
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 03/06 pp206 –227
Volume 5, Number 3, September 2022
DOI: 10.26599/BDMA.2022.9020006

C The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Deep Feature Learning for Intrinsic Signature Based Camera
Discrimination

Chaity Banerjee, Tharun Kumar Doppalapudi, Eduardo Pasiliao Jr., and Tathagata Mukherjee�

Abstract: In this paper we consider the problem of “end-to-end” digital camera identification by considering sequence

of images obtained from the cameras. The problem of digital camera identification is harder than the problem of

identifying its analog counterpart since the process of analog to digital conversion smooths out the intrinsic noise in

the analog signal. However it is known that identifying a digital camera is possible by analyzing the camera’s intrinsic

sensor artifacts that are introduced into the images/videos during the process of photo/video capture. It is known that

such methods are computationally intensive requiring expensive pre-processing steps. In this paper we propose an

end-to-end deep feature learning framework for identifying cameras using images obtained from them. We conduct

experiments using three custom datasets: the first containing two cameras in an indoor environment where each

camera may observe different scenes having no overlapping features, the second containing images from four

cameras in an outdoor setting but where each camera observes scenes having overlapping features and the third

containing images from two cameras observing the same checkerboard pattern in an indoor setting. Our results

show that it is possible to capture the intrinsic hardware signature of the cameras using deep feature representations

in an end-to-end framework. These deep feature maps can in turn be used to disambiguate the cameras from

each another. Our system is end-to-end, requires no complicated pre-processing steps and the trained model is

computationally efficient during testing, paving a way to have near instantaneous decisions for the problem of digital

camera identification in production environments. Finally we present comparisons against the current state-of-the-art

in digital camera identification which clearly establishes the superiority of the end-to-end solution.

Key words: deep learning; visual signatures; camera identification; convolutional neural networks; deep feature

learning

�Chaity Banerjee is with Department of Idustrial & Systems
Engineering, University of Central Florida, Orlando, FL 32816,
USA. E-mail: Chaity.BanerjeeMukherjee@ucf.edu.
� Tharun Kumar Doppalapudi and Tathagata Mukherjee are

with the Department of Computer Science, University of
Alabama in Huntsville, Huntsville, AL 35806, USA. E-mail:
td0057@uah.edu; tathagata.mukherjee@uah.edu.
� Eduardo Pasiliao Jr. is with Air Force Research Labs, United

States Air Force, Eglin Air Force Base, Shalimar, FL 32579,
USA. E-mail: elpasiliao@gmail.com.

* To whom correspondence should be addressed.
Manuscript received: 2021-11-05; revised: 2022-03-02;
accepted: 2022-03-04

1 Introduction

The availability and use of network connected digital
cameras have increased dramatically in the later half of
2020. This growth has been driven by the widespread
use of Artificial Intelligence (AI) enabled Internet-of-
Things (IoTs), the progress in building self driving
vehicles and the easy access to cloud based storage
services for storing, sharing and computing with the
data generated by these cameras. For example, network
connected digital cameras are used in smart surveillance
systems for security at homes and connected cities (smart
cities)[1, 2], smart traffic monitoring systems for real time

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 207

tracking of traffic flows, congestion and accidents[3], self
driving cars for real time autonomous driving[4], and face
recognition based security systems[5] for access control
and monitoring of highly secured facilities. Apart from
these, there are myriad other application areas where AI
enabled systems rely on input from network of cameras
for performing specialized tasks.

It must be noted that the AI algorithms learning from
multi-sensor data assume that the same is representative
of the underlying data generation process (distribution).
More precisely, an important assumption of the AI
algorithms powering these systems is that the data
being generated from the network of sensors (for
example a network of digital cameras) are reliable and
depict the true state of the world being observed. In
other words they assume that the data being obtained
from the sensors (or cameras) are not fakes. The
advent of deep networks[6] along with the hardware
to train and deploy systems using deep architectures,
have made it possible to use these structures in
applications across different domains. For example, deep
networks have been successfully applied to problems
in computer vision[7], cyber security[8], computational
fluid dynamics[9], medical imaging[10] as well in remote
sensing systems[11]. It is no wonder that they have also
found successful application in building systems for
creating “realistic deep fakes”. A “deep fake” of a sensor
output is an artificially constructed “realistic looking”
fake sensor output obtained using a deep generator
architecture, such that it is not possible to distinguish
it from the real sensor data[12]. Deep fakes have been
successfully constructed for different types of sensor
data including voice, video, and image[13]. With the
possibility of having deep fakes being used as inputs
to an AI inference system, the foundational assumption
of the AI algorithms powering these “smart systems”
have been demolished. Today we can create realistic
looking “deep fakes” that can fool humans into accepting
an alternative version of the reality. This in turn poses
serious challenges to AI powered systems that rely on
data for inference, since now the data can easily be
falsified in a way that it is not possible to distinguish
between the real and the un-real.

Broadly there are two consequences of using “fake”
data with AI systems: when used during training the
resulting model will be faulty and will not work well
during testing. However when used with models trained
on the real data (and hence correct models), it will
lead the AI system to make wrong inference during the

testing phase. Note that both consequences are the same,
namely, faulty inference during testing. Generally, it
is harder to trample with the AI algorithm during the
training phase due to the rigorous validation that is often
times applied during this phase. However, it is easier
to attack a trained AI system by feeding it faulty data
during testing as it is in general harder to notice and stop
such attacks in production. For example, self driving cars
use data from a set of sensors in order to make real time
driving decisions. An important set of sensors for such
tasks is the vision sensors (digital cameras and LiDAR
sensors) that capture images, point clouds and videos
of the surrounding environment. These are used as
inputs to the AI inference engine which makes estimates
about the state of the operating environment using this
data. Finally these estimates along with estimates from
other similar systems are used to make real time driving
decisions. It is not hard to imagine what would happen if
the data from the cameras are maliciously altered during
the operation of a self driving vehicles. Thus one may
replace the feed from the front cameras to show that
the road ahead is empty when it is actually not, leading
to a fatal crash. This happens as the AI engine has no
way to recognize that the data it is being fed is fake.
This behooves us to build systems for identifying and
isolating maliciously altered data before it can be used
as input to an AI inference engine.

