., h0

v , and node update embeddings produced in
the previous k−1 iteration, i.e., hk−1

v . The output embeddings,
generated through NDs , are then utilized in computing the
node update descriptor, as expressed in Eq. 7. The NDs model
is devised by appending a fully connected layer to perform
nuclei classification tasks, and it is trained using the feature
vectors ek

v,u and h0
v , where u belong to the downstream nodes

of v. After training, we remove the fully connected layer and
use the trained weights of NDs to produce a downstream
feature descriptor of size 1 × 2048 from the input samples
of size 1×4112. We use an identical scheme for the upstream
encoder NUs , except that nodes u are selected from the
upstream group of v.

5) Edge Classifier: The edge classifier N c
e is responsible

for classifying each edge within the community graph G as
active or non-active during each NGR iteration. The non-
active edges are then pruned from the G, and the active
edges are retained across each iteration. N c

e is a seven-
layered architecture, having the input size of 1 × 4096 and
the output size of 1 × 2. The input sample for N c

e consists
of an updated edge descriptor, generated in each kth itera-
tion, i.e., ek

v,u . Similarly, to train the N c
e , the edge update

embeddings are derived from the training WSI patches of each
dataset for offline training. The training set is composed of ev,u
samples and their corresponding state (active or non-active)
as derived from the nuclei communities in the annotated
datasets.

6) Node Update Encoder: The node update encoder (N p
n )

is utilized in the NGR scheme to update the feature repre-
sentations across each node in the kth iteration. The input to
N p

n is a combined feature representation of NDs and NUs (as
expressed in Eq. 7) from which N p

n outputs the updated node
feature descriptor hk

v that is utilized in the k + 1 iteration to
produce updated edge descriptor. N p

n is a four-layered MLP
to which we append the fully connected layer in order to
tune its weights for the nuclei identification task. Moreover,
we generate the training samples for N p

n by combining the
output of NUs and NDs on the training scans for each dataset.
Afterward, we remove the fully connected layer from N p

n ,

TABLE II
COMPUTING THE TP, FN, FP, AND TN FOR A NUCLEI CATEGORY X

(I.E., TPX , FNX , FPX , AND TNX ), FROM THE
LIST OF PAIRED GROUND-TRUTHS

and use it as a feature extractor for generating updated node
descriptors across each iteration k.

V. EXPERIMENTAL SETUP

This section presents an overview of the datasets, the train-
ing and implementation protocols, as well as the evaluation
metrics.

A. Datasets
We validated the proposed NGR scheme on four CRC

histology datasets, dubbed CRCHistoPhenotypes [4], CoNSeP
[5], PanNuke [24], and Lizard [7]. Due to space constraints,
we refer the readers to each dataset paper for their detailed
explanation.

B. Training and Implementation Protocol
The proposed scheme is implemented in Anaconda with

Python 3.7.8, TensorFlow 2.3.0, and MATLAB R2020b on
a machine with Intel Core i9-10940@3.3 GHz processor,
128 GB RAM, NVIDIA RTX 3090, cuDNN v7.5, and a
CUDA Toolkit v11.0.221. The seven models (as described
in Table I) are trained for 100 epochs across each dataset
using categorical cross-entropy loss function, where 10% of
the training scans were used for validation purposes. The
optimizer used during the training was ADAM [25], which
had an initial learning rate of 0.001. The source code of the
proposed scheme will be released upon paper acceptance.

C. Evaluation Metrics
To evaluate the proposed scheme, we used the same eval-

uation metrics which are adopted by the other competitive
approaches, i.e., the F-scores. To compute the F-score for
each nuclei category, we first performed the pairings between
the ground-truth nuclei and the detected nuclei using Kuhn–
Munkres algorithm [26]. The pairing associates, to each
ground-truth nuclei, the closest detected nuclei lying within
a predefined radius. Moreover, it also returns the unpaired
ground truths (ground-truth nuclei having no detected nuclei in
the aforementioned predefined neighborhood) and the unpaired
detected nuclei (unassigned detected nuclei). From these three
lists, we examine the elements for each cell category and com-
pute the true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), as per the criteria defined
in Table II. The unpaired ground truth and the unclassified
detected nuclei are, respectively, considered as false negatives
(in the sense that they should not have been missed) and
false positives (in the sense that they should not have been
detected). Afterward, we compute the F-score to evaluate the
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TABLE III
DETERMINING THE OPTIMAL NODE ENCODER. FOR EACH NUCLEI TYPE

ACROSS EACH DATASET, THE BEST PERFORMANCE IS IN BOLDFACE
ACROSS EACH ROW, WHILE THE SECOND-BEST PERFORM-

ANCE IS IN BLUE COLOR. THE ABBREVIATIONS
ARE MET: METRIC, NP: NUMBER OF PARAMETERS, RST: REST

EFFICIENT TRANSFORMER [27], R-50: RESNET-50 [28],
MNV2: MOBILENETV2 [29], COT: CONTEXTUAL

TRANSFORMER [30], MAT: MULTISCALE ADAPTIVE
TRANSFORMER [31], TCC: FUSED TRANSFORMER AND

CROSS CORRELATION MODEL [32], AND KTR:
KINSHIP TRANSFORMER [33]

classification of each nucleus as per the standards laid down
by the state-of-the-art [5]:

Fc

=
2(T PX+T N X)

2(T PX+T N X)+α0 F PX+α1 F N X+α2 F Pd+α3 F N d
,

(8)

where FPd denotes the detection of false positives (unpaired
detected nuclei), FNd represents the detection of false neg-
atives (unpaired ground truth nuclei), α0,1,2,3 = [2, 2, 1, 1]

represents the metric hyperparameters selected as per the
standards [5], TPX, FNX, FPX, and TNX denotes the TP, FN,
FP, and TN for nuclei category X, respectively. Moreover,
we also computed Favg that represents the average of the
F-score computed for all the nuclei types. Apart from this,
we also used the success rate in order to analyze the extent
of homogeneity that the proposed scheme honors towards
retaining the correctly identified nodes before the loose nodes
assignment (see Section VI-D for more details).

VI. RESULTS AND DISCUSSION

This section presents a detailed evaluation of the pro-
posed scheme and its comparison with state-of-the-art works.

In addition, this section discusses an exhaustive set of ablation
experiments through which we determined the hyperparame-
ters of the proposed scheme. Lastly, this section presents a
detailed discussion on the performance interpretation of the
proposed approach.

A. Ablation Studies

We performed a series of ablation experiments to determine
1) The optimal node encoder, 2) The optimal stopping criterion
for the NGR scheme, 3) The effect of reversing the traversal
path direction, 4) The fusion of the results generated from
the neural graph refinements at two levels (i.e., before and
after loose nodes assignment), 5) The best detection model,
6) The effect of the initial node on the traversing path, 7)
The compatibility of the proposed NGR featurization block
with different graph partitioning schemes, and 8) Ability to
integrate NGR featurization block with the popular clustering
schemes.

1) The Optimal Node Encoder: The first ablation experi-
ment is related to determining the model N , which gives the
optimal performance towards extracting the node features for
the accurate recognition of nuclei community within the WSI
patches. For this purpose, we trained the feature extractor
of different convolutional and transformer models, such as
ResT [27], ResNet-50 [28], MobileNetv2 [29], Contextual
Transformer (COT) [30], Multiscale Adaptive Transformer
(MAT) [31], Fused Transformer and Cross Correlation Model
(TCC) [32], and Kinship Transformer (KTR) [33]. Afterward,
we integrated them within the proposed NGR scheme to gen-
erate the accurate latent representation of nuclei community.
From Table III, we can observe that both COT [30] and
ResNet-50 [28] can be selected as a node encoder within
the proposed scheme to generate distinct feature representa-
tions. However, since ResNet-50 [28] offers a better trade-off
between performance and computational complexity than COT
[30], we chose ResNet-50 [28] as an optimal node encoder N
in the rest of the experimentation.

2) The Optimal Stopping Criteria: In the proposed NGR
scheme, we consider that the algorithm converges when the
changes in the graph adjacency matrix remain below a certain
threshold (σ ) over a window of iterations of length K . We
evaluate the change in the adjacency matrix (Am) as follows:

σ =

∑it
j=2 Am

j ⊕ Am
j−1

ne
, (9)

where ne is the normalization term representing the number
of edges within the initial graph G. Table IV reports the
overall performance and the convergence time obtained over
different combinations threshold σ and window length K for
each dataset. From Table IV, we can observe that increasing
K increases the classification performance of the proposed
scheme. However, it also drastically increases the computa-
tional time of the proposed approach. Similarly, by increasing
the convergence threshold σ , we can get a significant boost
in computational efficiency but at the expense of extreme
deterioration in the classification performance. Therefore,
through rigorous evaluation across each dataset, we selected
K = 5 for σ = 1% to achieve convergence, as these values
give optimal trade-off between classification performance and
computational efficiency.
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TABLE IV
OVERALL PERFORMANCE AND CONVERGENCE ITERATIONS FOR DIFFER-

ENT COMBINATIONS OF THE σ AND K ACROSS EACH DATASET.
PERFORMANCE IS REPRESENTED AS AN AVERAGE F-SCORE FOR

ALL NUCLEI TYPES. THE OPTIMAL COMBINATION IS SHOWN
IN BOLDFACE FOR EACH DATASET. MOREOVER, THE

ABBREVIATIONS ARE: RE: RECOGNITION PERFORMANCE,
CG: CONVERGENCE (IN TERMS OF ITERATIONS),

CRCHISTO: CRCHISTOPHENOTYPES [4]

