
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 01/06 pp271 – 281
Volume 5, Number 4, December 2022
DOI: 10.26599/BDMA.2021.9020019

C The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

���JOWL: A Systematic Approach to Build and Evolve
a Temporal OWL 2 Ontology Based on Temporal JSON Big Data

Zouhaier Brahmia�, Fabio Grandi, and Rafik Bouaziz

Abstract: Nowadays, ontologies, which are defined under the OWL 2 Web Ontology Language (OWL 2), are being

used in several fields like artificial intelligence, knowledge engineering, and Semantic Web environments to access

data, answer queries, or infer new knowledge. In particular, ontologies can be used to model the semantics of big

data as an enabling factor for the deployment of intelligent analytics. Big data are being widely stored and exchanged

in JavaScript Object Notation (JSON) format, in particular by Web applications. However, JSON data collections lack

explicit semantics as they are in general schema-less, which does not allow to efficiently leverage the benefits of big

data. Furthermore, several applications require bookkeeping of the entire history of big data changes, for which

no support is provided by mainstream Big Data management systems, including Not only SQL (NoSQL) database

systems. In this paper, we propose an approach, named �JOWL (temporal OWL 2 from temporal JSON), which

allows users (i) to automatically build a temporal OWL 2 ontology of data, following the Closed World Assumption

(CWA), from temporal JSON-based big data, and (ii) to manage its incremental maintenance accommodating the

evolution of these data, in a temporal and multi-schema environment.

Key words: big data; JavaScript Object Notation (JSON); JSON schema; temporal JSON; ontology; temporal

ontology; �JSchema; �OWL

1 Introduction

Ontologies[1] have been invented to specify, in a
formal way, the knowledge of some domain, or the
data semantics in some application. They are very
useful in artificial intelligence, knowledge engineering,
and Semantic Web environments, to access data, to
answer queries, and to infer new knowledge. Several
ontology languages have been proposed in the literature
like Resource Description Framework (RDF), RDFS,

� Zouhaier Brahmia and Rafik Bouaziz are with the Faculty
of Economics and Management, University of Sfax, Sfax
3029, Tunisia. E-mail: zouhaier.brahmia@fsegs.rnu.tn; rafik.
bouaziz@usf.tn.

� Fabio Grandi is with the Department of Computer Science
and Engineering, University of Bologna, Bologna 40136, Italy.
E-mail: fabio.grandi@unibo.it.

* To whom correspondence should be addressed.
Manuscript received: 2021-08-27; revised: 2021-10-27;
accepted: 2021-11-01

DAML+OIL, SHOE, Web Ontology Language (OWL),
OWL2QL, DL-Lite, and OWL 2[2]; OWL 2 is the most
popular one since it is the World Wide Web Consortium
(W3C) recommendation for specifying ontologies in the
Semantic Web. In the ontology world, the traditional
viewpoint is the Open World Assumption (OWA)[3]

which means that “what is not known to be true or false is
unknown”; it is used in contexts where data are assumed
to be incomplete like Semantic Web repositories and
Knowledge Bases. On the other hand, the Closed World
Assumption (CWA)[4], which means that “what is not
known to be true must be false” and which is usual
in contexts where data are assumed to be complete
like classical databases, can also be adopted in the
ontology world by means of the Data Box (DBox)
notion[5]. Notice that, with the CWA, an ontology
definition (concepts, relationships between concepts,
axioms � � �) behaves like a database schema and, thus,
can be called ontology schema; the ontology individuals

272 Big Data Mining and Analytics, December 2022, 5(4): 271–281

are instances of such an ontology schema.
Big data[6, 7], that is data so large, fast-growing,

or complex that cannot be processed with traditional
methods, are being generated and exploited by several
Web applications (e.g., online social networks, Internet
of Things, cloud computing applications); they are
stored and exchanged in semi-structured and lightweight
data formats like JavaScript Object Notation (JSON)[8].
Such data lack explicit semantics as they are in general
schema-less[9], from one hand, and usually created
without an associated ontology, from the other hand.
As a consequence, the absence of semantics does not
allow to efficiently leverage the benefits of big data,
as the meaning of data cannot be exploited, making
difficult the application of intelligent analytics methods.
In addition, due to the velocity characteristic of big data,
they are evolving over time at a high speed and since
many JSON-based Not only SQL (NoSQL) database
applications require bookkeeping of the entire history
of big data changes, these data could also be temporal
(i.e., their values are time-referenced) and multi-version
(i.e., the same data have several successive temporal
versions). Therefore, these characteristics make more
difficult not only the update, querying, and analytics of
temporal and multi-version JSON-based big data, but
also the formalization of their semantics.

For such reason, it is useful to have appropriate tools
that help constructing temporal ontologies for temporal
and multi-version big data. However, by studying the
state of the art of ontologies for big data[10–24], we
have noticed that there is no proposal for automatically
creating a temporal ontology from temporal and multi-
version big data. To fill this gap, we propose in this paper
an approach, named �JOWL (standing for Temporal
OWL 2 from Temporal JSON), which allows: (i) to
automatically build a temporal OWL 2 ontology of data,
with the CWA, from temporal big data in JSON format,
and (ii) to manage the incremental maintenance of this
ontology in response to the evolution of the underlying
time-varying JSON big data. The rest of this paper is
structured as follows. Section 2 proposes our �JOWL
approach. Section 3 illustrates the functioning of �JOWL
through an application example. Section 4 discusses
related work. Section 5 summarizes the paper and gives
some remarks about our future work.

2 Overview of Our ���JOWL Approach

As mentioned above, the �JOWL approach allows to

automatically build and manage a temporal OWL 2
ontology from temporal big data in JSON format. Hence,
our approach could be considered as composed of two
parts: (i) temporal ontology building based on temporal
JSON big data, and (ii) temporal ontology maintenance
resulting from the evolution of temporal JSON big data.
These parts are detailed below in subsections 2.1 and
2.2, respectively. In subsection 2.3 we briefly deal with
the evaluation of the scalability of our approach.

