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Abstract: As a high-tech strategic emerging comprehensive industry, the nuclear industry is committed to the

research, production, and processing of nuclear fuel, as well as the development and utilization of nuclear energy.

Nowadays, the nuclear industry has made remarkable progress in the application fields of nuclear weapons, nuclear

power, nuclear medical treatment, radiation processing, and so on. With the development of artificial intelligence

and the proposal of “Industry 4.0”, more and more artificial intelligence technologies are introduced into the nuclear

industry chain to improve production efficiency, reduce operation cost, improve operation safety, and realize risk

avoidance. Meanwhile, deep learning, as an important technology of artificial intelligence, has made amazing

progress in theoretical and applied research in the nuclear industry, which vigorously promotes the development of

informatization, digitization, and intelligence of the nuclear industry. In this paper, we first simply comb and analyze

the intelligent demand scenarios in the whole industrial chain of the nuclear industry. Then, we discuss the data

types involved in the nuclear industry chain. After that, we investigate the research status of deep learning in the

application fields corresponding to different data types in the nuclear industry. Finally, we discuss the limitation and

unique challenges of deep learning in the nuclear industry and the future direction of the intelligent nuclear industry.
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1 Introduction

Nuclear industry generally refers to a comprehensive
emerging industry engaged in the production, processing,
and research of nuclear fuel, as well as the utilization
and development of nuclear energy. As a high-
tech strategic industry, the nuclear industry involves
nuclear raw materials, nuclear fuel, Nuclear Power
Plants (NPPs), nuclear power, nuclear weapons, and
so on. For national defense and security, nuclear
weapons with mass destruction are the basis of modern
military strategies of some countries[1]. For the national
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economy, the nuclear industry can convert nuclear
energy into electric energy, thermal energy, and
mechanical power, so as to obtain safe and clean energy.
Nuclear power, as clean energy, actively responds
to the consensus of the Paris Agreement[2] and the
Chinese plan for peak carbon dioxide emissions[3].
In addition, the nuclear industry can also provide
radioisotopes for radiation processing, food preservation,
medical diagnosis, geological exploration，and other
fields[4, 5]. In the field of nuclear medicine, nuclear
technology can be used to diagnose and treat
diseases by the common imagining equipment, e.g.,
Positron Emission Tomography/Computed Tomography
(PET/CT) and Single-Photon Emission Computed
Tomography (SPECT)/CT[6–8]. Figure 1 shows that
specific application fields are covered by the nuclear
industry. From Fig. 1, we can find that nuclear
technology has penetrated into various fields and has
a significant impact on national development, social
progress, scientific research, and so on.
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Fig. 1 Common application fields of the nuclear industry. The first column on the left represents the weapon equipment,
motor, medical, chemical industry, and other disciplines involved in the nuclear industry. The second column on the left lists the
manufacturers, as well as the Research and Development (R&D) institutions related to the nuclear industry. On the right side of
the figure, nuclear industrial applications are divided into nuclear energy utilization and non-nuclear energy utilization. Among
them, nuclear power converts nuclear energy into electric energy by controllable nuclear reaction belonging to nuclear energy
utilization, and nuclear medical belongs to non-nuclear energy utilization.

With the promotion and development in the fields of
nuclear power and nuclear medical, the nuclear industry
has gradually formed a complete industrial chain
structure, and its demand for intelligent manufacturing
is becoming increasingly urgent. The utilization of
Artificial Intelligence (AI)[9] technologies can improve
the quality and efficiency of the nuclear industry
production and reduce the operation cost at each
operation stage of the nuclear industry chain[10].
Moreover, the nuclear industry will produce radioactive
waste, and there is also the risk of nuclear energy leakage
caused by the failure of nuclear reactor. The introduction
of AI technologies can assist the nuclear spent fuel
reprocessing, the treatment, storage, and disposal of
the radioactive waste, as well as the accident relief of
NPPs, so as to ensure the safe operation of the nuclear
industry and reduce the risk of human operators to a great
extent[11]. Furthermore, with the rapid development
of AI technologies and their deep integration
with manufacturing, aviation, military, medicine,
transportation and so on, cross fields, such as smart
city[12–14], intelligent transportation[15–17], intelligent
medical system[18–20], industrial intelligence[21–23], have

emerged like bamboo shoots after a spring rain. It
is worth mentioning that Tsinghua University defines
the “industrial intelligence” as the use of AI and other
theories and methods to solve the technical problems
of operation, management, research and development,
production, and service in the process of industrial
manufacturing�. The United States, Germany, China,
and other countries have used AI technologies to
realize industrial intelligence, in order to improve the
competitiveness of national industry through industrial
intelligence, so as to take the lead in the new round of
the industrial revolution, i.e., the “Industry 4.0”[24–29].

The development of AI is inseparable from the
accumulation of massive data and the increasing
improvement of computing power, as well as
the proposal and in-depth research of Neural
Networks (NNs) methods[30–32]. In 2006, Hinton
and Salakhutdinov[33] published the pioneering work of
Deep Neural Networks (DNNs) in the journal Science,
and put forward the concept of Deep Learning (DL),
which set off an upsurge of academic research on

* https://www.au.tsinghua.edu.cn/kxyj/xkfx.htm.
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DL. In 2015, Lecun, Bengio, and Hinton[34], the three
giants of DL who won the Turing Award, published
a review article on DL in the journal Nature, which
further promoted the theoretical research and application
development of DL. Moreover, the improvement of
mass storage technology enables researchers to design
large-scale network models and solve more complex
problems. The emergence of high-performance Graphics
Processing Unit (GPU) also greatly improves the speed
of numerical and matrix operation, and significantly
shortens the running time of DL algorithms[35]. At
present, DL has made amazing achievements in
Computer Vision (CV) tasks such as image classification
and object detection[36, 37], Natural Language Processing
(NLP) tasks such as natural language generation and
machine translation[38, 39], speech recognition[40, 41],
and multi-modal learning[42–46]. As an important
technical means of AI, DL methods have also been
widely used in the nuclear industry with the upsurge
of industrial intelligence concept recently, and great
progress has been made in theoretical research and
application research in the field of the intelligent nuclear
industry[30, 47–49].