It must be noted that the general problem of “deep
fake” detection is hard and there is no solution that works
for all possible scenarios. For example the problem of
identifying and isolating maliciously created images can
be formulated as follows: given an image I we want to
determine whether it was generated by any one of the
cameras fC1; : : : ; Cng. Note that in order to solve this
problem we need to characterize the joint distribution
of the image space of the cameras fCi ; i D 1; : : : ; ng

as detecting a fake image is equivalent to identifying
an item in the complement of the space of the joint
distributions. This problem is known to be hard and
there is no known algorithm for solving this problem
in the general setting. One way of efficiently solving
this problem is through the idea of “hardware based
camera signatures”. Every digital camera has intrinsic
hardware characteristics that are superimposed onto the
images captured by the camera. If it is possible to “learn”
these intrinsic hardware characteristics from the images
captured by a digital camera, it would be possible to
uniquely identify the given camera. Finally, if this can
be done for each of the cameras fCi ; i D 1; : : : ; ng, then

208 Big Data Mining and Analytics, September 2022, 5(3): 206–227

it would be possible to uniquely characterize the space
of all the cameras. Under this setting, given an image
I , the system would infer the intrinsic digital camera
features from the image and compare it with the known
camera features in order to make a determination of
the origin of the image. Thus the core of this solution
is a system to automatically learn the hardware based
intrinsic digital camera features from a given sequence of
images. Note that given such a system, it would also be
possible to identify a digital camera given an image from
the same. Motivated by the aforementioned observation,
in this paper we address this problem by designing and
implementing an end-to-end system for digital camera
identification using deep feature representations from
the raw digital camera images.

The use of end-to-end systems for learning hardware
based signatures for spoof detection and sensor
identification is not new and has been used in other
domains before. For example, in the domain of
wireless security, the task of radio frequency transmitter
identification is important to guard against malicious
spoofing attacks. Radio frequency (RF) emitters have
intrinsic characteristics that are introduced during the
manufacturing process due to imperfections in the
fabrication systems. These imperfections introduce
unique signatures into the emitted signals that can be
learned and exploited for RF emitter identification. For
example, Roy et al.[8] designed and implemented an end-
to-end system for rogue transmitter detection and emitter
identification using hardware signatures learned from
raw signal data. Their system could not only identify and
isolate malicious emitters, but could also identify known
transmitters using their hardware signatures learned with
a deep feature learning framework. Digital cameras
are nothing but electromagnetic sensors that operate
in the visual region of the electromagnetic spectrum
(EM spectrum) and hence are similar to RF transceivers
albeit the fact that the operating frequencies are different.
Consequently, it should be possible to design and build
digital camera identification systems in an end-to-end
setting using the raw image data. In this paper we take
a step in that direction by designing and building such
a system and establishing its efficacy using real world
custom datasets.

The problem of digital camera identification is harder
than the problem of identifying its analog counterpart
since the process of analog to digital conversion smooths
out the intrinsic noise in the analog signal. However it
is known that identifying a digital camera is possible

by analyzing the camera’s intrinsic sensor artifacts that
are introduced into the images/videos during the process
of photo/video capture even though such methods are
computationally intensive. This problem has been
studied for a long time and recently several efficient and
robust algorithms for solving this problem have been
proposed. It must be noted that most of these solutions
have been based on the state-of-the-art algorithm
proposed by Lukas et al.[14] The crux of this algorithm
is to learn the so-called “sensor pattern noise” from the
images using wavelet-based denoising filter. Though this
method is efficient, it is computationally intensive and
time consuming and hence hard to use in practice.

In this paper we propose an end-to-end system
for identifying digital cameras using video sequences
obtained from them with a deep feature learning
framework. We conduct experiments using three custom
datasets: the first containing two cameras in an indoor
environment where each camera may observe different
scenes, the second containing images from four cameras
in an outdoor setting but having the same characteristics
as the previous dataset in that each camera may
potentially observe different scenes and the third
containing images from two cameras observing the
same checkerboard pattern in an indoor setting. Our
results show that it is possible to learn deep feature
representations using an end-to-end system that can
capture the intrinsic hardware signature of the cameras,
which can then in turn be used to disambiguate the
cameras from each another. Moreover our system is
end-to-end, requires no complicated pre-processing
steps and the trained model is computationally efficient
during testing proving a way to have near instantaneous
decisions in production environments. Succinctly, our
contributions in this paper can be summarized as follows:

(1) Propose, design, and implement a deep learning
based end-to-end digital camera identification system
using implicitly learned intrinsic features of the cameras
obtained from sequence of images obtained from them.

(2) Curate extensive datasets both in indoor and
outdoor settings with the goal of testing the efficacy
of our algorithm for digital camera identification. The
datasets have been collected with different sets of
cameras under different settings with the goal of making
the identification task realistic.

(3) Establish the efficacy of our proposed end-to-end
approach for camera identification through experiments
using the curated dataset and comparisons with the state-
of-the-art method proposed by Lukas et al.[14]. Precisely,

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 209

we show that our method is more accurate and takes less
time on the same set of images and the same hardware
platform.

The rest of the paper is organized as follows. In
Section 2 we present a small survey of the previous work
in digital camera identification and then we describe our
system in Section 3, the datasets in Section 4 and present
the results of our experiments in Section 5. Finally
we discuss and conclude our work in Sections 6 and
7, respectively.

2 Previous Work

The problem of identifying a digital camera from
image based features has been studied for more than
a decade. One of the original motivations for studying
this problem was the possibility of its use in forensic
investigations where there is need for connecting an
image with a specific camera. As noted before, cameras
have intrinsic hardware signatures due to manufacturing
irregularities in the image capture system which create
unique fingerprints in the images obtained from a given
camera. It is possible to isolate these features in order to
learn an unique signature for a given camera that can be
used for identification.

In Ref. [14] the authors presented a digital camera
identification system using the idea of sensor pattern
noise. For each camera they identified and extracted
a reference pattern noise that was used as a unique
identification fingerprint for the camera. This was done
by averaging the noise obtained from multiple images
using a denoising filter. Finally, given an image they used
a correlation detector to check for the presence of the
noise fingerprint as a spread spectrum watermark in the
image. The authors presented experimental results with
320 images collected from digital cameras of various
makes and models to establish the efficacy of this system.
One of the drawbacks of this method is the time required
to extract the image reference fingerprint and detect its
presence in a test image. As a result, though this method
is accurate, its use is limited to scenarios where there
are a small number of images and/or cameras or where
computation time is not a factor in the choice of the
algorithm. Hence this method is not suitable for large
scale deployments of digital cameras as is the case today
especially with the advent of IoTs and self driving cars.