2.1 Temporal ontology building based on temporal
JSON big data

The goal of this part is to automatically build an ontology
of data with the CWA viewpoint. More precisely,
we present a solution to define a temporal OWL 2
ontology from given temporal JSON-based big data, in
an automatic manner. When a new big data project has
to be started in the �JOWL environment, the “�JOWL
Base Administrator”, interacting with the “Ontology
Building” module as shown in Fig. 1, firstly calls for
the building of an ontology for some temporal JSON
data that are stored in a temporal JSON document (to
be precise, in the first version of a temporal JSON
document). To satisfy the request of the “�JOWL
Base Administrator”, the behaviour of this module is
composed of two successive steps: “Schema Extraction”
and “Ontology Generation”. In the first step, the
“Schema Extraction” sub-module produces a JSON
Schema[25–27] file that defines the schema/structure of
the JSON instance document[8] supplied as input. To
implement this step, several available JSON Schema
inference/extraction tool can be used. For example, one
of the three first tools proposed on The Home of JSON
Schema[28] for “Schema Generation from Data” could
be adopted, being their source code freely available on
GitHub: json-schema-inferrer[29], Schema Guru[30] and
Clojure JSON Schema Validator & Generator[31].

In the second step, the JSON Schema file resulting

τJOWL Base

Schema

Extraction

Schema for Big Data

(JSON Schema file)

Ontology

Generation

Big Data

(JSON file)
Ontology for Big Data

(OWL 2 file)

(1′) (4) (3) (5)

Ontology Building (1)

τJOWL Base

Administrator (2′)

(2)

Fig. 1 The first part of the ���JOWL approach.

Zouhaier Brahmia et al.: ���JOWL: A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology : : : 273

from the previous step is fed to the “Ontology
Generation” sub-module, which generates an OWL
2[2] file. The output of the sub-module represents
the ontology, specified using the OWL 2 language,
of the JSON data initially considered. The algorithm
of the “Ontology Generation” module is provided
in Fig. 2. This algorithm calls three procedures:
GenerateClasses(), GenerateDataProperties(), and
GenerateObjectProperties(), which are detailed in
Figs. 3–5, respectively.

Notice that, for the sake of simplicity, in this work
we only consider the following components of an
OWL 2 ontology: classes (i.e., the set of concepts of
the modelled reality), data properties (i.e., the set of
properties of the concepts/classes), object properties
(i.e., the set of the semantic relationships between the

Algorithm Ontology_Generation
// It converts a JSON Schema file to an OWL2 file
Input: JS.json // A valid JSON Schema file
Output: Ont.owl // A valid OWL 2 file
Begin

CreateEmptyOWL2File(Ont.owl);
// It creates an empty OWL 2 ontology file
GenerateClasses(JS.json, Ont.owl);
// It generates initially empty classes
For Each generated class C Do:

GenerateDataPropertiesOf(C, Ont.owl);
// It generates data properties of C
GenerateObjectPropertiesOf(C, Ont.owl);
// It generates object properties of C

End For
End

Fig. 2 Algorithm of the “Ontology Generation” module.

Procedure GenerateClasses
Inputs: JS.json, // A valid JSON Schema file

Ont.owl // A valid OWL 2 file
Output: CL // A set of empty classes

(only having a name)
Begin

CL := Ø;
// To determine all the classes that result

from JSON Schema objects:
For Each named JSON Schema object O

(at any level) in JS.json Do:
CL := CL [{O};

End For
// To determine all the classes that result

from JSON Schema arrays:
For Each named JSON Schema array A

(at any level) in JS.json Do:
CL := CL [{A};

End For
AddClassesToOntology(Ont.owl, CL);
// It adds all the classes to the ontology

End

Fig. 3 Algorithm of the “GenerateClasses” procedure.

Procedure GenerateDataProperties
Inputs: C, // A class named C

Ont.owl // A valid OWL 2 file
Output: DP // The set of data properties

of the class C
Begin
DP := Ø;
If (the class C results from

a named JSON Schema object O) Then
For Each simple type property P

of the object O Do:
DP := DP [{(name(P),type(P))};

End For
Else // The class C results from

a named JSON Schema array A, in JS.json
If (all the elements of the array A

are of the same data type) Then
If (the data type of the elements

of A is a simple type) Then
dataPropName := name(A)+"Element";
dataPropType := type(A[0]);
DP := DP [{(dataPropName,dataPropType)};

End If
Else // The elements of A are not

of the same data type
i := 0; // Index for all elements

of the array A
j := 0; // Index for only simple

type elements of A
While (: endOfArray(A)) Do:
If (A[i] is a simple type element) Then
j++;
dataPropName := name(A)+"Element"+"j";
dataPropType := type(A[i]);
DP := DP [{(dataPropName,dataPropType)};

End If
i++;

End While
End If

End If
ClassDataPropertiesToOntology(Ont.owl, C, DP);
// It adds, to the ontology, all

the data properties of the class C
End

Fig. 4 Algorithm of the “GenerateDataProperties”
procedure.

concepts/classes), and axioms (i.e., the set of axioms that
concern the classes, data properties, object properties,
and the set of all identifiers associated to the classes).
The complete set of all components of an OWL 2
ontology could be found in Ref. [2].

Notice also that our �JOWL approach deals with OWL
2 ontologies with an RDF/XML (eXtensible Markup
Language) syntax[32], which is, according to the OWL
2 specification document[33], the only syntax that must
mandatorily be supported by OWL 2 tools.