3) Reversing the Traversal Path: We saw in section IV-B.3
that the edge descriptors, when traversing the path, are not
commutative. We wanted to investigate here to what extent this
property affects the segmentation when the traversal directions
are reversed. For this purpose, we compared the performances
obtained with the paths extracted in the previous section with
its counterpart in the reversed direction. Moreover, we evalu-
ated the disparity between both variants as follows:

ds =
1

n paths

n paths∑
i=1

|FP − FPr |

FP
, (10)

where ds denotes the disparity measure, n paths denotes the
number of paths, FP denotes the average of F-score across
the nuclei type while traversing the actual path P, and FPr
denotes the average of F-score for each nuclei type when the
path P is reversed. From Table V, we can observe that across
all the datasets, reversing the path P does not affect much the
overall performance of the proposed scheme as reflected in the
low values of ds for each dataset. Therefore, we can conclude

TABLE V
DETERMINING THE PERFORMANCE OF THE PROPOSED SCHEME WHEN

THE TRAVERSAL PATHS ARE REVERSED. FOR EACH DATASET, THE
‘ACTUAL’ COLUMN REPRESENTS THE MEAN VALUES OF THE
NUCLEI TYPES OBTAINED USING THE ACTUAL TRAVERSAL

PATH, WHILE THE ‘REVERSED’ COLUMN SHOWS THE
MEAN VALUES OF THE NUCLEI OBTAINED WHEN THE

TRAVERSAL PATH WAS REVERSED. THE LAST COLUMN
SHOWS THE DISPARITY SCORE (ds ). MOREOVER,

THE ABBREVIATION OF ‘CRCHISTO’
STANDS FOR ‘CRCHISTOPHENOTYPES [4]’.

THE AVERAGE SCORE FOR EACH
DATASET IS IN BOLDFACE

that alternating the path does not affect the proposed scheme’s
nuclei recognition performance.

4) Fusion of Graph Refinements: Given the fact that graph
segmentation can be performed from any traversal path,
we wanted to explore potential enhancement by fusing the
outcomes of the classifications issued from different traversal
paths. This procedure can be viewed as an ensemble clas-
sification approach. We performed this ablation as follows:
We selected M number of paths (where M is taken as an
odd number) starting at different locations using the same
procedure in Section IV-B.2, then we fused the classification
outcomes by maximum voting at two levels: a) before loose
nodes re-assignment, and b) after loose nodes re-assignment.
Figure 4 reports the obtained results across the CRCHistoPhe-
notypes [4], and CoNSeP [5] datasets. We can observe here
that the fusion between the number of paths (n paths) led to the
increase in nuclei recognition across both datasets, and without
reassigning loose nodes, we also achieve a decent performance
by fusing the outputs from 15 traversal paths (i.e., when
n paths = 15). However, such an operation also requires a
drastic amount of time that can be avoided by reassigning the
loose nodes based on latent space associations (see Section IV-
C.3). Similarly, from Table IX and Figure 4-1st Column,
we can observe that with reassigning the loose nodes, the
performance of n paths = 15 during graph fusion is close to its
conventional traversal with n paths = 1. As n paths = 1 scheme
takes a significantly lesser amount of convergence time than
n paths = 15, in the rest of the experimentation, we proceeded
with recognizing the nuclei community with n paths = 1.
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Fig. 4. Performance evaluation of the proposed scheme in terms of F-score
when the outcomes from different traversal paths are fused. The first column
represents the performance without loose node reassignment, and the second
column shows the performance with loose node reassignment. Moreover, the
first row shows the results on the CRCHistoPhenotypes [4], and the second
row shows the results on the CoNSeP [5] dataset. Also, in each plot, the color
for the bars depicts the different number of fused paths (e.g., 3, 5, 7, 9, 11,
13, and 15).

Fig. 5. Performance evaluation of the proposed framework to accurately
recognize densely distributed nuclei communities within the WSI patch as
compared to state-of-the-art methods. The first column shows the example
patch. Columns 2, 3, and 4 show the results of Hover-Net [5], NCD [10], and
the proposed framework, respectively. The fifth column shows the ground
truth labels.

5) The Best Detection Model: This ablative experiment is
related to determining the optimal pre-trained model that gives
the best initial nuclei detection and classification performance
across each dataset. For this purpose, we selected the models
such as Hover-Net [5], Mask R-CNN [23], and Faster R-CNN
[22], as they have also been used in the literature for the
nucleus detection tasks [5], [34]. It should also be noted that
the results for this experiment are computed using the centroid
location of each nucleus region, as well as their predicted
labels. From Table VI, we can observe that the Hover-Net
[5] gives the optimal detection performance as compared
to detection models in terms of F-scores. The performance
improvements achieved by the Hover-Net [5] are because of
its novel multi-scale contextual and residual learning blocks
[5] that enable the accurate localization of the nuclei regions
even in similarly textured WSI patches. Therefore, in the rest
of the experimentation, we used Hover-Net [5] as a detection
backbone within the proposed scheme.