Similarly in Ref. [15] the authors used the idea
of interpolation in the color surface of an image
due to the use of a color filter array (CFA) in a

digital camera, for creating a blind source camera
identification system. They used a set of image
characteristics in conjunction with a support vector
machine based multi-class classifier to determine the
originating digital camera from a given image. In a
similar manner, the authors in Ref. [16] proposed a
new feature based approach using the idea of photo
response non-uniformity (PRNU) noise for the problem
of source camera identification. Their method works
by choosing the features which are robust for image
manipulations. The PRNU noise is extracted from the
images using wavelet based denoising method and
represented by higher order wavelet statistics which are
invariant features for image manipulations and geometric
variations. These features are used as input to a support
vector machine classifier to identify the source camera
for a given image. In Ref. [17] the authors study the
robustness of digital camera identification methods based
on the use of convolutional neural networks whereas in
Ref. [18] the authors proposed a convolutional neural
network (CNN) architecture for the problem of source
camera identification using images from mobile devices.
Though they reported an accuracy of around 98 % their
results are limited to images from mobile phones which
mostly consist of images of faces, the dataset being part
of the Mobile Iris Challenge Dataset[19]. In this work
we present an end-to-end system for the task of digital
camera identification, similar to the one proposed by
Ref. [18], but present experimental results on a more
diverse dataset containing images from smart phone
cameras and webcams in indoor and outdoor settings.
Our accuracy tracks the hardness of the dataset. Finally,
our system does not involve any complex pre-processing
steps and can scale to a large number of sources without
any significant redesigning of the network.

3 Method

We implemented a deep neural network for the task of
digital camera identification using raw (or slightly pre-
processed) images from a camera as input. Our network
takes an image and classifies it as being taken by one
of the known cameras that the system was trained to
identify. Succinctly, we assume that there are n cameras
fC1; C2; : : : ; Cng and we have training data from each
of these cameras, which are used for training a neural
network model M for the task of camera identification.
Given a test image I , the model outputs an index i
identifying the camera which was used to obtain this

210 Big Data Mining and Analytics, September 2022, 5(3): 206–227

image.
Intuition: The process of digital image acquisition

using a camera superimposes the hardware
characteristics of the image acquisition hardware
on the acquired image. Succinctly, I D Is ˚ In where
˚ is the convolution operation, it Is the image signal,
and In is the noise signal. This convolution in the
signal space creates an unique pattern in the image
that can be extracted to form a unique signature for
the camera. However the signature extracted from a
single image will also contain intrinsic properties of
the image scene and hence this signature will vary
from image to image. In order to smooth out the image
specific features, one needs to average out the image
centric noise across several images obtained from the
camera. Intuitively this “average noise pattern” can
be used to uniquely identify a camera. Though this is
intuitively appealing, it is computationally intensive
to obtain this pattern and use it with images in real
time for camera identification. Current state-of-the-art
methods use signal processing for extracting the noise
pattern and hence can be considered to be expert
engineered methods. However, recently deep learning
based automatic feature learning techniques have
shown promise for a variety of tasks. These methods
are capable of learning feature embeddings from the
training data and can excel at certain types of learning
tasks. Convolutional neural networks are a variation of
these architectures that can be used to learn image based
features. Since a given image I is a convolution of the
image signal Is and the noise signal In, it is natural to
expect that convolutional networks will be able to learn
noise based features from I through the use of properly
designed filters. We expect these features to have enough
discriminative information to identify a given camera.
Our approach is motivated by this intuition and we use a
well known convolutional network for this task. Next
we describe the neural network architecture used for this
purpose.

Network architecture: We start by noting that the
problem of digital camera identification is a classification
problem as our goal is to assign an input image to one
of the n classes, each class identifying with one of
the cameras fCi ; i D 1; : : : ; ng. Rather than designing
our own deep neural architecture for this problem,
we decided to use one of the several deep network
architectures that are known to work well for the task
of image classification. It is known that the accuracy
of deep network based classification methods depends

on the quality of the feature representations learned
by the network. Hence in order to select a network
for this task we need to consider the quality of the
feature representations being computed by the network.
Based on this consideration we decided to use the
GoogleNet[20] architecture as it is known to learn good
dicriminative features for the task of image based
classification[21]. The GoogleNet architecture is shown
in Fig. 1 and our modifications to the same is shown

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 ,

4
3]. Also, we found that the photometric distortions

of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles.

6

Authorized licensed use limited to: Tsinghua University. Downloaded on April 26,2022 at 07:39:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1 GoogleNet architecture.

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 211

in Fig. 2. Note that GoogleNet contains a total of 27
layers with nine Inception modules and the input to this
architecture accepts an image of dimension 224 � 224.
We modified this network minimally by adding one extra
output layer having n nodes to represent the n output
classes corresponding to the cameras and trained the
network to identify the camera given an input image.

Training: We trained the network with three different
datasets: the first containing two cameras, the second
having four cameras, and the final one with two cameras.
For the two class classification we used the binary cross
entropy loss with the sigmoid activation function in the
last layer and for the four class classification we used the
sparse categorical cross entropy loss[6] with the softmax
activation function in the final layer. We used the
ADAM optimizer with a learning rate of lr D 0:0001

and initialized the weights of the network with the
Glorot initializer[22] before starting the training. Note

that GoogleNet uses an input of size 224 � 224 whereas
in our case the input images had different sizes as shown
in Table 1. As a result we needed to resize the images to
224 � 224 before feeding them into the network.

4 Datasets

For this work we used three custom built data sets: we
call the first dataset “the two camera data”, the second
dataset “the four camera data”, and the third dataset “the
checkerboard data”. Next we describe each of these
datasets while explaining their unique characteristics.

4.1 Two-camera dataset

The two-camera dataset was collected in an indoor
setting using a robot mounted with four Google Pixel
4 smartphones, two of which were used at any given
time to collect the data. A continuous video feed was
obtained using the cameras of the Pixel 4 phones, while

FC
4

Sigmoid

Softmax
activation

Output

Output

GoogleNet

GoogleNet

FC
1

Fig. 2 Camera identification system architecture.