Recall that, in JSON Schema, a simple type property
(mentioned in the algorithm of Fig. 4) is a property with a
“string”, “number”, “integer”, “boolean”, or “null” type,
and a complex type property (mentioned in the algorithm

274 Big Data Mining and Analytics, December 2022, 5(4): 271–281

Procedure GenerateObjectProperties
Inputs: C, // A class named C

Ont.owl // A valid OWL 2 file
Output: OP // The set of object properties

of the class C
Begin

OP := Ø;
For Each class R generated from a complex type

property P of a JSON Schema object O or
from a complex type element E of a JSON
Schema array A, which is associated to
the class C in JS.json Do:

objPropName := name(C)+"_Has_"+name(R);
// The name of the new object property
objPropDomain := C;
// The domain of the new object property
objPropRange := R;
// The range of the new object property
OP := OP [

{(objPropName,objPropDomain,objPropRange)};
End For
AddClassObjectPropertiesToOntology(Ont.owl,C,OP);
// It adds, to the ontology, all the object

properties of the class C
End

Fig. 5 Algorithm of the “GenerateObjectProperties”
procedure.

of Fig. 5) is a property with an “object” or “array” type.
In sum, this first part is a sort of bulk loading of the

new �JOWL project by creating a first temporal version
of an ontology from big data.

Notice that extant JSON data are stored and managed
in �JOWL as in our previous temporal JSON �JSchema
framework[34, 35]. Moreover, the OWL 2 ontologies are
stored and managed in �JOWL as in our previous
temporal ontology �OWL framework[36, 37]. Notice that
(temporal) reasoning[38–42], which can be part of some
AI-based data analytics or data valorization task, can be
easily done on temporal OWL 2 ontologies managed in
our framework, through the use of suitable tools. This
issue is beyond the scope of this paper.

Notice also that the intermediate JSON Schema file
resulting from the “Schema Extraction” step is kept
(and will be versioned) in �JOWL as in our �JSchema
framework.

2.2 Temporal ontology maintenance resulting from
the evolution of temporal JSON big data

As big data changes are unavoidable due to their highly
dynamic nature, the �JOWL Base Administrator can use
the “Big Data Instance Update” module, as shown in
Fig. 6, to apply a sequence of JSON update operations,
each time some data update is needed, that is to insert
new big data or to modify or delete some already

Big Data

Instance

Update

Big Data

(JSON file,

Version i)

(1′)

(1)

τJOWL Base

Administrator

Big Data

(JSON file,

Version i+1)

(2)

τJOWL Base

Schema

Extraction

Ontology

Generation

(5)(4) (6)

Ontology Building

(3)

 New Schema

 Version for Updated

 Big Data (JSON

 Schema file, Version

j+1)

New Ontology

Version for Updated

Big Data (OWL 2 file,

Version j+1)

(3′)

Fig. 6 The second part of the ���JOWL approach.

stored big data. A JSON data update could be either
conservative[34, 35] or non-conservative[43–45].

� A conservative update is an update that produces
modified JSON data conformant to their JSON Schema;
it is an update that respects the schema of the involved
data, like the modification of the value of a string
property with another string value. Since �JOWL is
a temporal environment, only the updated JSON-based
big data are temporally versioned after such an update,
through the generation of a new temporal version of
them (see Fig. 6), which is still valid with respect to the
current JSON Schema version.

� A non-conservative update of some JSON data
produces a new version of such data that is no longer
conformant to their initial JSON Schema; it is an update
that does not respect the schema of the involved data, like
the renaming of a property, the replacement of the value
of a number property with a string value or the addition
of the value for a property that does not belong to the
schema. Therefore, such an update requires that some
schema change(s) must be applied in order to produce
a new JSON Schema version that defines the structure
of the new JSON data version, before the update can
be done. Since �JOWL is a temporal environment and
in order to keep all versions of changed JSON-based
big data (i.e., from the first version to the last one),
not only the updated JSON data but also their JSON
Schema, in response to non-conservative updates, come
out temporally versioned. In fact, after the generation of
the new temporal version of the updated JSON-based big
data, the “Big Data Instance Update” module (see Fig. 6)
calls the “Ontology Building” module, doing the same
work as described in subsection 2.1, but starting from
this new big data version. More precisely, the “Ontology
Building” module first extracts the schema of this new
data version and saves it as a new temporal version of
the JSON Schema of the involved JSON-based big data
(via the “Schema Extraction” sub-module), and then

Zouhaier Brahmia et al.: ���JOWL: A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology : : : 275

generates the OWL 2 file associated to the new JSON
Schema version file, and saves it as a new temporal
version of the OWL 2 ontology of the same JSON-based
big data (via the “Ontology Generation” sub-module).

Hence, the second part of our approach could be
considered as a solution for incremental maintenance
of a �JOWL big data project, with the creation of
new temporal data versions when extant JSON data are
updated, and also of new ontology versions when applied
updates are non-conservative.

It is worth mentioning that, for the implementation of
the “Big Data Instance Update” module, the algorithm
named “ApplyUpdatesWithImplicitSchemaVersioning”,
previously presented in Ref. [43] (Fig. 1), can be used.

2.3 Complexity evaluation

From a theoretical point of view, all the procedures
used for ontology bulk loading presented in Section 2.1
require a scan of the JSON data file and, thus, the
whole process scales linearly with its dimension. The
incremental ontology maintenance described in
Section 2.2 requires three steps: (i) non-conservative
update detection, (ii) execution of schema changes, and
(iii) propagation of changes to data instances. As far
as the complexity of these steps is concerned, we can
say that: (i) is linear with respect to the size of the new
data to be accommodated; (ii) is linear with respect
to the ontology size (which is much smaller than the
instance data size; it also has a much smaller growth
rate as most updates are expected to be conservative);
(iii) is expected to be linear with respect to the instance
data size, giving rise to a sublinear scaling for the whole
maintenance process (it would be linear if all updates
were non-conservative).

3 Application Example

In order to illustrate the functioning of our approach, let
us consider an example of a JSON-based NoSQL data
store used by a scholarly publisher for the management
of scientific journals’ data. Let us assume that, with
the aim of making such a management more intelligent
and to improve access and querying of journal data, the
Information Technology (IT) manager of the publisher
decides to use ontologies of data with the CWA, within
a �JOWL environment.