6) Effect of the Initial Node Selection: In this study,
we wanted to investigate the effect of the initial node loca-
tion of the traversal path on the overall nuclei recognition
performance. For this purpose, we computed the mean and
the standard deviations of the performance metrics obtained
over a large number of paths starting at different locations

TABLE VI
DETERMINING THE DETECTION MODEL THAT GIVES BEST LOCALIZATION

OF THE NUCLEI REGIONS IN TERMS OF F-SCORES. BOLD INDICATES
THE BEST SCORES, WHILE THE SECOND-BEST SCORES ARE

IN BLUE COLOR. MOREOVER, THE ABBREVIATIONS
ARE: HNET: HOVER-NET [5], M-RN: MASK
R-CNN [23], F-RN: FASTER R-CNN [22]

of the community graph. To ensure the set of initial nodes
spans the whole graph while avoiding redundancy, we sub-
sampled the nodes, at the rate of five samples, along a firstly
extracted path P, and measured the classification performance
in terms of F-score for each sub-path generated from each
of the sampled nodes. Afterward, we took the mean and
standard deviation of the scores obtained across all the sub-
paths, where the total number of sub-paths is equal to the
number of sampled nodes. The number of sampled nodes is
determined by dividing the total nodes in P by the sampling
factor (which is 5). Moreover, the performance evaluation in
terms of mean and standard deviation across each dataset is
shown in Table VII. We can observe here that, across all
four datasets, the recognition performance of the proposed
scheme in terms of F-score remains consistent, and there
is a very much degree of variability which was observed
towards recognizing different nuclei communities across all
the datasets. For example, on CRCHistoPhenotypes [4], the
proposed scheme achieved 1.2% variability for the average
F-score in terms of the ratio of standard deviation over a
mean (RoSM). Similarly, across CoNSeP [5], PanNuke [24],
and Lizard [7] datasets, the proposed framework achieved the
0.7%, 0.9%, and 1.0% variability, respectively, in terms of
the RoSM metric for the average F-score. These low values
of RoSM indicate the stability of the proposed approach
and highlight the fact that the proposed scheme is virtually
independent of the choice of the initial node for the graph
traversing.

7) NGR Featurization With Graph Partitioning Methods:
In this series of experimentation, we tested one of the main
features of the proposed NGR scheme, i.e., its capacity to
integrate with the popular graph partitioning methods. The
working principle of the NGR scheme can be broken down
into two phases, where in the first phase, the node and edge
features, generated through the trained MLPs, are propagated
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TABLE VII
DETERMINING THE EFFECT ON THE CHOICE OF THE INITIAL NODE IN

TERMS OF F-SCORES. THE AVERAGE RECOGNITION SCORE
ACROSS EACH DATASET IS IN BOLDFACE. MOREOVER,

‘STD’ STANDS FOR ‘STANDARD DEVIATION’

within the whole graph G. The combination of these features
is then used in the second phase by the edge classifier to
predict whether the respective edge, connecting two adjacent
nodes, should be pruned, or retained. The first phase typically
conducts the featurization process, whereas the second phase
is responsible for retaining the purest (homogeneous) clusters
of nuclei communities. Moreover, the loose nodes are then
reclassified to their accurate cluster by analyzing their latent
space homogeneity with each of the nuclei groups using
Euclidean distance.

Instead of using the edge classifier, we can also integrate
NGR featurization block with the traditional graph partitioning
schemes, such as normalized-cuts (N-Cuts) [35]. For this
purpose, we first define the association between the adjacent
nodes v and u in graph G as:

A(v,u)
s =

√√√√√n f −1∑
i=0

(
hk

v(i) − hk
u(i)

)2
, (11)

where n f denotes the number of features, generated by NGR
featurization block, for node v and u. Afterward, we define a
cut Nc with the cost nv,u

cost , as expressed below:

n(v,u)
cost = ∥h(v,u)

cost + e(v,u)
cost ∥, (12)

h(v,u)
cost represents the cost produced by the nodes v, and u, and

e(v,u)
cost is the cost of the respective edge that joins nodes v, and

u. ∥.∥ denotes the linear normalization operator. h(v,u)
cost and

e(v,u)
cost are computed as:

h(v,u)
cost =

A(v,u)
s∑

m,n∈V |m ̸=n A(m,n)
s

, (13)

e(v,u)
cost =

∑e f −1
i=0 ek

(v,u)(i)∑
m,n∈V |m ̸=n

∑e f −1
j=0 ek

m,n( j)
, (14)

where e f denotes the number of edge features between adja-
cent nodes v and u. If n(v,u)

cost < t , for each node pair v
and u, then the link between them is retained. Otherwise, Nc
cuts the link between v and u, that eventually partitions G
into multiple sub-graphs. Also, t is a cut threshold that is
empirically determined to be 0.5. Moreover, the loose nodes,
produced by Nc, are assigned to their nearest nuclei group
by analyzing their latent space homogeneity via Euclidean
distance, as discussed in Section IV-C.3.