As shown in Fig. 1, the complete nuclear industry
chain is based on nuclear resources and integrates
exploration, development, research, application,
service, and so on. Nuclear fuel production, reactor
construction, nuclear spent fuel reprocessing, nuclear
weapon manufacturing, and other scenarios require
system design, equipment manufacturing, construction,
commissioning, and operation[1, 50]. It has the ability
to standardize, serialize, mass produce, research, and
develop a new generation of the intelligent nuclear
industry. Therefore, applying DL technologies to
all segments of the complete nuclear industry chain
can promote the development of informatization,
digitization, intelligence of the nuclear industry[51–53].
Among them, the nuclear power industry involves
nuclear fuel supply, nuclear power equipment
manufacturing, nuclear power engineering design
and construction, nuclear power technical service and
guarantee, nuclear spent fuel reprocessing, radioactive
waste disposal, etc. Nuclear power is the most common
nuclear industry system, and the most extensive
application field of the nuclear industry combined with
DL technologies[54–57].

In this paper, we first analyze the upstream, midstream,
and downstream segments that are able to introduce
intelligence in the whole industrial chain of nuclear

power industry in Section 2. Among them, we describe
the intelligent demand scenarios for AI in detail in
Subsection 2.1. Then, we sort out the data types
involved in each segment of the nuclear industry chain
in Subsection 2.2. After that, we present the theoretical
research status and application development of DL
technologies in the nuclear industry chain corresponding
to different data types in Section 3. Moreover,
considering that nuclear medicine is quite different from
the nuclear industry chain using nuclear energy, such as
nuclear power, we also introduced the research status
of DL in the field of nuclear medicine in Subsection
3.4. In Section 4, we discuss the limitations and unique
challenges of DL in the nuclear industry and the future
direction of the intelligent nuclear industry. Finally, we
provide the conclusion in Section 5.

2 Nuclear Industry Chain

As the most common and complete nuclear industry
system in the nuclear industry, the nuclear power
industry chain involves all segments, such as mining,
manufacturing, development, research, and processing,
as well as requires a certain degree of supervision
and capital investment in all segments[58]. Thus, deep
learning can be applied to many segments of the
nuclear power industry chain and generalized to other
nuclear industries, so as to promote the development
of the nuclear industry intelligence. Figure 2 shows
the nuclear power industry chain with three basic
segments, i.e., upstream, midstream, and downstream.
Among them, the upstream segment is mainly nuclear
fuel supply and raw material production, including
the mining of natural uranium materials, nuclear fuel
processing for manufacturing nuclear fuel elements, and
nuclear fuel cycle. The midstream segment is mainly
the manufacturing of nuclear power core components,
mainly including nuclear island equipment, conventional
island equipment, and auxiliary systems, as well as
the manufacturing of corresponding instrument control.
The downstream segment is mainly the design and
construction, operation, as well as maintenance of
NPPs. In addition, the downstream segment of the
nuclear power industry chain also involves spent fuel
reprocessing, which is closely related to the fuel cycle in
the upstream segment of the nuclear industry chain[59].

2.1 Intelligent demands in nuclear industry

Aiming at the upstream, midstream, and downstream
segments of the nuclear power industry chain, we
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Fig. 2 Nuclear power industry chain with upstream, midstream, and downstream segments. Among them, the upstream
segment is mainly nuclear fuel supply, the midstream is nuclear equipment manufacturing, and the downstream is nuclear
power plant design, operation, and maintenance.

summarize some nuclear industry application scenarios
that can introduce DL technologies as follows.
� Upstream of nuclear industry chain. In the

nuclear fuel supply of upstream segment, the DL
methods can be utilized to construct the knowledge
graph related to the natural uranium[60, 61]. Then, the
constructed knowledge graph is able to guide the organic
combination and interconnection of natural uranium
exploration, mining design, mine production, and other
uranium mining links, so as to improve the exploration
efficiency, reduce the mining time, and resolve the high-
risk and high hazard elements in the mining process.
In the nuclear material process link, the DL method
can also be introduced to manage and analyze the
massive processing data for the real-time monitoring and
adjustment of processing equipment[62]. Furthermore,
DL methods based on multi-objective optimization can
be used to optimize the parameters of the processing
operation for improving the yield and quality of nuclear
fuel elements, as well as the manufacturing efficiency[63].
� Midstream of nuclear industry chain. In the

nuclear equipment manufacturing of midstream segment,
DL methods can be used to analyze and process the
massive structured, unstructured, and semi-structured
data generated by design, production, and operation of
the nuclear island, conventional island, auxiliary system,
and instrument control equipment, so as to provide
intelligent analysis and decision-making system[64].
Moreover, in nuclear equipment manufacturing, high
labor costs and low labor productivity exist side by
side, and the working and operation environments of
equipment production are difficult to control. Thus,
the DL methods can be introduced to detection,

classification, clustering, and other simple tasks that
need a manual repeated operation.
� Downstream of nuclear industry chain. In the

design and construction, operation, and maintenance of
NPPs of downstream, DL methods can be introduced
to create an integrated, digital, intelligent, and life-
cycle NPPs platform. Moreover, a big-data analysis
GPU computing platform based on DL can also be
built to support a multi-physical field coupled and
multi-parametric digital reactor design suite. In the
operation and maintenance stage, special industrial robot
embedded with DL models can be widely used to
complete equipment regular inspection, environmental
detection, underwater welding, emergency rescue, and
other operations in hard-to-reach areas with strong
radioactivity, so as to realize the long-term, safe, and
economic operation of the nuclear industry[52, 65, 66]. In
the spent fuel reprocessing stage, DL methods can be
used to study the highly nonlinear relationship between
operating conditions and uranium resource utilization
efficiency, so as to realize the real-time optimization of
operating parameters and improve the efficiency of spent
fuel recycling.

In general, DL and other AI methods can be
introduced into many links in the whole nuclear power
industry chain to speed up the pace of the nuclear
industry towards Industry 4.0[62, 67]. The most intuitive
and common applications are to use various DL methods
to manage, analyze, and predict the massive production
data, operation data, external data, prediction data, and
other big-data in the whole nuclear industry chain, so
as to realize the data-driven intelligent decision analysis
system, as well as assist nuclear power operators and
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researchers in the intelligent management of the whole
nuclear industry chain.