Assume also that on June 01, 2021, the �JOWL
Base Administrator created (or imported from an
already existing project) a JSON instance document,
named “journalsInstances V1.json” (as shown in Fig. 7),

{ "journal":{
"title": "Big Data and Ontologies",
"editor": { "firstName":"Abdullah",

"lastName":"Farouk" },
"periodicity": 4,
"SJR": 0.15 } }

Fig. 7 JSON instance document of journals
(“JournalsInstances V1.json”) on June 01, 2021.

which stores information on journals (the title, the first
name and the last name of the editor, the periodicity,
and the SJR ranking of each journal). Due to space
limitations, in our example we only consider one
journal named “Big Data and Ontologies”, whose
editor is Abdullah (first name) Farouk (last name),
its periodicity is 4 (issues per year), and its SJR is
0.15. Then, he/she invoked the “Ontology Building”
module to automatically build an ontology for these
JSON-based big data. Indeed, this module uses the
provided big data to extract their JSON Schema (by
calling the “Schema Extraction” sub-module), named
“journalsSchema V1.json” (as shown in Fig. 8), before
generating the OWL 2 file corresponding to the extracted
schema (by calling the “Ontology Generation” sub-
module), named “journalsOntology V1.owl” (as shown
in Fig. 9).

After that, assume that on June 13, 2021, the �JOWL
Base Administrator used the “Big Data Instance Update”
module to update the first/current version of the JSON
instance document that stores journal details (as shown
in Fig. 7), by applying the following changes:

� Add to the “journal” object a new object member,
named “scopus-indexed”, with type “boolean” and value
true; this member provides information on the fact that
the corresponding journal is indexed by the Scopus
database or not;

� Change the value of the object member “periodicity”

{"type":"object",
"properties":
{"journal":

{"type":"object",
"properties":
{"title":{"type":"string"},
"editor":
{"type":"object",
"properties":
{"firstName":{"type":"string"},
"lastName":{"type":"string"}}},

"periodicity":{"type":"integer"},
"SJR":{"type":"number"}}}}}

Fig. 8 The generated JSON Schema of journals
(“JournalsSchema V1.json”) on June 01, 2021.

276 Big Data Mining and Analytics, December 2022, 5(4): 271–281

<rdf:RDF>
<owl:Ontology rdf:about="http://

my_ontologies/journal_ontology#">
<owl:Class rdf:about="journal"/>
<owl:DatatypeProperty rdf:about="title">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="periodicity">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="SJR">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#float"/>
</owl:DatatypeProperty>
<owl:Class rdf:about="editor"/>
<owl:DatatypeProperty rdf:about="firstName">
<rdfs:domain rdf:resource="editor"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="lastName">
<rdfs:domain rdf:resource="editor"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:ObjectProperty

rdf:about="journal_Has_editor">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="editor"/>

</owl:ObjectProperty>
</owl:Ontology>

</rdf:RDF>

Fig. 9 The generated OWL 2 ontology of journals
(“JournalsOntology V1.owl”) on June 01, 2021.

from the integer 4 to the string “quarterly”;
� Rename the object member “SJR” to “currentSJR”.
Since �JOWL is temporal and multi-version, the

execution of the above sequence of operations on the first
JSON instance document version of journals produces
a new version named “journalsInstances V2.json” (as
shown in Fig. 10). Moreover, since each one of these
operations is a non-conservative update (i.e., it does
not respect the JSON Schema version, as shown in
Fig. 8, corresponding to the JSON instance document

{ "journal":
{ "title": "Big Data and Ontologies",
"editor": { "firstName": "Abdullah",

"lastName": "Farouk" },
"scopus-indexed": true,
"periodicity": "quarterly",
"currentSJR": 0.15 } }

Fig. 10 JSON instance document of journals
(“JournalsInstances V2.json”) on June 13, 2021.

version being updated), the “Big Data Instance Update”
module also calls the “Ontology Building” module that,
first, generates a new JSON Schema version, named
“journalsSchema V2.json” (as shown in Fig. 11), for
this new JSON instance document version and, second,
converts the new JSON Schema version to an OWL
2 file named “journalsOntology V2.owl” (as shown in
Fig. 12), which represents the second OWL 2 ontology
version associated to the updated JSON-based big data
mentioned above (i.e., those stored in the new JSON
instance document version of Fig. 10). Changes are
presented in red bold typeface.

4 Related Work Discussion

In the literature, a lot of works have dealt with the use of
ontologies for big data management, as summarized in
the following.

Djebouri and Keskes[21] have studied (among others)
a set of research papers that combine ontologies and big
data; these works introduce ontologies to deal with the
challenges posed by big data, including various formats,
various sources, and huge volumes of data.

To deal with the issue of big data integration, several
research works, like Refs. [16, 19, 20, 24], have widely
used ontologies not only since they allow to formalize
the knowledge of any domain but also since they allow
to have a unified view of big data, to extract reliable
and consistent knowledge and facilitate reasoning and
analytics on large amounts of data.

Some other works, like Refs. [13–15, 46], have
used ontologies for (intelligent) big data analysis and
answering queries on big data[11, 19].

In addition, there are many research proposals, like
Refs. [15,18,46–48], which have used ontologies for the
management of social big data (i.e., data stored in the

{"type":"object",
"properties":
{"journal":

{"type":"object",
"properties":
{"title":{"type":"string"},
"editor":

{"type":"object",
"properties":

{"firstName":{"type":"string"},
"lastName":{"type":"string"}}},

"scopus-indexed":f"type":"boolean"g,
"periodicity":{"type":"string"},
"currentSJR":{"type":"number"}}}}}

Fig. 11 The generated JSON Schema of journals
(“JournalsSchema V2.json”) on June 13, 2021.