The results for this experiment are reported in Table VIII in
which we can observe that coupling NGR with N-Cuts pro-
duces decent nuclei classification performance across all four
datasets. For example, on CRCHistoPhenotypes [4] dataset,
it produces an average F-score (Fa) of 0.427. Similarly, across
CoNSeP [5], PanNuke [24], and Lizard [7] datasets, it pro-
duces an Fa score of 0.588, 0.477, and 0.435, respectively.
Although, the performance of ‘NGR + N-Cuts’ approach is
a bit lower than the original NGR scheme, which uses an
edge classifier (EC), i.e., ‘NGR + EC’. Nevertheless, the
performance of ‘NGR + N-Cuts’ is still appreciable, which
can be further improved by designing a better metric to
represent node and edge associations. Additionally, noticing
the fact that NGR featurization can be coupled with graph
partitioning algorithm (such as N-Cuts [35]), we can explore
the applicability of the proposed NGR scheme in a wide
variety of applications that uses graph partitioning methods.

8) NGR Featurization With Clustering Methods: In these
series of experiments, we explored the applicability of the
NGR featurization block to be coupled with traditional clus-
tering methods, such as K-means clustering. To integrate NGR
featurization block with K-means clustering, we compute the
node and edge features, and propagate them within G until
convergence is achieved (as discussed in Algorithm 2). After-
ward, for each node v connected to another node u, we gener-
ate their combined features fv,u , such as fv,u=[hk

v, ek
v,u, hk

u],
where hk

v represents the node v features, ek
v,u denotes the

features of edge adjacent to node v and u, and hk
u represents

node u features. The combined features are collected for each
node pairs within G, and are passed to the K-means clustering
scheme. Here, we specify the number of clusters to be equal to
the number of nucleus classes as defined in each dataset. Once
K-means clustering distributes all the nodes to the specified
number of clusters, we then assign the nuclei category to
each cluster. The assignment of nuclei label to each cluster
is performed in the following steps: 1) First we pick a single
node n from each nuclei class for the given dataset. 2) We
compute the initial node features h0

n of node n using the model
N . 3) We find the Euclidean distance of node n with all the
nodes in each cluster using the initial node features. Here, the
initial node features (h0

m) of node m in each cluster is also
computed using N model. 4) If the node n has the minimum
distance with node m, then the label of node n is assigned to
the whole cluster that contains node m.

The results for coupling NGR featurization with K-means
clustering is reported in Table VIII, where we can observe
that when we feed the features computed through NGR to
K-means clustering, we get a competitive nuclei classifica-
tion performance across each dataset. For example, across
CRCHistoPhenotypes [4] dataset, the ‘NGR + K-means’
produces an average F-score of 0.454 towards recognizing
different nuclei types. Similarly, across CoNSeP [5], PanNuke
[24], and Lizard [7] datasets, the ‘NGR + K-means’ achieved
an average F-score of 0.615, 0.501, and 0.449, respectively.
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TABLE VIII
DETERMINING THE COMPATIBILITY OF THE FEATURIZATION BLOCK

WITHIN PROPOSED NGR SCHEME WITH THE POPULAR GRAPH
PARTITIONING AND CLUSTERING METHODS. THE PERFORMANCE

EVALUATION IS PERFORMED IN TERMS OF F-SCORE ACROSS
EACH DATASET. BOLD INDICATES THE BEST SCORES,

WHILE THE SECOND-BEST SCORES ARE UNDERLINED.
MOREOVER, THE ABBREVIATIONS ARE: ’NGR + EC’:

THE ORIGINALLY PROPOSED NGR SCHEME WHICH
USES AN EDGE CLASSIFIER, ’NGR + N-CUTS’:

THE PROPOSED NGR FEATURIZATION BLOCK
THAT IS COUPLED WITH THE TRADITIONAL
NORMALIZED CUT PARTITIONING SCHEME,
’NGR + K-MEANS’: THE PROPOSED NGR

FEATURIZATION BLOCK THAT IS
INTEGRATED WITH THE TRADITIONAL
K-MEANS CLUSTERING SCHEME FOR

NUCLEI CLASSIFICATION

Although, the performance of ‘NGR + K-means’ approach is
lagging behind the original ‘NGR + EC’ scheme by 4.01%,
3.45%, 2.71%, and 3.85% in terms of average F-score across
CRCHistoPhenotypes [4], CoNSeP [5], PanNuke [24], and
Lizard [7] datasets, respectively. But it is still appreciable
because ‘NGR + K-means’ also outperforms state-of-the-art
methods, such as Hover-Net [5] and NCD [10], along with
proposed ‘NGR + EC’ approach, as evident from Tables VIII
and IX. Furthermore, observing the fact that NGR scheme can
be coupled with the traditional clustering methods opens up
a new horizon for NGR to be applied to the wide variety of
clustering applications.