2.2 Data types in nuclear industry chain

Recently, with the development of big-data technology
and Internet of Things (IoT) applications, various
data types will be involved in the whole nuclear
industry chain. In addition to the basic data types
(e.g., equipment data, industrial informatization data,
and industrial chain related data), the user behavior
data, social relationship data, periodic data collected
by sensors, Internet data obtained by web crawlers,
and other potentially meaningful data are covered in
the nuclear industry chain. It is very necessary to
effectively utilize and analyze these diversified data
in the nuclear industry chain. As the most popular
Machine Learning (ML) method studied and applied
at present, DL technologies realize AI by Artificial
Neural Network (ANNs)[33, 34]. DL methods carry out
feature extraction and expression through unsupervised,
semi-supervised, and fully-supervised learning. The low
efficiency and subjective problem of feature engineering
in traditional ML methods, as well as the generalization
dilemma of the single static model are solved well by
DL methods[68]. Thus, DL methods have immeasurable
application potential in the nuclear industry. Due to the
deep mining of data values in the nuclear industry by
DL methods, the development of data-driven intelligent
innovation in the nuclear industry is unstoppable.

At the same time, more and more deep neural
networks used to analyze different data types (e.g.,
image, video, text, speech, and multi-modal data) have
been proposed with the deepening of deep learning
research. Most DL models are based on Deep Belief
Network (DBN)[69], Convolutional Neural Network
(CNN)[70], Recurrent Neural Network (RNN)[71],
Long Short-Term Memory (LSTM)[72], and General
Advantageous Net (GAN)[73], etc. Variants of these
models are widely used in CV, speech recognition, NLP,
and other industrial applications, as well as achieve
excellent results. As shown in Fig. 3, in order to
more clearly and intuitively summarize the application
research of deep learning in the whole nuclear industry
chain, we first analyze the data types in the nuclear
industry chain. Then, for each data type, we briefly
introduce the development of deep learning in these data
types and corresponding applications.
� Graphic/image/video data. In the construction

and operation of the nuclear industry, it will

Fig. 3 Common data types of the nuclear industry chain.
Among them, the audio data, sensor signal data, and
text/document data can be divided into sequence data. The
image and video data, and molecular imaging data belong to
visual image data. The multi-modal data refers to data from
multiple sources or forms.

involve traditional engineering drawings (e.g., designed
computer aided design drawings), as well as a large
number of images and video data for monitoring
the operating environment and equipment working
conditions. Because of powerful visual feature extraction
ability, CNNs models have been widely used in the
field of CV[34, 74]. With the expansion of problem scale,
more and more variants of CNNs (e.g., VGGNet,
GoogLeNet, ResNet, DenseNet) have been proposed
and successfully applied to object detection, semantic
segmentation, image caption, and other complex CV
application scenarios[36, 75, 76]. Applying CNNs-based
models in the nuclear industry are able to quickly and
effectively analyze the graphics, images, and videos,
which can strengthen the automatic operation monitoring
of key equipment and improve the safety of operation.
� Text/document data. In the nuclear industry,

text and document data (e.g., equipment parameters,
professional references, and simulation data) are also
often involved. The NLP technologies enable computers
to understand the meaning of natural language. The
LSTM and word2vec are successful in many simple
NLP tasks, such as text classification. The transformer
models[77] with attention mechanism make achievements
in the natural language generation tasks, such as machine
translation. After that, the Bert model[78] is designed
to pre-train the unlabeled text data for deep feature
representation. Then, the fine-tuned Bert model can
achieve state-of-the-art results in various NLP tasks.
Applying NLP technologies in the nuclear industry can
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model text/document data to make the computer have
the ability to understand and analyze natural language,
which can further realize the automation of the nuclear
industry construction and the intelligent operation[79].
� Audio data. The nuclear industry has high

requirements for safe management. The simulation of
NPPs in the personnel training plan must reproduce
the situation faced by operators in the actual operation.
One purpose of the simulation is to support the design
of new control systems or ergonomic evaluation of
existing control systems, so as to improve man-machine
interaction and operation safety[80]. When an abnormal
situation occurs, the operators must quickly judge the
accident situation from the corresponding variables and
alarm indications. In these scenarios, the corresponding
automatic speech recognition system can be developed
based on DL to recognize speech commands and perform
the required tasks without the manual intervention of
the operator. Moreover, speech recognition can also be
studied based on DL[81], so as to improve the security of
management, as well as solve the problems of multi-level
access control and industrial robot authentication.
� Sensor sequence signal data. The nuclear industry

is composed of many complex components. Various
sensors (e.g., humidity, gas, pressure, and temperature
sensors) have been developed for online real-time
monitoring of the operation state. The sensors’ sequence
signal data are sparse, but the frequencies are extremely
high. In case of abnormal conditions, the parameters
of the sensors will change dramatically. Most of the
current nuclear safety management methods are based
on the principle of “Detection-Response”, i.e., the safety
control systems make action responses only after abnormal
conditions are detected. The principle makes the safety
control system slow to feedback the reactor data and
fail to make real-time decisions. On the other hand, the
traditional statistical methods are difficult to solve the
prediction problem of nonlinear processes in abnormal
working conditions of the nuclear industry. For the data
characteristics of sequence signals and the problem of
the “Detection-Response” principle, DL methods can
be designed to learn massive historical data and predict
the trend of operating conditions. Then, the principle
of “detection-response” can be changed as “prediction
& advanced interfere”, so as to solve the situation that
“abnormal working conditions are inevitable” faced by
passive control in the past[10]. Considering that both
sensor signals and text data belong to sequence data,
NLP technologies combined with context information

are generally used to extract the feature of sequence data
and apply to the safety prediction of the nuclear industry.
� Multi-modal data. In addition to the data type

mentioned above, the nuclear industry chain also
involves the structured data stored in a relational
database, interface type data generated by information
systems (e.g., TXT, JSON, and XML), audio and video
data in an industrial environment, as well as other data
(e.g., atmospheric flow field monitoring data, remote
sensing information, and 3D elevation information). For
these different modal data, the DL methods based
on multi-modal learning are able to process and
learn multi-source and multi-modal information, as
well as analyze the states of systems, equipment,
environment, and personnel in the nuclear industry
from multiple angles[82, 83]. Compared with single-modal
representation learning where information is expressed
as numerical feature vector, the multi-modal learning
aligns the features of different modes and eliminates the
modes redundancy[84–86].
� Molecular imaging data. Nowadays, nuclear

molecular imaging is the hot-spot of medical imaging
technology. Due to the wide spectrum of biological
targets, there are many kinds of molecular images.
The PET, SPECT, optical imaging, and Magnetic
Resonance Imaging (MRI) also increase the diversity
of molecular images. With the rapid development and
wide applications of DL technologies in biomedical
data, more and more researchers pay attention to the
DL technologies in the acquisition and interpretation of
nuclear molecular imaging[87]. It is worth mentioning
that it is difficult to collect large-scale molecular imaging
data sets. In addition, DL is difficult to be applied
to small-scale, multidimensional, and heterogeneous
molecular imaging data. Recently, the proposals of
small-sample learning and transfer learning make DL
technologies achieve good results in the field of nuclear
medicine[85, 88–90]. DL methods can be used to realize
the image reconstruction, denoising, segmentation, and
fusion of molecular imaging. Many researchers also use
DL technologies to extract deep feature representation
from molecular imaging to realize personalized medical
treatment.