Zouhaier Brahmia et al.: ���JOWL: A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology : : : 277

<rdf:RDF>
<owl:Ontology rdf:about="http://

my_ontologies/journal_ontology#">
<owl:Class rdf:about="journal"/>
<owl:DatatypeProperty rdf:about="title">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty

rdf:about="scopus-indexed">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#boolean"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="periodicity">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="currentSJR">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#float"/>
</owl:DatatypeProperty>
<owl:Class rdf:about="editor"/>
<owl:DatatypeProperty rdf:about="firstName">
<rdfs:domain rdf:resource="editor"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="lastName">
<rdfs:domain rdf:resource="editor"/>
<rdfs:range rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:ObjectProperty

rdf:about="journal_Has_editor">
<rdfs:domain rdf:resource="journal"/>
<rdfs:range rdf:resource="editor"/>

</owl:ObjectProperty>
</owl:Ontology>

</rdf:RDF>

Fig. 12 The generated OWL 2 ontology of journals
(“JournalsOntology V2.owl”) on June 13, 2021.

databases of the online social networks, like Facebook,
Google+, YouTube, and LinkedIn).

The works that are more strictly related with our
approach are Refs. [16, 23, 48–53].

Abbes and Gargouri[16] and Abbes et al.[49] have
proposed an approach to learn an OWL ontology from
big data in a MongoDB NoSQL database, by means
of the application of eleven transformation rules. The
approach is supported by a tool, named M2Onto, which
also has been described by the authors. Similarly to
this proposal, Mhammedi et al.[23] have provided an
approach to generate an OWL ontology from data that
are stored in a Couchbase NoSQL database, through the

application of six mapping rules; a tool, named Cb2Onto,
supporting the approach has been also presented. With
regard to Refs. [16, 23, 49], our approach also allows
learning an OWL 2 ontology but from a JSON Schema
file which can much more complex than the data
models supported by the two NoSQL database systems
MongoDB and CouchBase. Moreover, our work is
generic since it is independent from any NoSQL database
system.

Some researchers have worked on automatic
generation of an OWL ontology from a JSON instance
document, like Yao et al.[50] and Moreira et al.[51]. Some
others have proposed to produce an OWL ontology
directly from a JSON Schema file, like Wischenbart et
al.[48] and Cheong[52]. The idea of Ganzha et al.[53] was
to make the conversion of an input JSON Schema file
into an output OWL ontology easier but possibly longer,
using an XML Schema file as an intermediate result.
In fact, first the JSON Schema file is converted into an
XML Schema file (by using one of the several available
tools), then this latter is transformed into an OWL file.
Similarly to Refs. [48,52,53], our approach uses a JSON
Schema file in order to build an ontology. However,
differently from these proposals, �JOWL starts from
a JSON instance file to automatically construct an OWL
2 ontology, and implicitly propagates changes on JSON
instance documents to OWL 2 ontology files, within a
temporal and multi-schema-version environment.

Notice that the problem of “extracting a schema from
JSON data” has been widely studied by the JSON
community, for example in Refs. [27, 54–59].

Since the XML[60] format could be also used to
store and exchange irregular data on the (Semantic)
Web, several works have dealt with transformation
of XML documents to OWL ontologies. Hacherouf
et al.[61] have presented a survey on such works.
Some other researchers have focused on converting
to OWL ontologies the schemas of XML documents,
specified using either the XML Schema language[62]

or the Document Type Definition (DTD) language[60].
In particular, Bedini et al.[63] have proposed a set
of patterns for an automatic transformation of XML
Schema files into OWL files, while Hacherouf and
Bahloul[64] have studied transformation of DTD files
into OWL ontologies. However, XML documents are
usually complicated and verbose, whereas JSON has
been designed as a lightweight alternative to XML, more
suitable to big data storage and exchange.

278 Big Data Mining and Analytics, December 2022, 5(4): 271–281

5 Conclusion

In this paper, we have proposed an approach, named
�JOWL (Temporal OWL 2 from Temporal JSON), with
a twofold purpose, that is allowing users of a big data
project: (i) to automatically construct a temporal OWL
2 ontology of data, with the CWA, from temporal
JSON-based big data; (ii) to manage as incremental
maintenance the evolution of this ontology guided by the
evolution of the underlying temporal JSON big data, in
a temporal environment that supports versioning at both
instance and schema levels.

In the near future, we plan to develop a tool
that supports our approach and shows its usefulness.
We will use the new tool to experimentally evaluate
the effectiveness, usability, and scalability of our
approach, and to compare its performance with similar
approaches. Its design is currently in progress and is
based on the extension and integration of the previously
developed prototypes �JSchema-Manager[43, 44] and
�OWL-Manager[37, 45, 65]. In order to evaluate the
effectiveness of our approach, we will test the accuracy
of the results produced by our tool starting from real
examples. As for the assessment of the usability of the
approach, first we will recruit a panel of users to test
our tool (working on some illustrative cases and real
examples), and after that we will collect their feedbacks
concerning the usability of the tool; such feedbacks will
help us to improve the tool and possibly the approach. In
order to evaluate the scalability of our approach, we
will look for an existing synthetic benchmark to be
used in experiments. Otherwise, we will construct such
a benchmark. To this purpose, a JSON generator will
be exploited to produce random JSON files, according
to some chosen characteristics (e.g., number of JSON
objects, average number of JSON properties, and levels
of nesting of JSON objects and JSON properties);
obviously, a custom JSON generator could be written
from scratch or some available JSON generator (e.g.,
Refs. [66, 67]) could be used as it is or adapted to
our situation. In this way, the scaling behaviour of
the approach sketched in Section 2.3, including its
dependence on the fraction of non-conservative updates,
will be matched against practical management of real
JSON data.

References

[1] N. Guarino, Formal Ontology in Information Systems.
Amsterdam, The Netherlands: IOS Press, 1998.

[2] W3C, OWL 2 web ontology language primer (second

edition), W3C recommendation 11 December 2012,
http://www.w3.org/TR/owl2-primer/, 2021.

[3] P. F. Patel-Schneider and I. Horrocks, A comparison of two
modelling paradigms in the Semantic Web, J . Web Semant.,
vol. 5, no. 4, pp. 240–250, 2007.

[4] O. Etzioni, K. Golden, and D. S. Weld, Sound and efficient
closed-world reasoning for planning, Artif. Intell., vol. 89,
no. 1&2, pp. 113–148, 1997.