However, keeping in mind the scope of this research,
we proceed with using the ‘NGR + EC’ scheme in the
rest of experimentation as it gives better performance than
‘NGR + N-Cuts’ and ‘NGR + K-means’ variants toward
performing the nuclei classification tasks.

B. Quantitative Comparison
In this section, we report a thorough quantitative com-

parison of the proposed scheme with state-of-the-art works
across the four datasets. From Table IX, we can observe

that the Hover-Net [5] model gives a relatively better nuclei
recognition as compared to other models, and when we
couple Hover-Net [5] with the proposed NGR scheme and
use it as an initial detection and classification backbone,
we achieved significant performance improvements as com-
pared to the state-of-the-art in terms of F-score. For example,
on CRCHistoPhenotypes [4], we achieved 10.31%, 14.23%,
and 19.81% improvements over the state-of-the-art in terms
of F-score for recognizing epithelial, fibroblast, and mis-
cellaneous (others) nuclei, respectively. Similarly, on the
CoNSeP dataset [5], we achieved 9.47%, 3.64%, 3.39%,
and 16.48% improvements over the second-best method in
terms of F-score for recognizing epithelial, inflammatory,
fibroblast, and miscellaneous (others) nuclei, respectively. On
the PanNuke dataset [24], the proposed scheme achieved
10.59%, 8.14%, 4.81%, and 1.59% over state-of-the-art for
extracting epithelial, inflammatory, neoplastic, and connective
nuclei, respectively in terms of F-score. Also, on Lizard
dataset [7], the proposed scheme achieved 6.47%, 2.99%,
1.77%, 8.38%, 20.68%, and 24.14% over state-of-the-art
for extracting epithelial, neutrophil, connective, lymphocyte,
plasma, and eosinophil nuclei, respectively in terms of F-score.
Similarly, in another series of experiments, we compared
the classification performance of the proposed NGR scheme
with state-of-the-art graph-based nucleus classification models,
such as HAT-Net [36], and Structure Embedded Nucleus Clas-
sification (SENC) model [37]. The performance comparison is
reported in Table X from which we can observe that across
all four datasets, the proposed NGR scheme produces the
best classification performance as compared to its competi-
tors. For example, on CRCHistoPhenotypes [4], the proposed
method achieved 10.99% improvements in terms of an average
F-score (Fa). Similarly, across CoNSeP [5], PanNuke [24],
and Lizard [7] datasets, the proposed NGR scheme achieved
6.59%, 5.82%, and 2.99% performance improvements over
state-of-the-art methods in terms of Fa. These performance
improvements stem from the fact that the proposed scheme
exploits the latent homogeneity between the shared nuclei
features and refines them iteratively across the community
graph nodes and edges. Such neural broadcasting allows the
edge classifier to recognize the heterogeneity and homogeneity
between the adjacent nodes to retain or prune the connections,
respectively.

C. Qualitative Comparison

Figures 5, and 6 report the qualitative assessment of the
proposed scheme towards recognizing the nuclei types as
compared to state-of-the-art works. In Figure 5, we showcased
an exemplar WSI patch from the Lizard dataset [7] that
contains a large population of nuclei regions. Here, in the
actual patch (shown in the second row), we cannot visually
see the difference in the recognition. However, within the
zoomed portion (as shown in the first row), we can see
that the proposed scheme has significantly improved nuclei
recognition rate as compared to the state-of-the-art Hover-
Net [5], and NCD [10] approaches, considering the ground
truth annotations. Similarly, in Figure 6, we report some
qualitative examples from all four datasets that showcase the
recognition capacity of the proposed framework in light of
the ground truth annotations. Figure 6 also demonstrate the
fact that the proposed scheme has remarkably outperformed
the state-of-the-art Hover-Net [5] and NCD [10] towards
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TABLE IX
EVALUATION OF THE PROPOSED SCHEME WITH STATE-OF-THE-ART IN

TERMS OF F-SCORE. FOR EACH NUCLEI TYPE, THE BEST AND
SECOND-BEST SCORES ARE IN BOLDFACE AND BLUE COLOR
WITHIN EACH ROW, RESPECTIVELY. ’-’ INDICATES THAT THE

GIVEN METHOD HAS NOT BEEN VALIDATED ON THE
RESPECTIVE DATASET. THE ABBREVIATIONS ARE:

EMS: ENTROPY MAXIMIZED SCALE [3], SLD:
SPARSE LEARNED DICTIONARIES [1],

NCD: NUCLEUS COMMUNITY DETECTION [10],
MCC: MULTIPLEX CELLULAR COMMUNI-

TIES [2], HNET: HOVER-NET [5],
M-RN: MASK R-CNN [23], AND
PS: PROPOSED SCHEME (BACK-
BONED WITH HOVER-NET [5])

accurately recognizing the nuclei communities across all four
datasets. This margin of improvements over state-of-the-art
stems from the ability of the proposed scheme to distinguish
the contextual, semantic, and spatial features of the nuclei
regions contained within the histology patches, which results
in the separation of the heterogeneous and homogeneous nodes
during NGR iterations. Afterward, assigning the loose nuclei
to their accurate distribution by finding the minimum distance
in the latent domain allows the proposed scheme to drastically
improve the nuclei communities recognition rates, especially
in the dense nuclei community regions, as evident from the
examples shown in Figures 5, and 6.