The above are some common data types in the
whole nuclear industry chain. Among them, both
graphics/images data and molecular imaging data belong
to the visual image data. The CNNs models are often
used for computer vision tasks, e.g., image classification,
object detection, semantic segmentation. Thus, the CNN-
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based DL methods are often utilized for computer
vision applications in the nuclear industry. Then, by
the CNN-based DL methods, the safety management,
operation, and maintenance of the nuclear industry, as
well as nuclear medical diagnosis can be intelligent.
Text/document data, sensor signal data, and audio data
belong to sequence data. The RNN and LSTM are
often used for signal processing and sequence feature
extraction, which can be further used in intelligent
operation and safety prediction of the nuclear industry.
Multi-modal data not only includes all types of data
mentioned above but also involves other structured or
unstructured data. Using multi-modal learning, we can
understand and use these complex data, so as to better
serve the intelligent management of the nuclear industry.

3 Deep Learning in Nuclear Industry

As shown in Fig. 4, we introduce the research
developments of deep learning in the nuclear
industry from four fields, i.e., computer vision
(Section 3.1), sequence data processing (Section 3.2),
multi-modal learning (Section 3.3), and nuclear
medicine (Section 3.4). Among them, text document
data, audio data, and sensor signal data all belong
to sequence data. Therefore, in the sequence data
processing of Subsection 3.2, we introduce the research
developments of NLP, speech recognition, and sensor
sequence signal processing in the nuclear industry.

3.1 Computer vision in nuclear industry

Due to the special operating environment of the nuclear
industry, the corrosion, fatigue, and wear problems of
nuclear equipment are very serious. If these problems
are not found and handled in time, it may affect the
nuclear equipment construction, installation, operation,
and other stages. It may even cause major potential
safety hazards and huge economic losses to the nuclear
industry. In 2011, a nuclear accident occurred in
Fukushima, Japan, which was classified as the most
serious Level 7 in the international nuclear event
classification table[91]. The Fukushima nuclear accident
in Japan sounds a safety alarm for all countries deploying
nuclear programs. Among them, periodic inspection of
equipment components[49] and prediction of Remaining
Useful Life (RUL)[92] are important means and common
ways to ensure the safe operation of the nuclear industry
chain. However, there are many hard-to-reach areas
with strong radioactivity in the working environment of
the nuclear industry, which means that there are great
potential safety hazards by manual periodic inspection.
In addition, the working conditions of the nuclear
industry are very complex, which makes the accurate
inspection of equipment and prediction of RUL very
difficult. Therefore, utilizing deep learning technologies
to realize real-time automatic detection of equipment
defects[49, 93–95] and accurate prediction of RUL[96–98] is
a key development direction for the nuclear industry to

Fig. 4 Research status of deep learning in the nuclear industry. There are four research directions, i.e., computer vision,
sequence data processing, multi-modal learning, and nuclear medicine. Among them, sequence data processing includes text
document processing, audio processing, and sensor sequence signal processing.
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improve operational efficiency and realize intelligent
management.

The nuclear reactors are submerged in water to
keep cool, and their high temperature and radiation
hazards make it impossible to carry out direct
manual periodic inspection of reactor components.
Therefore, in the traditional regular inspection of
reactor cracks, technicians generally conduct a remote
review and manual detection on the video records
of underwater reactors, which is time-consuming,
cumbersome, and subjective[75]. With the development
of AI, many crack detection methods of nuclear
reactors based on traditional machine learning have
been proposed[76, 99–102]. However, because the tiny
cracks with low contrast and variant brightness are
hardly visible, the crack detection methods based on
machine learning often misreport non-crack traces such
as scratches, welds, and wear marks[52]. Researchers
carried out a series of researches on DL-based crack
detection of nuclear reactors[52, 75, 102–104]. Specifically,
in 2017, Chen and Jahanshahi[52] proposed a cracks
detection method based on Naive Bayesian data fusion
scheme and CNN (named NB-CNN) for nuclear reactors.
The proposed NB-CNN method utilizes CNN to extract
the visual features of individual video frames captured
in nuclear reactor videos, and the naive Bayesian data
fusion scheme to aggregate the information extracted
from each video frame. The NB-CNN method achieves
a 98:3% hit rate against 0:1 false positives per frame.
In 2019, Chen and Jahanshahi[103] proposed an NB-
FCN method based on Full Convolutional Networks
(FCN) and Naive Bayes (NB) probability for detecting
reactor cracks from inspection videos in real-time with
high precision, which achieves 98:6% hit rate. Table 1
shows the comparison results of hit rate and processing
times (T) of reactor crack detection methods based on
machine learning and DL. Compared with LBP-SVM[99]

based on traditional machine learning, NB-CNN[52] and
NB-FCN[103] based on DL have a great improvement
in the hit rate of reactor crack detection. Moreover,
the NB-FCN[103] achieves the best performance on the
processing times, and requires only 0:02 s for a 720�540
frame and 0:10 s for a 1920 � 1080 frame. Experiments

demonstrate that the reactor crack detection methods
based on DL take an important step towards accurate
and real-time video processing for autonomous NPP
inspection.