[5] I. Seylan, E. Franconi, and J. De Bruijn, Effective query
rewriting with ontologies over DBoxes, in Proc. 21st Int.
Joint Conf. on Artificial Intelligence, Pasadena, CA, USA,
2009, pp. 923–929.

[6] T. R. Rao, P. Mitra, R. Bhatt, and A. Goswami, The big
data system, components, tools, and technologies: A survey,
Knowl. Inf. Syst., vol. 60, no. 3, pp. 1165–1245, 2019.

[7] A. Davoudian and M. C. Liu, Big data systems: A software
engineering perspective, ACM Comput. Surv., vol. 53, no.
5, p. 110, 2020.

[8] IETF, The JavaScript Object Notation (JSON) data
interchange format, https://tools.ietf.org/html/rfc8259,
2021.

[9] S. Banerjee, R. Shaw, A. Sarkar, and N. C. Debnath,
Towards logical level design of big data, in Proc. of 2015
IEEE 13th Int. Conf. on Industrial Informatics, Cambridge,
UK, 2015, pp. 1665–1671.

[10] A. Hoppe, C. Nicolle, and A. Roxin, Automatic ontology-
based user profile learning from heterogeneous web
resources in a big data context, Proc. VLDB Endow., vol. 6,
no. 12, pp. 1428–1433, 2013.

[11] A. Soylu, M. Giese, E. Jimenez-Ruiz, E. Kharlamov, D.
Zheleznyakov, and I. Horrocks, OptiqueVQS: Towards
an ontology-based visual query system for big data, in
Proc. 5th Int. Conf. on Management of Emergent Digital
EcoSystems, Neumünster Abbey, Luxembourg, 2013, pp.
119–126.

[12] C. Jayapandian, C. H. Chen, A. Dabir, S. Lhatoo, G. Q.
Zhang, and S. S. Sahoo, Domain ontology as conceptual
model for big data management: Application in biomedical
informatics, in Proc. of the 33rd Int. Conf. on Conceptual
Modeling, Atlanta, GA, USA, 2014, pp. 144–157.

[13] T. Shah, F. Rabhi, and P. Ray, Investigating an ontology-
based approach for Big Data analysis of inter-dependent
medical and oral health conditions, Cluster Comput., vol.
18, no. 1, pp. 351–367, 2015.

[14] J. P. C. Verhoosel and J. Spek, Applying ontologies in
the dairy farming domain for big data analysis, in Proc.
3rd Stream Reasoning (SR 2016) and the 1st Semantic
Web Technologies for the Internet of Things (SWIT 2016)
Workshops Co-located with 15thInt. Semantic Web Conf.
(ISWC 2016), Kobe, Japan, 2016, pp. 91–100.

[15] A. R. Kim, H. A. Park, and T. M. Song, Development
and evaluation of an obesity ontology for social big data
analysis, Healthc. Inform. Res., vol. 23, no. 3, pp. 159–168,
2017.

[16] H. Abbes and F. Gargouri, MongoDB-based modular
ontology building for big data integration, J . Data Semant.,
vol. 7, no. 1, pp. 1–27, 2018.

[17] L. S. Globa, R. L. Novogrudska, and A. V. Koval, Ontology
model of telecom operator big data, in Proc. of 2018 IEEE

Zouhaier Brahmia et al.: ���JOWL: A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology : : : 279

Int. Black Sea Conf. on Communications and Networking,
Batumi, GA, USA, 2018, pp. 1–5.

[18] P. Wongthongtham and B. A. Salih, Ontology-based
approach for identifying the credibility domain in social
Big Data, J . Organ. Comput. Electron. Commer, vol. 28,
no. 4, pp. 354–377, 2018.

[19] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, and S.
Vansummeren, An integration-oriented ontology to govern
evolution in Big Data ecosystems, Inform. Syst., vol. 79, pp.
3–19, 2019.

[20] P. S. Rani, R. M. Suresh, and R. Sethukarasi, Multi-level
semantic annotation and unified data integration using
semantic web ontology in big data processing, Cluster
Comput., vol. 22, no. 5, pp. 10401–10413, 2019.

[21] D. Djebouri and N. Keskes, Exploitation of ontological
approaches in Big Data: A State of the Art, in Proc. 10th

Int. Conf. on Information Systems and Technologies, Lecce,
Italy, 2020, p. 45.

[22] M. Y. Aghdam, S. R. K. Tabbakh, S. J. M. Chabok, and M.
Kheyrabadi, Ontology generation for flight safety messages
in air traffic management, J . Big Data, vol. 8, no. 1, p. 61,
2021.

[23] S. Mhammedi, H. El Massari, and N. Gherabi, Cb2Onto:
OWL ontology learning approach from couchbase, in
Intelligent Systems in Big Data, Semantic Web and
Machine Learning, N. Gherabi and J. Kacprzyk, eds. Cham,
Germany: Springer, 2021, pp. 95–110.

[24] I. Mountasser, B. Ouhbi, F. Hdioud, and B. Frikh, Semantic-
based Big Data integration framework using scalable
distributed ontology matching strategy, Distrib. Parallel
Dat., vol. 39, no. 4, pp. 891–937, 2021.

[25] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoc,
Foundations of JSON Schema, in Proc. 25th Int. Conf. on
World Wide Web, Montreal, Canada, 2016, pp. 263–273.

[26] IETF, JSON Schema: A media type for describing JSON
documents, https://json-schema.org/latest/json-schema-
core.html, 2021.

[27] L. Attouche, M. A. Baazizi, D. Colazzo, F. Falleni, G.
Ghelli, C. Landi, C. Sartiani, and S. Scherzinger, A tool for
JSON schema witness generation, in Proc. 24th Int. Conf.
on Extending Database Technology, Nicosia, Cyprus, 2021,
pp. 694–697.

[28] JSON Schema, Implementations of JSON schema.
Schema generators from data, https://json-schema.org/
implementations.html#from-data, 2021.