D. Performance Interpretation
The increased performance of the proposed NGR scheme

stems from its strong capacity for deriving homogeneous
nuclei communities. The NGR scheme, through its tena-
cious edge pruning, massively reduces the number of nodes
(i.e., nuclei) in each community, keeping the most “pure”
group that exhibits less number of outliers (misclassified
nodes). This phenomenon can be evidenced in Table XI
where columns 2 to 4 show the initial detection performance,
in terms of success rate, before applying the NGR refinements,
and columns 5 to 7 report the performance of the proposed
scheme on the retained (or filtered) nodes after applying
the NGR refinements, and the last column, 8, shows the

TABLE X
PERFORMANCE EVALUATION OF THE PROPOSED NGR SCHEME WITH

STATE-OF-THE-ART GRAPH-BASED NUCLEI CLASSIFICATION
METHODS. BOLD INDICATES THE BEST SCORES, WHILE
THE SECOND-BEST PERFORMANCE IS IN BLUE COLOR.

MOREOVER, THE ABBREVIATIONS ARE: HAT-NET: HIERAR-
HICAL TRANSFORMER GRAPH NEURAL NETWORK [36],

SENC: STRUCTURE EMBEDDED NUCLEUS
CLASSIFICATION MODEL [37]

number of loose nodes after NGR. We can also observe
from Table XI that the proposed NGR refinements only retain
the purest (the most homogeneous nodes), and deletes about
65.06%, 65.34%, 61.39%, and 79.70% nodes on average
across CRCHistoPhenotypes [4], CoNSeP [5], PanNuke [24],
and Lizard [7] dataset, respectively. The deleted (or loose
nodes) are mostly the ones that were misclassified during the
initial detection phase, and by excluding them from the filtered
nodes, we can notice the significant performance boost of
14.01%, 16.67%, 16.57%, and 18.34% on average, in terms
of success rate, achieved by the proposed NGR refinements
across CRCHistoPhenotypes [4], CoNSeP [5], PanNuke [24],
and Lizard [7] dataset, respectively (see the performance
difference in SRR and SRI columns within Table XI for each
dataset). Moreover, in the subsequent stage, the high degree of
homogeneity obtained with the NGR scheme acts positively
on the loose node assignment by boosting/minimizing the
likelihood of correct/false assignments.

In a nutshell, the proposed approach can be dubbed as a
filter and aggregate method by analogy to the standard split
and merge segmentation scheme. Indeed, in the first phase,
the NGR scheme, through its iterations, keeps filtering out the
outliers nodes till no further operation is possible (according
to the stopping criterion). In the second phase, the loose nodes
assignment performs a regrouping, using a simple vicinity
metric, yet anchored by the homogeneous communities.

E. Computational Time and Complexity
Although the proposed scheme is quite robust in accurately

recognizing the nuclei communities. But, due to the apparent
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TABLE XI
EVALUATION OF THE HOMOGENEITY OF THE NUCLEI COMMUNITIES

AT THE INITIAL SEGMENTATION (OBTAINED HERE BY APPLYING
HOVER-NET, SEE COLUMNS 2 TO 4) AND AFTER APPLYING THE

PROPOSED NGR SCHEME (BEFORE THE LOOSE NODES ASSIGNMENT,
COLUMNS 5 TO 7) ACROSS THE FOUR DATASETS. THE ABBREVI-

ATIONS ARE: NT: NUCLEI TYPES, TN: TOTAL NODES, CRNB:
CORRECTLY RECOGNIZED NODES BEFORE NGR ITERATIONS,

SRI: SUCCESS RATE FOR INITIAL RECOGNITION,
RN: RETAINED NODES (AFTER NGR ITERATIONS),
CRNA: CORRECTLY IDENTIFIED RETAINED NODES

(OBTAINED AFTER NGR ITERATIONS), SRR: SUCCESS
RATE FOR CORRECTLY RECOGNIZING THE RETAINED

NODES (OBTAINED AFTER NGR ITERATIONS),
LN: LOOSE NODES (OBTAINED AFTER
NGR ITERATIONS), EP: EPITHELIAL,
FI: FIBROBLAST, IN: INFLAMMATORY,