Table 1 Metadata for each of the datasets used for experiments.
Dataset name Image size # Images

Two Camera
(Indoor)

Recording 1 Front 1080 � 1920 1829
Recording 1 Back 1080 � 1920 1727
Recording 2 Left 1080 � 1920 1441

Recording 2 Right 1080 � 1920 1351
Recording 3 Left 720 � 1280 13926

Recording 3 Right 720 � 1280 13 936
Recording 4 Left 720 � 1280 20 336

Recording 4 Right 720 � 1280 20 328

Four Camera
(Outdoor)

Set 1 640 � 480 1800 (Each Camera)
Set 2 640 � 480 1800 (Each Camera)
Set 3 640 � 480 1800 (Each Camera)

Set 4 (middle 1 min) 640 � 480 1800 (Each Camera)

Checkerboard
(Indoor)

Set 1 (Identical) 1920 � 1080 2403 (Each Camera)
Set 2 Camera 1 1920 � 1080 2403 (Each Camera)
Set 2 Camera 2 1280 � 720 2403 (Each Camera)

212 Big Data Mining and Analytics, September 2022, 5(3): 206–227

driving the robot around using hand held controllers
along the corridors of the building and inside a laboratory
room. The robot was fitted with an ultrasound based
indoor positioning system for precise control and an
Intel Nuc computer running Ubuntu 16.04 for general
purpose computing and networking needs. The setup
and a closeup of the same are shown in Fig. 3. We
used a custom built application which was installed
on the phones for interacting with the cameras as well
as with the Nuc. The application was responsible for
obtaining the video feeds and passing it onto the Nuc
over a personal hotspot running off the phone, to which
the Nuc was connected. We can see part of the interface
of the phone app in Fig. 3. Figures 4 and 5 show sample
images from the back, front, left and right cameras, in the
laboratory room and the corridor respectively. It must be
noted that the front and back cameras, in the examples
shown, see images that have considerably different set of

features whereas the left and right cameras see images
where the features are mostly uniform. Intuitively, it
would be harder to distinguish between the cameras if
the features obtained from them are similar since in
this situation there would not be many discriminating
artifacts to separate one camera from the other in the
feature space. This dataset was collected over a four day
period, each day being in one part of the building. As a
result this dataset contains four recordings where each
recording consists of a continuous sequence of video
feed obtained from a pair of cameras.

Processing: In order to process the video feed from
each of the cameras, we used OpenCV[23] for extracting
the image frames from each of the videos. A second of
video feed resulted in approximately 30 image frames
being extracted and we extracted all the frames from the
entire video feed for creating the dataset corresponding
to each of the cameras. Note that for some of the videos,

(a) (b)

Fig. 3 (a) Experimental setup where four cameras are mounted on the ground robot; each camera is perpendicular to the other.
The indoor positioning receiver is at the center for accurate control of the robot. (b) Closeup of the camera setup.

Fig. 4 Sample image from back & front camera in the laboratory room.

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 213

Fig. 5 Sample image from left & right camera in the laboratory corridor.

each second of video feed gave us either less than
or more than 30 frames and hence the total number
of images in the dataset corresponding to each of the
cameras is not a multiple of 30. The details of the
metadata of this dataset is provided in Table 1.

4.2 Four-camera dataset

The four-camera dataset was collected in an outdoor
environment in a city in the state of Florida. We built a
custom camera mount system that can be mounted on
the roof of a car. The mount contains eight Logitech
webcams arranged in a circle such that the field-of-
view (FoV) of each of the cameras do not intersect
considerably with the adjacent ones (both on the right
and left of each camera). Note that the adjacent cameras
have a small intersection in their FoV and we decided
to use only four of them at any given time for data
capture. The cameras are selected in a way that they
observe scenes that have image feature overlaps making

it hard to disambiguate between them purely based on the
image based features. Precisely, we selected the cameras
in the positions shown in Fig. 6 while the rest of them
were turned off. The cameras are connected to two
Intel Nuc computers running Ubuntu 16.04 and powered
by a lithium ion battery pack. The setup was mounted
on the roof of a 2012 Ford Focus and driven around at
posted speed limits (varying between 40–56 km/h), while
obtaining video feed from the cameras. The overview of
the camera mount system is shown in Fig. 7 while the
details of the mounting system is shown in Figs. 8 and 9.

Fig. 6 Position of selected cameras for data collection.

(a) (b)

Fig. 7 (a) The car camera mount system. There are eight cameras in total out of which only four were used for data collection.
(b) Bottom suction setup for mounting on top of car.

214 Big Data Mining and Analytics, September 2022, 5(3): 206–227

Fig. 8 Top view of camera mount system.

Fig. 9 Inside view of camera mount system. There are two Intel Nucs that record the video feeds from the cameras.

An example of the images collected by the four camera
setup is shown in Figs. 10 and 11, where Fig. 10 shows
the images from cameras 1 & 2 and Fig. 11 shows the
images from cameras 3 & 4. It must be noted that the
images see disjoint parts of the scene with no overlap
in the images. Finally we also note that the images in
this case are more diverse compared to the two camera
images as these are captured in an outdoor setting. It
must also be pointed out that since the car was driven
around a locality in the city, the same scene might have
been observed by different cameras at different times,

this making the task of camera identification harder.
Pre-processing: In this dataset there were four sets

of video feeds, one from each of the cameras. The raw
video feeds were approximately an hour long each and
hence in order to process the data within the constraints
of the time and resources that we had, we split each
of the video feeds into three sets. Set 1 and the Set 3
were for one minute each whereas the Set 2 was for four
minutes. The Set 1 contains the recording for the first
one minute of the video from each of the cameras and
the Set 3 contains the same but for the last minute of the

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 215

Fig. 10 Sample images collected using the cameras. Left: camera 1 & right: camera 2.

Fig. 11 Sample images collected using the cameras. Left: camera 3 & right: camera 4.

video whereas the Set 2 contains four minutes of video
feed from each of the cameras obtained at a random
location in the middle of the video. The details of the
metadata of this dataset are provided in Table 1. Note
that we also used Set 4 from a random one minute clip
from the middle of the videos. However since the car
was moving at a speed of 35 km/h, this one minute clip
did not have enough changes in the features seen by the
cameras in order to learn enough discriminative features
and hence the network overfit by a small amount. In
order to correct this we selected a longer period of time
and hence the four minute clips. We discuss this in detail
in Section 6.