[29] Json-Schema-Inferrer, Java library for inferring JSON
schema from sample JSONs, https://github.com/saasquatch/
json-schema-inferrer, 2021.

[30] Schema Guru, https://github.com/snowplow/schema-guru,
2021.

[31] Clojure JSON schema validator & generator, https://
github.com/luposlip/json-schema, 2021.

[32] W3C, RDF/XML syntax specification (revised), W3C
recommendation 10 February 2004, http://www.w3.org/
TR/2004/REC-rdf-syntax-grammar-20040210/, 2021.

[33] W3C, OWL 2 web ontology language document overview
(second edition), W3C recommendation 11 December 2012,
http://www.w3.org/TR/owl2-overview/, 2021.

[34] S. Brahmia, Z. Brahmia, F. Grandi, and R. Bouaziz,

�JSchema: A framework for managing temporal JSON-
Based NoSQL databases, in Proc. of the 27th Int. Conf. on
Database and Expert Systems Applications, Porto, Portugal,
2016, pp. 167–181.

[35] S. Brahmia, Z. Brahmia, F. Grandi, and R. Bouaziz, A
disciplined approach to temporal evolution and versioning
support in JSON data stores, in Emerging Technologies and
Applications in Data Processing and Management, Z. M.
Ma and L. Yan, eds. Hershey, PA, USA: IGI Global, 2019,
pp. 114–133.

[36] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz,
�OWL: A framework for managing temporal semantic web
documents, in Proc. of the 8th Int. Conf. on Advances in
Semantic Processing, Rome, Italy, 2014, pp. 33–41.

[37] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, �OWL:
A systematic approach to temporal versioning of semantic
web ontologies, J . Data Semant., vol. 5, no. 3, pp. 141–163,
2016.

[38] M. J. O’Connor and A. K. Das, A lightweight model for
representing and reasoning with temporal information in
biomedical ontologies, in Proc. 3rd Int. Conf. on Health
Informatics, Valencia, Spain, 2010, pp. 90–97.

[39] V. Milea, F. Frasincar, and U. Kaymak, tOWL: A temporal
web ontology language, IEEE Trans. Syst. Man Cybern. B
Cybern., vol. 42, no. 1, pp. 268–281, 2012.

[40] E. Anagnostopoulos, S. Batsakis, and E. G. M. Petrakis,
CHRONOS: A reasoning engine for qualitative temporal
information in OWL, in Proc. of the 17th Int. Conf.
in Knowledge Based and Intelligent Information and
Engineering Systems, Kitakyushu, Japan, 2013, pp. 70–77.

[41] S. Batsakis, E. G. M. Petrakis, I. Tachmazidis, and G.
Antoniou, Temporal representation and reasoning in OWL
2, Semant. Web, vol. 8, no. 6, pp. 981–1000, 2017.

[42] F. Ghorbel, F. Hamdi, E. Métais, N. Ellouze, and F.
Gargouri, Ontology-based representation and reasoning
about precise and imprecise temporal data: A fuzzy-based
view, Data Knowl. Eng., vol. 124, p. 101719, 2019.

[43] Z. Brahmia, S. Brahmia, F. Grandi, and R. Bouaziz, Implicit
JSON schema versioning driven by big data evolution in
the �JSchema framework, in Proc. of Int. Conf. on Big
Data and Networks Technologies, Leuven, Belgium, 2019,
pp. 23–35.

[44] Z. Brahmia, S. Brahmia, F. Grandi, and R. Bouaziz, Implicit
JSON schema versioning triggered by temporal updates to
JSON-based Big Data in the �JSchema framework, in Proc.
5th Int. Conf. on Big Data and Internet of Things, Rabat,
Morocco, doi:10.1007/978-3-030-23672-4 3.

[45] Z. Brahmia, F. Grandi, A. Zekri, and R. Bouaziz,
Ontology versioning driven by instance evolution in
the �OWL framework, J . Inf. Knowl. Manag., doi:
10.1142/S0219649222500022.

[46] Y. Han, H. Kim, J. Song, and T. M. Song, Ontology
development of school bullying for social big data
collection and analysis, J . Korea Contents Assoc., vol. 19,
no. 6, pp. 10–23, 2019.

[47] M. Wischenbart, S. Mitsch, E. Kapsammer, A. Kusel, B.
Pröll, W. Retschitzegger, W. Schwinger, J. Schönböck,
M.Wimmer, and S. Lechner, User profile integration made
easy: Model-driven extraction and transformation of social

280 Big Data Mining and Analytics, December 2022, 5(4): 271–281

network schemas, in Proc. 21st Int. Conf. on World Wide
Web, Lyon, France, 2012, pp. 939–948.

[48] M. Wischenbart, S. Mitsch, E. Kapsammer, A. Kusel,
S. Lechner, B. Pröll, W. Retschitzegger, J. Schönböck,
W. Schwinger, and M. Wimmer, Automatic data
transformation-breaching the walled gardens of social
network platforms, in Proc. of the 9th Asia-Pacific Conf.
on Conceptual Modelling, Adelaide, Australia, 2013, pp.
89–98.

[49] H. Abbes, S. Boukettaya, and F. Gargouri, Learning
ontology from Big Data through MongoDB database, in
Proc. of the 2015 IEEE/ACS 12th Int. Conf. of Computer
Systems and Applications, Marrakech, Morocco, 2015, pp.
1–7.

[50] Y. G. Yao, R. P. Wu, and H. Liu, JTOWL: A JSON
to OWL Converto, in Proc. 5th Int. Workshop on Web-
scale Knowledge Representation Retrieval & Reasoning,
Shanghai, China, 2014, pp. 13–14.

[51] G. B. Moreira, V. M. Calegario, J. C. Duarte, and A. F. P.
dos Santos, Extending the VERIS framework to an incident
handling ontology, in Proc. of 2018 IEEE/WIC/ACM Int.
Conf. on Web Intelligence, Santiago, Chile, 2018, pp. 440–
445.

