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MAGAN: Unsupervised Low-Light Image Enhancement
Guided by Mixed-Attention

Renjun Wang, Bin Jiang�, Chao Yang, Qiao Li, and Bolin Zhang

Abstract: Most learning-based low-light image enhancement methods typically suffer from two problems. First,

they require a large amount of paired data for training, which are difficult to acquire in most cases. Second, in

the process of enhancement, image noise is difficult to be removed and may even be amplified. In other words,

performing denoising and illumination enhancement at the same time is difficult. As an alternative to supervised

learning strategies that use a large amount of paired data, as presented in previous work, this paper presents an

mixed-attention guided generative adversarial network called MAGAN for low-light image enhancement in a fully

unsupervised fashion. We introduce a mixed-attention module layer, which can model the relationship between

each pixel and feature of the image. In this way, our network can enhance a low-light image and remove its noise

simultaneously. In addition, we conduct extensive experiments on paired and no-reference datasets to show the

superiority of our method in enhancing low-light images.

Key words: low-light image enhancement; unsupervised learning; Generative Adversarial Network (GAN); mixed-

attention

1 Introduction

Images captured in suboptimal lighting conditions often
exhibit low contrast, unclear details, heavy noise, and
low visibility. This type of image not only affects its own
aesthetic quality but also is not conducive to information
transmission for high-level image tasks, such as image
segmentation (see Fig. 1a as an example). Such images
also pose challenges in various areas of daily life, such
as all-day autonomous driving, visual surveillance, and
computational photography. To solve this problem, a
large number of low-light image enhancement methods
have been proposed.
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(a) Input (b) LIME

(c) CycleGAN (d) Our result

Fig. 1 Example of images captured in suboptimal lighting
conditions, (a) is enhanced by various methods (b)–(d). Our
methods can obtain a result that contains clear details,
distinct contrast, and natural color.
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Low-light image enhancement methods are divided
into traditional methods and learning-based methods.
Traditional methods include two categories: one is
based on histogram equalization[1–5], and the other is
based on the retinex theory[6–12]. The former focuses on
expanding the dynamic range and improving the contrast
of the image, while the latter regards the image as a
composition of reflection components and illumination
components, treats the reflection components as the
result of enhancement, and then obtains the final
enhancement result by estimating the illumination
component. Although they all achieved good results,
both types of methods ignore the presence of image
noise, causing the enhancement result to retain or even
amplify noise.

Compared with traditional methods, solutions based
on deep learning have higher accuracy, robustness, and
speed, hence attracting increasing attention. However,
most solutions, such as Refs. [13–16], ignore noise
elimination in the image as well. Although some
learning-based methods have addressed this issue, they
adopted a simple method of connecting the enhancement
module and the denoising module in series, which will
cause the image to be blurred or the image noise to be
magnified. Another issue is that the majority of learning-
based methods[17–26] require numerous paired data for
model training. However, in the field of low-light image
enhancement, paired datasets are difficult to collect. In
other words, collecting two corresponding images is
difficult; they are the same scene and have the same
content and details, and only the illumination conditions
are different. Some methods, such as Refs. [19, 20], use
artificial synthesis strategies to obtain low-light images
to match existing normal-light images. Nevertheless,
this strategy easily leads to serious artificial artifacts
in generated images and poor generalization ability of
the model. To address this issue, unsupervised deep
learning-based methods, such as Refs. [13, 27, 28], have
been proposed, yet none of them can enhance the image
and denoise concurrently in a single-stage network form.

To solve the two above-mentioned major problems
simultaneously, we propose a Mixed-Attention guided
Generative Adversarial Network (MAGAN) to enhance
a low-light image and remove its noise at the same time.
Inspired by [29–32], we introduce a mixed-attention
module layer to model the relationship between each
pixel and features of the image and guide the network to
remove image noise. To the best of our knowledge, we
are the first to integrate a mixed-attention mechanism

into a Generative Adversarial Network (GAN) for
unsupervised low-light image enhancement. In addition,
our network is lightweight and can be trained in a
totally unsupervised manner. We compare our method
with several latest methods to prove its superiority
(see Fig. 1 for an example). The retinex model-based
method, LIME[6], suffers from heavy over exposure, and
the unsupervised deep learning method, CycleGAN[33],
exhibits obvious color distortion. Unlike both methods,
our methods can obtain a result that contains clear details,
distinct contrast, and natural color.