4.3 Checkerboard dataset

The checkerboard dataset was collected in an indoor
laboratory setting. It was collected with two cameras
and contains two different datasets. The first dataset was
collected using cameras from different manufacturers
whereas the second one was collected using two cameras

from the same manufacturers. In the first case we used
a Logitech webcam and a Adesso Cybertrack webcam
while in the second case we used two Adesso Cybertrack
webcams. In each case we collected a video sequence
using the webcams in a setting where the webcams were
focused in a checkerboard pattern printed on a cardboard
box. This was done in order to ensure that each camera
observes the same set of features, thus making the
task of camera identification harder. Furthermore using
cameras from the same manufacturer allows us to test the
robustness of our system, when each camera observes
similar patterns, thus making discriminative features
hard to learn. The sample images are shown in Figs. 12
and 13. Note that the cameras capture images of the
checkerboard pattern along with other artifacts in the
room. Since the data was collected at the same time,
both the cameras see the same items in the same relative
position with each other and with respect to the camera.

Processing: In order to process the video feed from
each of the cameras, we used OpenCV[23] for extracting

216 Big Data Mining and Analytics, September 2022, 5(3): 206–227

Fig. 12 Sample images collected using same cameras. Left: camera 1 & right: camera 2.

Fig. 13 Sample images collected using different cameras. Left: camera 1 & right: camera 2.

the image frames from each of the videos. Each video
was for a duration of 1 minute and 20 seconds. A second
of video feed resulted in approximately 30 image frames
being extracted and we extracted all the frames from the
entire video feed for creating the dataset corresponding
to each of the cameras. Note that for some of the
videos, each second of video feed gave us either less
than or more than 30 frames and hence the total number
of images in the dataset corresponding to each of the
cameras is not a multiple of 30. The details of the
metadata of this dataset is provided in Table 1.

5 Experiments & Results

For each dataset we used 80% of the data, selected
randomly, for training and the remaining 20% of the
data for testing. All the experiments were conducted on
a system having an AMD Ryzen thread-ripper processor,
64 GB of RAM, a NVIDIA 2080 Ti GPU running
Ubuntu Linux at version 20.04. We used a batch size

of 25 and trained the network for 300 iterations. Note
that we did not use an early stopping criteria and let the
training proceed till the end. We used the training set
to train the network architecture described in Section 3
and tested the trained network on the randomly selected
test data. The experiments were repeated for each of
the datasets and its subsets as described in Table 1.
We report the training and test accuracy for each of
the datasets in Table 2. It must be pointed out that
the accuracy as reported in the tables does not give a
complete picture of the performance of the system. A
more intuitive method is to present the confusion matrix
that shows the true positive, false positive, false negative,
and true negative in the form of a matrix for each of
the classes under consideration. This presents an insight
into how the system works by identifying the correct
classes of the input and also shows how many of the
input values are wrongly classified and how. Since this
is a standard technique in the data science community,

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 217

Table 2 Training and test accuracy for different datasets.
(%)

Dataset name Training
accuracy

Test
accuracy

Two Camera
(Indoor)

Recording 1 99.78 99.71
Recording 2 100.00 100.00
Recording 3 92.88 92.26
Recording 4 98.24 98.20

Four Camera
(Outdoor)

Set 1 97.62 97.22
Set 2 97.04 96.98
Set 3 98.62 98.26

Set 4 (middle 1 min) 97.06 95.69
Checkerboard

(Indoor)
Set 1 (Identical) 92.74 91.58

Set 2 100.00 100.00

we present the confusion matrices of the two-camera
dataset (recordings 1, 2 and 3, 4), the four-camera data
and the checkerboard data in Figs. 14–18, respectively.

6 Discussion

In this section we discuss some of the observations from
our experiments. Specifically we look at the features

learned through the first convolutional layer and finally
the features learned by the entire trained network. Finally
we revisit the accuracies from Table 2 and try to explain
the observations in light of the feature maps learned by
the network for each of the datasets.

6.1 Features from convolution

We start by looking at the features learned by the first
convolutional layer of the network. Figure 19 shows
an image from the first recording of the two camera
system and the corresponding feature map learned from
the first convolutional layer. We observe that the features
not only accurately capture important artifacts from
the scene, but it also captures the noise in the image
as introduced by the camera used for capturing the
same. This is important as the image features combined
with the noise can create unique signatures that can in
turn be used for identification of the source camera.
The features learned in this layer can be used by the
subsequent hidden layers to synthesize these unique
camera signatures. We see the same pattern for the

Fig. 14 Confusion matrices for the two-camera dataset: Left: Recording 1, Right: Recording 2.

Fig. 15 Confusion matrices for the two-camera dataset: Left: Recording 3, Right: Recording 4.

218 Big Data Mining and Analytics, September 2022, 5(3): 206–227

Fig. 16 Confusion matrices for the four-camera dataset: Left: First one minute recording, Right: Last one minute recording.

Fig. 17 Confusion matrix for the four-camera dataset: middle four minute recording.

Fig. 18 Confusion matrices for the checkerboard camera dataset: Left: Identical camera manufacturer, Right: Different
camera manufacturer.

images from recording 4 of the two-camera dataset
(Fig. 20) and a sample image from the four-camera
dataset (Fig. 21). We have found the same pattern for
all the images from other datasets but we refrain from
showing them here due to space constraints.

In order to understand why the network is able to learn
features that are able to discriminate between different
cameras, we looked at the checkerboard dataset where
the two cameras were looking at the same checkerboard
pattern. We looked at the feature maps learned from

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 219

Fig. 19 Sample image from two-camera dataset recording 1 and the corresponding feature map learned by the first
convolutional layer.

Fig. 20 Sample image from two-camera dataset recording 4 and the corresponding feature map learned by the first
convolutional layer.

Fig. 21 Sample image from four-camera dataset Set 1 of recording and the corresponding feature map learned by the first
convolutional layer.

the first convolutional layer for one image from the first
camera and the corresponding image from the second
camera. The images and the corresponding feature maps

are shown in Figs. 22 and 23. Note that these are the
images of approximately the same scene as seen by two
cameras from different manufacturers.