[52] H. Cheong, Translating JSON Schema logics into
OWL axioms for unified data validation on a digital
manufacturing platform, Procedia Manuf., vol. 28, pp. 183–
188, 2019.

[53] M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, K.
Wasielewska, and C. E. Palau, From implicit semantics
towards ontologies—practical considerations from the
INTER-IoT perspective, in Proc. of the 14th IEEE Annual
Consumer Communications & Networking Conf., Las
Vegas, NV, USA, 2017, pp. 59–64.

[54] J. L. Cánovas Izquierdo and J. Cabot, Discovering implicit
schemas in JSON data, in Proc. of the 13th Int. Conf. on
Web Engineering, Aalborg, Denmark, 2013, pp. 68–83.

[55] M. Klettke, U. Störl, and S. Scherzinger, Schema extraction
and structural outlier detection for JSON-based NoSQL
Data stores, in Proc. of the Conf. Database Systems for
Business, Technology and Web, Hamburg, Germany, 2015,
pp. 425–444.

[56] D. S. Ruiz, S. F. Morales, and J. G. Molina, Inferring
versioned schemas from NoSQL databases and its

applications, in Proc. of the 34th Int. Conf. on Conceptual
Modeling, Stockholm, Sweden, 2015, pp. 467–480.

[57] L. J. Wang, S. Zhang, J. W. Shi, L. M. Jiao, O. Hassanzadeh,
J. Zou, and C. Wang, Schema management for document
stores, Proc. VLDB Endow., vol. 8, no. 9, pp. 922–933,
2015.

[58] M. A. Baazizi, H. B. Lahmar, D. Colazzo, G. Ghelli, and C.
Sartiani, Schema inference for massive JSON datasets, in
Proc. 20th Int. Conf. on Extending Database Technology,
Venice, Italy, 2017, pp. 222–233.

[59] I. Comyn-Wattiau and J. Akoka, Model driven reverse
engineering of NoSQL property graph databases: The case
of Neo4j, in Proc. of 2017 IEEE Int. Conf. on Big Data,
Boston, MA, USA, 2017, pp. 453–458.

[60] W3C, Extensible markup language (XML) 1.0 (fifth
edition) W3C recommendation 26 November 2008,
http://www.w3.org/TR/2008/REC-xml-20081126/, 2021.

[61] M. Hacherouf, S. N. Bahloul, and C. Cruz, Transforming
XML documents to OWL ontologies: A survey, J . Inf. Sci.,
vol. 41, no. 2, pp. 242–259, 2015.

[62] W3C, XML schema part 0: Primer second edition W3C
recommendation 28 October 2004, http://www.w3.org/
TR/2004/REC-xmlschema-0-20041028/, 2021.

[63] I. Bedini, C. Matheus, P. F. Patel-Schneider, A. Boran, and
B. Nguyen, Transforming XML schema to OWL using
patterns, in Proc. of the 2011 IEEE 5th Int. Conf. on
Semantic Computing, Palo Alto, CA, USA, 2011, pp. 102–
109.

[64] M. Hacherouf and S. N. Bahloul, DTD2OWL2: A new
approach for the transformation of the DTD to OWL,
Procedia Comput. Sci., vol. 62, pp. 457–466, 2015.

[65] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, �OWL-
Manager: A tool for managing temporal semantic web
documents in the �OWL framework, in Proc. of the 9th Int.
Conf. on Advances in Semantic Processing, Nice, France,
2015, pp. 56–64.

[66] S. Jahangiri, Wisconsin benchmark data generator: To
JSON and beyond, in Proc. 2021 Int. Conf. on Management
of Data, Virtual Event, China, 2021, pp. 2887–2889.

[67] R. Betı́k and I. Holubová, JBD generator: Towards semi-
structured JSON big data, in Proc. of ADBIS 2016 Short
Papers and Workshops, Prague, Czech Republic, 2016, pp.
54–62.

Rafik Bouaziz received the PhD degree
in computer science from the University
of Tunis El Manar, Tunis, Tunisia in
1991, and the Habilitation in computer
science from the University of Sfax, Sfax,
Tunisia in 2007; he was the director of
the Economy, Management, and Computer
Science Doctoral School in the University

of Sfax between 2011 and 2014, and the president of the
same university between 2014 and 2017; he is currently a full
professor of computer science at the Faculty of Economics and
Management, University of Sfax; his research interests include
temporal databases, real-time databases, information systems
engineering, ontologies, and data warehousing and workflows.

Zouhaier Brahmia received the BSc, MSc,
and PhD degrees in computer science from
the University of Sfax, Sfax, Tunisia in
2003, 2005, and 2011, respectively; he is
currently an associate professor of computer
science in the Department of Computer
Science at the Faculty of Economics and
Management, University of Sfax; his

research interests include temporal databases, database schema
versioning, and temporal, evolution and versioning aspects in
emerging (XML, NoSQL, etc.) databases, big data, semantic Web
ontologies, knowledge representation, IoT data management, and
blockchains.

Zouhaier Brahmia et al.: ���JOWL: A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology : : : 281

Fabio Grandi received the Laurea degree
cum Laude in electronics engineering
from the University of Bologna, Italy in
1988, and the PhD degree in electronics
engineering and computer science from the
University of Bologna, Italy in 1994; from
1989 to 2012 he had worked at the CSITE
center of the Italian National Research

Council (CNR) in Bologna in the field of neural networks and
temporal databases, initially supported by a CNR fellowship, in
1993 and 1994 he was an adjunct professor at the Universities of

Ferrara, Italy, in 1994 he was appointed as research associate
at the University of Bologna, since 1998 he has been an
associate professor at the University of Bologna, currently in
the Department of Computer Science and Engineering. He
has published more than 100 papers in scholarly journals and
conference proceedings, is a member of the TSQL2 Language
Design Committee and the co-author of the “The TSQL2 Temporal
Query Language” book; his scientific interests include temporal,
evolution and versioning aspects in data management, WWW and
Semantic Web, knowledge representation, storage structures, and
access cost models.