The Laboratory of Data Intelligence, Sichuan
University, Chengdu, China, and Nuclear Power
Institute of China (NPIC) also carried out DL
technology researches on computer vision in the nuclear
industry[49, 105]. They sorted out the equipment overhaul
inspection reports and daily inspection reports of an NPP
from 2014 to 2017. And, they screened 4446 images
including 2039 defective equipment surface images and
2407 non-defective equipment surface images. They
marked the category labels and locations of rust, peeling,
blistering, and cracking on the defective equipment
surface images. Based on the collected surface defect
images data of nuclear equipment, Lang et al.[49]

proposed a multi-scale feature fusion mechanism[106]

to improve the deep visual features extraction ability,
and a real-time defect detection method based on
the fully convolutional one-stage object detector[107].
Most DL-based models are difficult to trade-off high
performance and low power consumption, which limits
their deployment and application in edge devices.
Therefore, many current DL-based methods with high-
performance fail to be directly applied to practical
industrial application scenarios. In Ref. [49], Lang
et al. introduced the knowledge distillation[108] to
make a simple student network imitate the complex
teacher network for model compression. The proposed
method improves the defect detection accuracy and
maintains high real-time performance, simultaneously.
Figure 5 shows some results of the method proposed
in Ref. [49] on surface defect detection of nuclear
equipment. Moreover, Gao et al.[105] proposed an
end-to-end edge detection method based on swin
transformer[109] to realize intelligent analysis of high-
temperature oxidation of zirconium alloy[110]. The
proposed edge detection method can automatically
detect the oxide film boundary of the microscopic image
of zirconium alloy, as well as segment the ˛ and ˇ
phases. Figure 6 shows the detection results of oxide
film boundary and segmentation results of ˛ phase and

Table 1 Comparison of hit rate and processing times of reactor crack detection methods based on machine learning and deep
learning. “Hit rate + NB” refers to hit rate results of methods with Naive Bayes.

Method Hit rate (%) Hit rateCNB (%) T (for frame 720�540) (s) T (for frame 1920�1080) (s)
LBP-SVM[99] 69.0 79.0 1.87 12.58
NB-CNN[52] 93.8 98.3 2.55 17.15
NB-FCN[103] 94.8 98.6 0.02 0.10
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Fig. 5 Detection results of the surface defect detection
method of nuclear equipment based on deep learning
proposed in Ref. [49]. The two numbers next to each
bounding box in four subfigures represent the defect category,
where 0 is rust, 1 is blistering, 2 is spalling, and 3 is cracking,
and the corresponding confidence, respectively.

Fig. 6 Detection results of oxide film boundary and
segmentation results of ˛̨̨ phase and ˇ̌̌ phase by the edge
detection method based on deep learning proposed in Ref.
[105].

ˇ phase by the edge detection method proposed in
Ref. [105]. The images in the first column of Fig. 6
are the original microscopic image of zirconium alloy.
The images in the second column of Fig. 6 are the
semantic segmentation results, where the red blocks and
green blocks are ˛ phase and ˇ phase, respectively. As
shown in Fig. 6, we can see that the edge detection
method based on DL proposed in Ref. [105] provides
an effective technical means for material principal
component analysis. In the future, this laboratory will

further analyze the area of surface defects of the
nuclear industry equipment by using DL-based semantic
segmentation methods. By the intelligent analysis results,
the operators can adopt different maintenance schemes
for different degrees of defects, so as to realize long-
term, safe, and economic operation management of the
nuclear industry.

In addition to defect detection, risk assessment and
monitoring of key components of equipment are also
very important for the safe operation of the nuclear
industry. The common risk assessment and monitoring
methods are to avoid the failure of key components by
RUL prediction[92, 97], so as to realize the safety and
health management of the nuclear industry. Figure 7
shows the illustration of the RUL prediction�. The DL
technologies with strong feature extraction capability
are more and more widely used in RUL prediction of
key components in the nuclear industry[96, 111, 112]. Key
Subject Laboratory of Nuclear Safety and Simulation
Technology, Harbin Engineering University, Harbin,
China studied the RUL prediction of electric valves in
NPPs based on DL models[96, 111, 112]. The aging and
degradation of electric valves are mostly caused by the
uneven lattice of valve body, uneven fluid impact, fluid
corrosion effect, and radioactive material irradiation[97].
Wang et al.[96, 111, 112] made some reasonable assumptions
and approximate design for the aging parts of electric
valves by adjusting the tightness of screws, referring to
the experimental process and data collection method of
simulating valve aging proposed in Ref. [113]. Then,
considering the sequential characteristics, they pre-
processed and reshaped the original 2D image data
collected to 3D stacked data block. In addition, Ref. [96]
also introduced signal acquisition devices, e.g., acoustic
emission sensor, pressure sensor, temperature sensor,
and flow sensor, to obtain rich relevant features. Based

Fig. 7 Illustration of the RUL.

� https://medium.com/it-paragon/remaining-useful-life-predictive-
maintenance-5b78a17f7d10.
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on the previous pre-processing works, Wang et al.[111]

proposed DL methods based on LSTM with convolution
kernel, improved temporal convolutional network[96] and
Convolutional Auto-Encoder (CAE)[112], to extract the
sequential visual features of electric valves, so as to
realize the prediction of RUL. Experiments demonstrate
that these DL-based methods can predict RUL more
accurately and quickly than other typical machine
learning methods. In the future, the DL-based methods
can be broader applied in other critical components, and
the maintenance efficiency of all nuclear industries will
be further improved.

3.2 Sequence data processing in nuclear industry

In the whole nuclear industry chain, sequence data
include text document data, such as event reports, audio
data, and sensor sequence signal data. Among them, the
signal data generated by various sensors are the most
common sequence data. The researches of DL in the
field of sequence data processing in the nuclear industry
mostly focus on analyzing and processing all kinds of
sequence data using NLP technologies, e.g., LSTM, for
prediction and classification.

In terms of text document data in the nuclear industry,
DL models can be used for analysis of event reports.
In the nuclear industry, there are a large number of
event reports generated by licensed employees. The
comprehensive analysis of the reports can provide
valuable insights into the safe operation of the nuclear
industry equipment. However, the extensive event
reports in various text formats pose a great challenge
to the comprehensive analysis. Based on the Stanford’s
CoreNLP API[114], Zhao et al.[115] proposed a rule-based
expert system called Causal Relationship Identification
(CaRI), to identify the causal relationship between events
by analyzing the abstract section of the reports from the
U.S. Nuclear Regulatory Commission Licensee Event
Report database[116]. Experiments on the CaRI system
show that most causality relationships can be captured
and analyzed automatically.