OT: OTHERS, NE: NEOPLASTIC,
CO: CONNECTIVE, DE: DEAD, NU: NEUTR-

OPHIL, LY: LYMPHOCYTE, PL: PLASMA,
EO: EOSINOPHIL, AND µ: AVERAGE

computational complexity of the NGR pipeline, achieving
full convergence across each dataset takes a bit of time on
a machine described in Section V-B. For example, from
Table XII, we can observe that the proposed NGR scheme
takes around 20.34 seconds, 22.83 seconds, 28.06 seconds,
and 35.27 seconds on average to process one scan from the
CRCHistoPhenotypes [4], CoNSeP [5], PanNuke [24], and
Lizard [7] datasets, respectively. By analyzing the run-time
performance of the proposed NGR scheme, we can notice that
it lags behind Hover-Net [5] across each dataset. However,
this lag is expected because the proposed NGR scheme uses
Hover-Net [5] as a backbone, so it’s time complexity will
be accumulated within the time performance of the proposed
NGR scheme. Similarly, the computational complexity of the

TABLE XII
EVALUATION OF THE PROPOSED SCHEME WITH STATE-OF-THE-ART

METHODS IN TERMS OF COMPUTATIONAL TIME, COMPLEXITY,
AND DETECTION PERFORMANCE. BOLD DENOTES THE

BEST PERFORMANCE, WHILE THE SECOND-BEST IS
IN BLUE COLOR. THE ABBREVIATIONS ARE: FA :

AVERAGE F-SCORE, R-TIME: RUNNING TIME,
F-RN: FASTER R-CNN [22], PROPOSED:

PROPOSED SCHEME (BACKBONED
WITH HOVER-NET [5]), NCD:
NUCLEUS COMMUNITY DETEC-

TION [10], HNET: HOVER-NET [5],
M-RN: MASK R-CNN [23],

MCC: MULTIPLEX CELLULAR
COMMUNITIES [2]

proposed scheme is expected to be greater than Hover-Net [5]
in terms of GFLOPs (see Table XII). However, considering
the trade-off between classification performance and compu-
tational complexity, the proposed NGR scheme significantly
outperforms Hover-Net [5], as it provides 18.81%, 11.45%,
7.37%, and 15.63% better performance in terms of Fa across
CRCHistoPhenotypes [4], CoNSeP [5], PanNuke [24], and
Lizard [7] datasets, respectively. In addition to this, it also
outperforms other state-of-the-art methods, such as MCC [2],
and NCD [10] in terms of classification performance, com-
putational complexity, and running time which is appreciable
(see Table XII). Nevertheless, computational time is one of
the limitations of the proposed scheme, and the remedies to
improve it are discussed in Section VI-F.

F. Limitations
The two limitations of the proposed scheme are related to its

computational time and its dependency on the existing detec-
tion models to procure the centroid of the nuclei regions. The
first limitation, i.e., the computational time, can be addressed
by further fine-tuning the system’s hyper-parameters (e.g., the
number of NGR iterations, the convergence window size,
the convergence threshold) without compromising the perfor-
mance, so to set the optimal trade-off between computational
efficiency and the detection performance as per the clinical
needs. Apart from this, dedicated hardware accelerators for
graph processing can also be envisaged further to improve the
execution time of the proposed scheme [38].

The second limitation of the proposed scheme is its
dependency on computing the nuclei centroid within the
WSI patches using the detection backbone. Here, if the
detection backbone misses the localization of the nuclei
region, then their labels can also not be refined by the
proposed scheme. Therefore, we prefer integrating the pro-
posed scheme with only the best-performing detection models
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Fig. 6. Qualitative evaluation of the proposed scheme across CRCHistoPhenotypes [4], CoNSeP [5], PanNuke [24], and Lizard [7] datasets. The first row
shows the original scans, the second row shows the results of Hover-Net [5], the third row shows the results of NCD [10], the fourth row shows the results
of the proposed scheme, and the fifth row shows the ground truth annotations. Please zoom in for better visualization of the recognized nuclei communities.

(such as Hover-Net [5]) so that the misclassification due
to false or missed detection of the nuclei regions can be
minimized.

VII. CONCLUSION

This paper proposes a novel neural graph refinement scheme
that exploits the homogeneity between the cellular structures
using graph representational learning to differentiate the het-
erogeneous and homogeneous nuclei patterns. The proposed
scheme is highly configurable and can be plugged into the
existing state-of-the-art models to enhance their capacity for
robustly identifying the nuclei types. The proposed system
has been validated across four different histopathological
datasets containing a wide variety of nuclei structures where,
across all datasets, the proposed scheme demonstrates a
highly accurate recognition of nuclei communities within the
histopathological landscape, as compared to the state-of-the-
art methods. Furthermore, the featurization block within the
proposed scheme can be coupled with any graph partition-
ing and clustering algorithm, and this opens up new doors
for the proposed scheme to be applied in vast variety of
applications involving graph decomposition and clustering
approaches (see Sections VI-A.7 and VI-A.8 for more details).
In the future, we envisage validating the proposed method
in clinical practice to effectively and efficiently extract the
nuclei communities to grade cancerous progression. We also
plan to test the proposed scheme toward recognizing different

types of clinical biomarkers to measure the severity of the
cancerous progression promptly. In addition to this, we also
aim at exploring the proposed scheme in different application
that are based on graph partitioning and clustering approaches.
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