220 Big Data Mining and Analytics, September 2022, 5(3): 206–227

Fig. 22 Corresponding images from cameras 1 and 2 of the checkerboard dataset where the cameras are from different
manufacturers.

Fig. 23 Feature maps learned by the network after first convolutional layer for images shown in Fig. 22.

Now we look at the difference between the learned
feature maps. The intuition is that if the feature maps
do not contain any discriminative information, then the
difference image would be mostly featureless. However,
if there are differences in features between the two
cameras, then the difference image would be able to
capture these differences. The difference image for the
feature maps from Fig. 23, which shows images from

cameras having different manufacturers observing an
approximately similar scene, is shown in Fig. 24. We
observe that the difference image of the feature maps
is non-trivial and contains features that capture the
differences in the feature maps of the corresponding
images. Intuitively, the features contributing to the
difference map are being learned by the network from
each image and finally mapped into a higher dimensional

(a) (b)
Fig. 24 (a) Difference of feature maps shown in Fig. 23, (b) Same image for identical cameras.

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 221

feature space in a way that the images from two
different camera, even though of approximately identical
scenes, are mapped to different regions in the high
dimensional feature space. This in turn allows the
network to discriminate between the cameras, based
on the image features. The difference image for the case
of two identical cameras looking at an approximately
similar scene is shown in Fig. 24b. We see a similar
type of difference image as in the previous case, that
captures difference in the signatures between the two
cameras. This is enhanced by the network to learn
discriminative features in the high dimensional space.
The fact that the features learned in the high dimensional
space are separable according to the source cameras,
is clearly established by the plots of the principle
components and the t-SNE of the features learned in
the penultimate layer of our network. We look at these
next.

6.2 Final feature maps & accuracy

Here we look at the final feature maps learned by
the network. Note that the final features learned by the

network is computed by the penultimate layer of the
network, which in our case has a dimension of 2048. As
a result, the latent feature space learned by the network
has dimension 2048. In order to visualize the features
in this layer we use two methods, namely, the principal
components analysis (PCA) and t-SNE[24, 25]. The results
are shown in Figs. 25–34. We observe that in almost
all the cases the features corresponding to each camera
are separated out in well defined clusters. Of particular
interest is the case of the checkerboard dataset when
the cameras are from the same manufacturer. From
Table 2 we observe that the test accuracy for this case
is 91:58% which is considerably lower than that of the
case of two cameras from different manufacturers. The
training accuracy for this case is also lower than
the corresponding case of cameras from different
manufacturers. We can partially explain this observation
from the PCA and t-SNE plots of Fig. 33. We see that
there is a considerable overlap between the features
learned from the two cameras. Thus, even though for
the most part the features are well separated, there is a
region in the feature space where they overlap and this

Fig. 25 Cluster of projection of final feature maps learned by the network for recording 1 of the two-camera dataset.

Fig. 26 Cluster of projection of final feature maps learned by the network for recording 2 of the two-camera datasets.

222 Big Data Mining and Analytics, September 2022, 5(3): 206–227

Fig. 27 Cluster of projection of final feature maps learned by the network for recording 3 of the two-camera datasets.

Fig. 28 Cluster of projection of final feature maps learned by the network for recording 4 of the two-camera datasets.

Fig. 29 Cluster of projection of final feature maps learned by the network for Set 1 in the four-camera dataset.

intersection results in difficulty of categorizing the input
as being from one camera or the other. We also observe
from Fig. 34 that for the case of cameras from different
manufacturers, the features learned by the system are
well separated into distinct clusters, thus allowing for
accurate disambiguation.

Note that we can draw similar conclusions for the case

of the third recording from the two-camera dataset. As
seen from Fig. 27, it is evident that the features learned
by the network overlap in the feature space resulting in
the difficulty of disambiguation.

6.3 Time complexity

In this section we present the time complexity of our

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 223

Fig. 30 Cluster of projection of final feature maps learned by the network for Set 2 in the four-camera dataset.

Fig. 31 Cluster of projection of final feature maps learned by the network for Set 3 in the four-camera dataset.

Fig. 32 Cluster of projection of final feature maps learned by the network for Set 4 in the four-camera dataset.

model for the task of digital camera identification. It
must be pointed out that training the network can
be considered as a pre-processing step and hence the
training time can be considered as a overhead that does
not add to the actual computation time of the network
during the testing phase. Moreover, in theory the testing
phase requires O.1/ time and hence can be considered

to be a constant time operation per input. However, in
practice this time might vary depending on the neural
network architecture and the implementation. Hence it
is important to consider the empirical running time for
the testing phase in order to understand the efficacy of
the network during deployment. As a result when we
talk about the time complexity of a neural network, it is

224 Big Data Mining and Analytics, September 2022, 5(3): 206–227

Fig. 33 Cluster of projection of final feature maps learned by the network for the checkerboard dataset with the same cameras.

Fig. 34 Cluster of projection of final feature maps learned by the network for the checkerboard dataset with two different
cameras.

usually the average testing time of the network computed
empirically. For the training time, people are usually
interested in theoretical bounds on the time to train a
given network architecture. Here we first present the
empirical results on the running time of our network
during testing with each dataset.

Table 3 shows the average testing time of our trained
neural network model on 100 images for each of the

Table 3 Average testing time with 100 images from each
dataset.

Dataset name Average time (s)

Two Camera
(Indoor)

Recording 1 14.488
Recording 2 14.387
Recording 3 14.376
Recording 4 14.386

Four Camera
(Outdoor)

Set 1 14.753
Set 2 14.727
Set 3 14.873

Set 4 (middle 1 min) 14.933
Checkerboard

(Indoor)
Set 1 (Identical) 15.033

Set 2 14.757

datasets. Note that these times are computed with our
reference implementation without sophisticated code
optimizations that are typically employed in production
systems. Based on these numbers we can conclude that
the average testing time for an image using this model
is approximately 0.1 s. We must point out that for most
applications of digital camera identification, this is an
acceptable ballpark time. Moreover as shown in Section
6.4, the current state of the art for this task using noise
based correlation, requires considerably larger time on
the same datasets.