In terms of audio data in the nuclear industry, DL
models can be used for speech recognition in the man-
machine interaction interface of the nuclear industry
control platform. Previously, the operators could only
interact with the virtual physical console through the
computer keyboard and mouse to simulate the judgment
of abnormal conditions and the identification of alarm
indications in the actual operation process. Jorge et al.[80]

developed an automatic speech recognition system and

integrated it into the man-machine interaction interface
of developing virtual NPP console. The developed
automatic speech recognition system can be used for
command execution in the control room, as well as
navigation and interaction in the virtual environment. In
the pre-processing stage of the developed automatic
speech recognition system, Jorge et al.[80] utilized the
cepstrum analysis[117] to extract relevant parameters
from speech signals for isolated words recognition.
Then, the isolated words were input into the Feedforward
Neural Network (FNN) for automatic speech recognition.
Moreover, Jorge et al.[118] also introduced other DL
models for automatic speech recognition system. They
proposed an automatic speech recognition system
based on deep FNN and General Regression Neural
Network (GRNN). By these developed automatic
speech recognition systems, the operators can navigate
and operate the virtual console in front of the
computer display or projection screen through voice
commands without manual intervention, such as
keyboard and mouse. In the application of speaker
recognition, Ramgire and Jagdale[119] proposed a speech
control pick and placed robotic arm with a flexiforce
sensor. They introduced Mel-Frequency Cepstrum
Coefficients (MFCC) algorithm to extract features for
speech recognition and speaker recognition. Then, the
speaker automatic recognition can be used for security
authentication, and speech automatic recognition can
be used for machine control. With the development
of DL technologies, many effective speech recognition
models and speaker recognition models are proposed and
make remarkable achievements[40, 41]. The researches
mentioned above provide a potential application field for
speech recognition and speaker recognition based on DL
in the nuclear industry.

In terms of sensor sequence signal data in the nuclear
industry, DL models are often used in the processing
and analysis of sequence signals to realize the intelligent
diagnosis and prediction of various sensor abnormalities.
The operating conditions of the nuclear industry are
changeable and complex. When devices in the nuclear
industry fail, there will be a large number of alarm
parameters. The prediction of key parameter values
can help operators judge the changing trend of system
parameters in advance and then effectively improve
system security. Chen et al.[120] proposed an LSTM-
based model for predicting critical parameters of NPP.
Chen et al.[121] proposed a fault diagnosis method of NPP
based on Deep Belief Network (DBN), which is trained
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on numerous original time-domain signal data of process
parameters in NPPs. Moreover, Lee et al.[122] proposed
an autonomous operation algorithm based on LSTM and
Function-based Hierarchical Framework (FHF) for NPP
safety systems. The proposed autonomous operation
algorithm has a superior ability to monitor, control,
and diagnose nuclear safety systems. In the accident
monitoring, She et al.[123] proposed a DL model based
on LSTM to predict the abnormal working conditions of
the nuclear industry safety system. The proposed model
makes full use of the advantages of LSTM for long-time
sequence data processing and realizes the prediction
of core parameters under abnormal working conditions
through historical operation dataset and rolling update
training method. The experimental results show that
the LSTM-based model proposed in Ref. [123] is
able to effectively predict the changing trend of core
parameters under accident conditions. At the same time,
in the simulation condition prediction of small Loss
Of Coolant Accident (LOCA), the accurate condition
trend prediction for the same kind of accident shows the
good generalization ability of the LSTM-based method.
Radaideh et al.[124] proposed a prediction model based
on deep FNN and LSTM to predict coolant failure
accidents for safe operation monitoring of NPP. They
simulated extensive sequence data of four key sensors,
i.e., temperature, pressure, flow rate, and water level
sensor. Then, they used the DL methods to model the
NPP accident, so as to help the operators grasp the
accident situation quickly and accurately. Moreover,
Choi and Lee[125] proposed an LSTM-based sensor
error detection model for an emergency situation, e.g.,
reactor trip, which can immediately detect sensor errors
and specify the particular sensor with errors. In the

equipment abnormal condition monitoring, Zhang et
al.[126] proposed a state prediction method based on
LSTM for state monitoring of main pump winding
temperature, which is an important parameter reflecting
the operating state of nuclear power devices. They
utilized a large number of sequence data collected by
the sensing and detection system for model training
and took the steam pressure sensing data collected
by the real-time parameter system of an NPP as the
test object. The excellent prediction performance of
the proposed model verifies the applicability of the
DL-based method in the field of the nuclear industry
operation safety assurance. Mandal et al.[127] also
proposed an online fault detection and classification
method based on DBN for thermocouples monitoring
in NPPs, and validated its performance by composite
statistical hypothesis test on field data obtained from
thermocouple sensors of the fast breeder test reactor. Liu
et al.[128] proposed an outlier detection strategy based
on Bayesian hypothesis testing, and established the
signal prediction model based on LSTM for mechanical
condition anomaly monitoring of pump station and
nuclear power turbine. In addition, Wang et al.[129]

proposed a real-time intelligent prediction method based
on Back Propagation (BP) neural network. The proposed
method can be used for the real-time prediction of
nuclear critical safety parameters in the nuclear fuel
reprocessing, so as to rapidly evaluate the operation
status and safety performance of the processing system.
The prediction accuracy of the proposed method is more
than 99%, and the calculation speed is more than 2000
times faster than that of traditional simulation method.

As shown in Fig. 8, there are many applications of
DL models, e.g., LSTM, FNN, and DBN, in sensor

Fig. 8 Sensor sequence signal data processing based on deep learning in the nuclear industry.
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sequence signal data processing in the nuclear industry,
which can be roughly divided into four categories,
i.e., critical parameters prediction, fault diagnosis,
accident monitoring, and equipment abnormal condition
monitoring. These important explorations of DL-based
methods in the related fields of sequence data processing
in the nuclear industry have broad application scenarios,
and have great referential significance for the application
of AI in the industry.

3.3 Multi-modal learning in nuclear industry

The Additional Protocol approved in 1997 introduced
the use of commercial satellite imagery to verify
nuclear materials and facilities against use in clandestine
military activities. Specifically, the commercial satellite
imagery can verify the information provided by countries
involved in nuclear researches, and observe changes in
facility activities during the nuclear fuel cycle, so as to
identify undeclared activities[130]. The Cube Satellites
(CubeSats) equipped with abundant sensors and data
analysis capabilities, proposes a multi-modal global
monitoring method to predict and describe the local
surface of the earth on demand. It is worth mentioning
that most of the data analysis technologies are based on
DL models. Then, based on the CubeSats, Mendoza et
al.[130] proposed a new data analysis method based on
multi-modal DL models, and developed a corresponding
monitoring system for phenomena related to the nuclear
fuel cycle. Once a sensor on the CubeSats collects the
data of target, the on-board computer will apply the
feature extraction method based on multi-modal DL
models before transmitting the information to the ground
station. The DL-based data analysis capability attached
to CubeSats can quickly detect the potential sensitive
phenomena and reduce the pressure of data transmission.
In the phenomenon detection tasks, the recall rate of the
proposed DL-based analysis method is between 89.7%
and 99.3%, and the accuracy is between 92.3% and
99.9%. However, with the increase of available data,
the ability of the system to analyze data becomes very
tight. In order to meet this challenge faced by nuclear
non-proliferation analysts, Feldman et al.[131] proposed
a large-scale multi-modal retrieval system based on DL
models to help nuclear non-proliferation analysts search
open-source scientific, technical, and news data, as well
as find indicators of nuclear proliferation capabilities and
activities. The proposed multi-modal retrieval system
relies on a set of trained DNNs to evaluate the conceptual
similarity of data patterns, e.g., text, image, and video.

Then, according to the nuclear fuel cycle process
template, these DNNs can map conceptually related
words, sentences, and images to adjacent points in
the multi-modal feature space, and realize the intra-
modal and inter-modal retrieval of seed query points
through nearest neighbor algorithm. The quantitative
and qualitative results for text-to-image, image-to-
image, and image-to-video retrievals on nonproliferation-
specific multi-modal data sets verify the effectiveness of
the DL-based multi-modal retrieval method proposed in
Ref. [131].

3.4 Deep learning in nuclear medicine

In the nuclear medicine community, there are several
essential topics, i.e., improvement of images quality,
image processing, image augmentation, and image
analysis. In terms of nuclear medicine molecular image
reconstruction, many DL models, e.g., CNN and FNN,
have been used to improve PET image resolution and
improve the noise characteristics of PET scanners with
large pixel crystals[89]. Similar works have been done
in Refs. [90, 132], and they also integrated the DNNs
models into the iterative process of image reconstruction
to improve the final image quality. Moreover, the DL
methods for attenuation correction and registration in
PET/CT and PET/MR have also been proposed in Refs.
[133–135], and the experimental results proved that these
DL methods can generate high-precision attenuation
maps. In terms of image denoising and other image
processing, a large number of DL methods have also
been proposed for the generation of full-dose PET
images based on low-dose images[136]. In addition, there
are some researches devoting to solving the problem of
limited number of molecular images. On the one hand,
the full-scale molecular images are cut into multiple
image blocks through semantic cutting method based
on DL models[87, 137]. On the other hand, there are
also studies on data expanding by data enhancement
technologies, e.g., image rotation and flipping[138, 139].
In terms of image analysis, more and more methods
based on DL models have been proposed to realize the
automatic and high-precision detection and classification
of lesion objects in molecular images. Wang et al.[140]

utilized the AlexNet[141] as the image feature extraction
model to distinguish mediastinal lymph node metastasis
of lung cancer from PET/CT of FluoroDeoxyGlucose
(FDG). Moreover, the automatic lesion detection and
segmentation methods based on DL frameworks[142, 143]

lay a theoretical foundation for the development of DL-
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based automatic solutions for nuclear medicine. As a
data-driven AI method, DL technologies learn features of
data through model training, and their decision-making
processes can be completed with minimal human-
computer interaction. Therefore, DL technologies are
very suitable for the field of nuclear medicine related to
radiology, especially in the hot issues of cancer imaging.
Noting that relevant research publications on radionics
and DL increase sharply in recent years[144].

4 Future of Intelligent Nuclear Industry

Although DL technologies have made impressive
achievements in many links of the whole nuclear industry
chain, the theory and application of DL in the nuclear
industry still need to be further explored and developed.
On the one hand, current DL technologies mainly focus
on theoretical research and application exploration in
the fields of image processing and NLP. However, the
data structures generated in the nuclear industry are
extremely different from the familiar data structures.
In addition, data collection and annotation in special
fields have always been great challenges. Thus, there
are still many difficulties and problems to be solved in
applying DL technologies directly to the corresponding
fields of the nuclear industry. On the other hand, the
nuclear industry attaches great importance to safety and
environmental protection, so there are high requirements
for the accuracy, fault tolerance, interpretability, and
real-time performance of the algorithm. However, there
is still a lot of space to explore the interpretability of
the existing DL methods, which poses a challenge to
the credibility of key control and decision-making in the
nuclear industry.

It is worth mentioning that many corresponding
methods have been proposed to solve the shortcomings
of DL, and experiments have proved the effectiveness
of these methods. For example, the previous DL
models deal with a relatively single data type, which
can not fully mine the useful information hidden
between different data types. The proposals of multi-
modal learning[86] make full use of the information
of different modes. Moreover, the amount of data
required for the DNNs training is large, but the cost
of obtaining and labeling training data samples is very
high, especially in special scenarios, e.g., the nuclear
industry. The proposals of small-sample learning, few-
shot learning, and zero-shot learning[88, 145, 146] enable
the neural network model to obtain a learning ability
of knowledge transfer after learning a small amount

of data. In addition, the proposals of incremental
learning[147] allow the neural network models to have
the ability to continuously acquire and adjust, as well
as learn novel data, so as to realize the dynamic change
ability of the model to deal with environmental changes.
These technological developments of DL have brought
more research ideas and application possibilities for the
intelligent development of the nuclear industry, and DL
will continue to deepen in the field of the nuclear industry.
Next, we list some future development trends of DL in
the whole nuclear industry chain:
� DL for the upstream link of the nuclear

industry chain. The upstream link of the nuclear
industry chain mainly involves the supply of nuclear
fuel. DL technologies are able to be used to process and
deeply analyze the multi-dimensional and heterogeneous
data generated in the process of nuclear fuel mining
and processing. DL methods have strong representation
ability and excellent fitting ability in dealing with
the big data analysis problems with challenges, e.g.,
multi-modality, high sparsity, low similarity, feature
redundancy, dimensional disaster, and so on. Therefore,
DL technologies are very suitable for this kind of multi-
objective optimization tasks in nuclear fuel mining
and processing, so as to improve the efficiency of
the processes of uranium exploration and nuclear fuel
processing, as well as reduce the risk, simultaneously.
� DL for the middle link of the nuclear industry