Understanding the time complexity of training a
neural network is still an evolving research area. In
Ref. [26], the authors proved that a neural network of
depth ı can be learned in poly.s2

ı
/ time, where s is the

dimension of the input, and poly.�/ takes a constant time
depending on the configuration of the system. However,
the convolution operations of CNN add additional time
complexity along with the forward and back-propagation
operations. In Ref. [27], the authors mentioned that the

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 225

time complexity for training all the convolutional layers

is: O.
�P
�D1

.���1�
2
� � ���

2
� /, where � is the number of

convolutional layers, � is the index of a convolutional
layer, ���1 is the number of input channels of the � -th
layer, �� is the spatial size of the filters at the � -th layer,
�� is the number of filters at the � -th layer and �� is
the size of the output features of the �-th layer. Using
these results one can compute a theoretical bound on the
training time of our network. We refrain from getting
the exact bound here as it is only of theoretical interest
and we see no meaningful purpose being served by
this effort. Interested readers can substitute the values
of the associated parameters from the neural network
architecture and get the bound if desired.

6.4 Comparison with state-of-the-art

The current state-of-the-art for digital camera
identification is based on work by Lukas et al.[14]

As discussed in Section 2, this work uses the idea
of “sensor pattern noise” if an image for identifying
the camera that was used to obtain the image. Given
reference images from a camera, the algorithm first
computes the “reference pattern noise” for the same.
Note that this is equivalent to training our neural
network. Finally, given an image the algorithm extracts
the “sensor pattern noise” from the image and computes
the correlation between this noise and the “reference
pattern noise” for all the candidate cameras. Then it
uses a threshold based method to identify the camera.
We used the reference implementation available from
https://github.com/andrewlewis/camera-id for this work.
Here we present the results of using this method on the
second recording from the two-camera dataset and the
identical camera data from the checkerboard dataset (see
Table 4). We contrast these with the results obtained

Table 4 Average testing time with 100 images from each
dataset for Lukas method.

Dataset name Average time (s)
Two camera

(Indoor)
Recording 2 605.834

Checkerboard
(Indoor)

Set 1 (Identical) 606.74

from our method. Note that we have tried using this
algorithm with data from the four-camera dataset but the
algorithm was not able to successfully learn the sensor
pattern noise from the data. This happened with all the
recordings from the four-camera dataset. This might be
due to the fact that the cameras being used for obtaining
the four camera data produce high resolution images
and hence the algorithm fails to extract the sensor noise
pattern. Though this is something that we did not expect,
but this also goes on to show one of the advantages
of our approach. Moreover note that for the second
recording of the two-camera dataset, the time required
to obtain the “reference pattern noise” is around 4 hours.
This is in contrast to the time required for training our
system on the same dataset which is approximately 30
minutes using the same hardware. All of the recordings
in the four camera data is larger than the two camera
one and hence if Lukas et al. algorithm[14] would have
worked, it would have required more training time with
this dataset. This is also one of the disadvantages of this
method.

For the second recording of the two-camera dataset,
our algorithm has zero errors. However for the same
dataset the algorithm of Lukas et al. makes a total of
206 mistakes evenly spread across both the classes (see
Fig. 35). Thus for example, 101 instances from camera
1 are mis-classified as coming from camera 2 whereas
105 instances from camera 2 are classified as camera
1. This clearly shows that our method outperforms the

Fig. 35 Results from Lukas method. Left: Confusion matrix for recording 2 of the two-camera dataset. Right: Confusion
matrix for checkerboard dataset with identical cameras.

226 Big Data Mining and Analytics, September 2022, 5(3): 206–227

state-of-the-art on this dataset. Finally, we would also
like to point out that the our method also gets the best
of Lukas et al.[14] in terms of the empirical running time
both at the training and test phases.

For the checkerboard dataset with identical cameras
(see Fig. 35), our algorithm makes 81 mistakes all for
the second camera images which are predicted as being
taken by the first camera. However using Lukas et al.
algorithm, the total number of mistakes is 245 split over
both the classes almost evenly. Thus out of the total of
245 instances, 116 instances of camera 1 are classified as
coming from camera 2 whereas 129 instances of camera
2 are classified as coming from camera 1. This clearly
establishes the efficacy of our algorithm over the method
of Lukas et al. We must point out that the checkerboard
dataset with two cameras is the hardest dataset among all
the datasets. Even then our algorithm beats the algorithm
of Lukas et al. by almost a factor of three in terms of
accuracy. In terms of empirical running time during the
training and test phases, our algorithm also gets the best
of the state-of-the-art.

7 Conclusion

In this work we have shown an implementation of an
end-to-end digital camera identification system using
images from the cameras. We have conducted extensive
experiments with data collected in both indoor and
outdoor settings, using inexpensive cameras and have
demonstrated the possibility of using such systems for
building automated computationally efficient digital
camera identification systems. Our work builds upon the
success of deep neural networks for image processing
albeit the fact that the system is intuitively processing
the difference of the signatures of the cameras as learned
through the convolutional layers and enhancing the same
to learn discriminative features in a high dimensional
feature space. Going forward we would like to explore
more on the “explainability” aspect of this system.
More precisely, we would address the question of why
the features learned by the network result in accurate
discrimination between the cameras. We would also want
to understand the intrinsic nature of the learned features
and map them back to specific artifacts of the images.
That would be the final objective and would help us not
only understand this system but the learning process of
neural networks in general.

References

[1] P. Rai and M. Rehman, ESP32 based smart surveillance

system, in Proc. 2019 2nd Int. Conf. Computing,
Mathematics and Engineering Technologies, Sukkur,
Pakistan, 2019, pp. 1–3.

[2] M. A. Alsmirat, Y. Jararweh, I. Obaidat, and B. B. Gupta,
Internet of surveillance: A cloud supported large-scale
wireless surveillance system, J. Supercomput., vol. 73, no.
3, pp. 973–992, 2017.

[3] A. Koutsia, T. Semertzidis, K. Dimitropoulos, N.
Grammalidis, and K. Georgouleas. Intelligent traffic
monitoring and surveillance with multiple cameras, in Proc.
2008 Int. Workshop Content-Based Multimedia Indexing,
London, UK, 2008, pp. 125–132.

[4] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B.
Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J.
K. Zhang, et al., End to end learning for self-driving cars,
arXiv preprint arXiv: 1604.07316, 2016.

[5] S. Haji and A. Varol, Real time face recognition system
(RTFRS), in Proc. 2016 4th Int. Symp. Digital Forensic and
Security, Little Rock, AR, USA, 2016, pp. 107–111.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet
classification with deep convolutional neural networks,
in Proc. 25th Int. Conf. Neural Information Processing
Systems, Lake Tahoe, NV, USA, 2012, pp. 1097–1105.

[8] D. Roy, T. Mukherjee, M. Chatterjee, E. Blasch, and E.
Pasiliao, RFAL: Adversarial learning for RF transmitter
identification and classification. IEEE Trans. Cognit.
Commun. Netw., vol. 6, no. 2, pp. 783–801, 2020.

[9] Z. Mao, A. D. Jagtap, and G. E. Karniadakis, Physics-
informed neural networks for high-speed flows, Comput.
Methods Appl. Mech. Eng., vol. 360, p. 112789, 2020.

[10] Q. Wang, J. R. Hopgood, N. Finlayson, G. O. S. Williams,
S. Fernandes, E. Williams, A. Akram, K. Dhaliwal, and M.
Vallejo, Deep learning in ex-vivo lung cancer discrimination
using fluorescence lifetime endomicroscopic images, in
Proc. 2020 42nd Annu. Int. Conf. IEEE Engineering in
Medicine & Biology Society, Montreal, Canada, 2020, pp.
1891–1894.

[11] X. Li, M. He, H. Li, and H. Shen, A combined loss-based
multiscale fully convolutional network for high-resolution
remote sensing image change detection, IEEE Geosci.
Remote Sens. Lett., vol. 19, p. 8017505, 2021.

[12] B. Chesney and D. Citron, Deep fakes: A looming challenge
for privacy, democracy, and national security, Calif. Law
Rev., vol. 107, pp. 1753–1820, 2019.

[13] H. Farid, Creating, weaponizing, and detecting deep fakes,
https://www.usenix.org/conference/usenixsecurity19/presen
tation/farid, 2019.

[14] J. Lukas, J. Fridrich, and M. Goljan, Digital camera
identification from sensor pattern noise, IEEE Trans. Inf.
Forensics Secur., vol. 1, no. 2, pp. 205–214, 2006.

[15] S. Bayram, H. Sencar, N. Memon, and I. Avcibas, Source
camera identification based on CFA interpolation, in Proc.
IEEE Int. Conf. Image Processing 2005, Genova, Italy,
2005, p. III-69.

[16] K. R. Akshatha, A. K. Karunakar, H. Anitha, U.

Chaity Banerjee et al.: Deep Feature Learning for Intrinsic Signature Based Camera Discrimination 227

Raghavendra, and D. Shetty, Digital camera identification
using PRNU: A feature based approach, Digital Invest., vol.
19, pp. 69–77, 2016.

[17] J. Bernacki, Robustness of digital camera identification with
convolutional neural networks, Multimed. Tools Appl., vol.
80, no. 19, pp. 29657–29673, 2021.

[18] D. Freire-Obregón, F. Narducci, S. Barra, and M. Castrillón-
Santana, Deep learning for source camera identification on
mobile devices, Pattern Recogn. Lett., vol. 126, pp. 86–91,
2019.

[19] M. De Marsico, M. Nappi, D. Riccio, and H. Wechsler,
Mobile iris challenge evaluation (MICHE)-I, biometric iris
dataset and protocols, Pattern Recogn. Lett., vol. 57, pp.
17–23, 2015.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
Going deeper with convolutions, in Proc. 2015 IEEE Conf.
Computer Vision and Pattern Recognition, Boston, MA,
USA, 2015, pp. 1–9.

[21] N. Sharma, V. Jain, and A. Mishra, An analysis of
convolutional neural networks for image classification.

Procedia Comput. Sci., vol. 132, pp. 377–384, 2018.
[22] X. Glorot and Y. Bengio, Understanding the difficulty of

training deep feedforward neural networks, in Proc. 13th

Int. Conf. Artificial Intelligence and Statistics, Sardinia,
Italy, 2010, pp. 249–256.

[23] G. Bradski and A. Kaehler, Learning OpenCV: Computer
Vision with the OpenCV Library, Sebastopol, CA, USA:
O’Reilly Media, 2008.

[24] K. P. Murphy, Machine Learning: A Probabilistic
Perspective. Cambridge, MA, USA: MIT Press, 2012.

[25] L. van der Maaten and G. Hinton, Visualizing data using
t-SNE, J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605,
2008.

[26] R. Livni, S. Shalev-Shwartz, and O. Shamir, On the
computational efficiency of training neural networks, in
Proc. 27th Int. Conf. Neural Information Processing
Systems, Montreal, Canada, 2014, pp. 855–863.

[27] K. He and J. Sun, Convolutional neural networks at
constrained time cost, in Proc. 2015 IEEE Conf. Computer
Vision and Pattern Recognition, Boston, MA, USA, 2015,
pp. 5353–5360.

Chaity Banerjee earned the MS and PhD
degrees in computer science from Florida
State University both in 2017. Currently
she is a postdoctoral associate in the
Department of Industrial Engineering at
the University of Central Florida. Her
research interests include machine learning,
data analysis, feature segmentation and

localization in big data including Cryo-EM tomography and
Single particle electron microscopy.

Tharun Kumar Doppalapudi earned the
MS degree in computer science from The
University of Alabama in Huntsville in
2021. His research interests include deep
learning and its applications to real world
problems.

Eduardo Pasiliao Jr. is a senior research
engineer at the Air Force Research
Laboratory Munitions Directorate (Eglin
AFB FL) and the director of the AFRL
Mathematical Modeling and Optimization
Institute. He received the BS degree in
mechanical engineering from Columbia
University, ME degree in coastal and

oceanographic engineering, and PhD degree in industrial and
systems engineering from the University of Florida in 1992, 1995,
and 2003, respectively. His research interest is in mathematical
optimization with emphasis on social and communication
networks.

Tathagata Mukherjee earned the MS
and PhD degrees in computer science
from Florida State University in 2014
and 2016, respectively. Currently he is an
assistant professor in Computer Science
at the University of Alabama in Huntsville.
He has worked extensively with software
defined radios with applications to assured

communication and passive sensing. His research interests are
broadly in the areas of cyber-security and network forensics
where he is interested in applying machine learning, data analytics
and optimization techniques for offensive security, malware
analysis and Internet forensics. He is also interested in quantum
computing and its applications, the theory and application of deep
learning, and graph theory.