chain. In the nuclear equipment manufacturing link in
the middle of the nuclear industry chain, special robots
can be developed based on DL technologies to realize
the automatic manufacturing operation of the nuclear
island, conventional island, auxiliary system, and other
equipment. Especially in some high-precision and high-
difficult production processes, fine robots can be used to
replace people’s work. The DL-based special robots can
not only achieve high quality and high yield, high-speed
stability, safety, and reliability, and save materials, but
also achieve the precision that is difficult to be completed
by manpower, so as to liberate people from tension
and difficulties. The introduction of DL technologies
is expected to comprehensively improve the efficiency
and quality of robots dealing with complex and diverse
tasks in complex unstructured environment, as well as
promote the roboticization and automation of the nuclear
industry robotics and nuclear equipment manufacturing
technology.
� DL for the downstream link of the nuclear

industry chain. The downstream link of the the nuclear
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industry chain mainly involves the design, operation, and
maintenance of the nuclear industry. DL technologies
can be used to realize the intelligent operation and
management with few or even no people in the nuclear
industry process. The nuclear leakage accident in
Fukushima, Japan, has always reminded us that the
safety of the nuclear industry is very important. On
the one hand, in the process of construction, operation,
and maintenance, various data in the process can be
collected. Then, the intelligent analysis can be carried
out by using artificial intelligence technologies such as
DL models, so as to carry out intelligent safe operation
management in each nuclear industry process. On the
other hand, with a large number of NPP reaching the
retirement age and the urgent demand for land resources
due to population growth, how to realize the reuse of
retired nuclear facilities and the reprocessing of spent
fuel has become an issue of great concern to the nuclear
industrial powers all over the world. The introduction
of DL technologies and robotics in Nuclear Facility
Decommissioning and nuclear fuel cycle operation will
greatly reduce the risk of human operators, improve
the efficiency and reliability of operation in the nuclear
technologies environment, as well as provide a safer and
reliable solution for Nuclear Facility Decommissioning
and nuclear fuel cycle.
� DL for nuclear medicine. In the field of nuclear

medicine, DL technologies can be combined to simulate
and predict nuclear medicine related experiments, so
as to promote the common development of nuclear
medicine and artificial intelligence. The DL methods can
also be used for intelligent diagnosis of PET, SPECT, and
other molecular images. In addition, the DL methods
can be used to predict the mutation results of virtual
seed DNA in radiation breeding, and then carry out
the verification of real experiments after obtaining the
desired results, which will help to control the cost, speed
up the experimental process, and effectively reduce the
workload of experimental personnel.
� Special DL technologies for nuclear industry.

Special neural network models and learning algorithms
for the nuclear industry are also the development trends.
Taking the CNNs in DL field as an example, the CNNs
are easy to fail under the small disturbance, and the
misjudge the images that could have been correctly
classified with high accuracy. However, in the field of the
nuclear industry, safety is very important. Therefore, it
is necessary to study the deep neural networks dedicated
to the nuclear industry to ensure the robustness of the

DL models in the special application environment of the
nuclear industry and the stability of the model against
attack samples. In addition, the data generated by some
equipment in the field of the nuclear industry is limited,
and some data are generated continuously. Directly using
some existing learning algorithms often can not converge
the model well. Therefore, it is also necessary to carry
out frontier research such as small-sample learning,
zero-shot learning, continuous learning, and incremental
learning in the field of the nuclear industry application.
� Solution of differential and partial differential

equations based on DL technologies. It is worth
mentioning that using deep neural networks to solve
the differential and partial differential equations is also
the current development hot-spot. The whole industrial
chain of the nuclear industry involves the solution
of many differential and partial differential equations,
such as electromagnetic hydrodynamics, chemical
hydrodynamics, dynamic meteorology, ocean dynamics,
groundwater dynamics and so on. Solving differential
equations is a very difficult and time-consuming
work, especially the solution of partial differential
equations involving high-dimensional derivation in
nuclear reactors. Using the DL methods to solve the
differential equations involved in the whole nuclear
industry chain can effectively solve the rapid solution of
the differential equations in the high-dimensional case,
and ensure the accuracy of the final results. Moreover,
using deep neural networks to solve differential
equations and partial differential equations is not only
a development trend of deep learning theory, but also
a hot application direction of deep learning method in
industrial intelligence and other cross fields involving
physics or mathematics. We believe that many other
frontier researches of DL technologies will also intersect
with the nuclear industry, so as to promote each other’s
development to a great extent.

5 Conclusion

The fourth generation industrial revolution (Industry 4.0)
with the application of a new generation of information
technology in the industrial field as the core technology
driving force is quietly coming. With the development
and progress of the nuclear industry in recent years,
as well as the development of AI, big data, cloud
computing, IoT, and 5G technologies, the development
of digitization, informatization, networking, and
intelligence of the nuclear industry has become an
inevitable trend. Based on the most common and
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complete nuclear power industry chain in the nuclear
industry, this paper excavates the application scenarios
of intelligent demand in the upstream, middle, and
downstream links of the whole nuclear industry chain,
and further analyzes the data types in these demand
scenarios. Then, aiming at the graphics, images, video
data, text document data, voice data, sensor sequence
signal data, multi-modal data, and molecular image
data in the field of nuclear medicine, the research
statuses of the corresponding applications of deep
learning in the field of the nuclear industry, such as
computer vision, sequence signal processing, multi-
modal learning, and intelligent nuclear medicine, are
summarized. It can be found that DL technologies play
an important role in the intellectualization of R&D and
design, production and manufacturing, operation and
maintenance management of the nuclear industry. In
addition, combined with the development trend of DL
and the industrial characteristics of the nuclear industry,
this paper puts forward the future development trend
of DL technologies in the whole industrial chain of the
nuclear industry. It is believed that with the continuous
promotion of intelligent manufacturing and the in-depth
development of DL technologies, DL technologies are
expected to fully penetrate the whole industrial chain of
the nuclear industry, and the nuclear industry intelligence
will also usher in major development opportunities.
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