Overall, this work’s contributions are threefold:
� To overcome the difficulty of insufficient paired

datasets, we propose a single-stage framework for
enhancing low-light images and denoise concurrently
in a fully unsupervised way.
� We introduce a mixed-attention module layer to

model the relationship between each pixel and features
of an image and integrate it into the network to guide the
process of enhancement and denoising.
� To prove the superiority of our model, we perform

extensive experiments using paired and no-reference
datasets on various traditional and learning-based models
qualitatively and quantitatively.

2 Related Work

Low-light image enhancement has been a subject of
study for a long time. In this section, we will briefly
review the methods used in this field.

2.1 Traditional low-light image enhancement
methods

Traditional low-light image enhancement methods are
divided into two categories: histogram equalization-
based methods and retinex model-based methods.

(1) Histogram equalization-based methods
Histogram equalization generally uses histogram

equalization to enhance the contrast of an image, which
can improve the quality of low-light images to a
certain extent. It has various implementation patterns,
such as global histogram equalization, local histogram
equalization, histogram specification, and dynamic
histogram specification. However, some of these
implementations are computationally intensive and time
consuming, and some cannot change the dynamic range
of the image. AHE[5] uses the histogram distribution
in the local area window to construct the mapping
function in the process of equalization. BPDHE[2] aims
to dynamically maintain image brightness. DHECI[4]
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introduces a differential grayscale histogram. LDR[3]

aims to expand the difference in the gray level of adjacent
pixels through the layered difference representation of
the 2D histogram. Nevertheless, this type of method
focuses on image contrast enhancement, ignoring
the impact of illumination conditions on the image.
The enhanced image will exhibit color distortion,
unnaturalness, overexposure/underexposure, artifacts, or
noise amplification.

(2) Retinex model-based methods
These methods are based on the retinex theory. The

theory treats an image as consisting of two parts –
reflection component and illumination component –
through some kind of prior or regularization. Then,
the reflection component is approximated as the final
enhancement result. Typical methods include LIME[6],
NPE[11], MSR[7], and BIMEF[12]. LIME finds the
maximum value in RGB channels to estimate the
illumination of each pixel and then imposes a structure
prior to constructing the illumination map. NPE adopts
a balanced strategy to avoid overexposure. MSR
restores the illumination component of the original
image. BIMEF proposes a fusion algorithm for low-
light image enhancement. Reference [8] proposed a
robust retinex model to take image noise into account.
Such methods have several limitations. For instance,
the assumption that the reflection component can be
approximated as the final enhancement result does
not always hold under various illumination conditions,
and these methods usually ignores the noise and even
magnifies it.

2.2 Deep learning-based low-light image
enhancement methods

Since LLNet, the first seminal deep learning-based low-
light image enhancement method[17], was proposed, a
large number of learning-based methods have emerged
in recent years, most of which have achieved compelling
success.

MBLLEN[20] decomposes the whole enhancement
process into three modules — a feature extraction module,
an enhancement module, and a fusion module — to
build an end-to-end network. Reference [19] adds two
subnetworks on the basis of MBLLEN — one is an
attention network that focuses on image illumination
enhancement and denoising, and the other is a
reinforcement network that enhances image contrast.
Reference [21] utilized an encoder-decoder network
to enhance the image content and a recurrent neural
network to enhance the image edge. TBEFN[18] enhances

low-light images in two branches, then fuses them
and implements refinement. Xu et al.[24] proposed
a frequency-based decomposition-and-enhancement
network to enhance an image with noise suppression.
Wang et al.[16] introduced intermediate illumination
based on the retinex theory to associate the input
with the expected enhancement result. Reference
[22] proposed a progressive retinex model, which
can estimate the illumination map and noise level
simultaneously. KinD[25] developed three subnetworks
for layer decomposition, reflectance restoration, and
illumination adjustment, separately. Fan et al.[34]

borrowed ideas from image super-resolution[35, 36], face
restoration[37], saliency detection[38, 39], text-to-image
synthesis[40], and recommendation work[41], embedding
semantic segmentation as prior information into the
network to assist image enhancement.

However, the above-mentioned methods all require
a large amount of paired data for training, which
are difficult to collect in many cases. If the strategy
of synthesizing low-light datasets from normal-light
datasets similar to that used by Refs. [19, 20] is applied,
the model will have poor generalization ability, and
the enhancement result will exhibit heavy artificial
artifacts. Therefore, some unsupervised learning
methods that do not require paired training data have
been proposed. CycleGAN[33] realizes unsupervised
end-to-end image translation through cycle consistency.
Chen et al.[13] proposed two-way GANs without the
need for the paired training data. EnlightenGAN[27]

adopts a self-regularized attention map and self-feature
preserving loss to realize an unsupervised low-light
image enhancement method. Similar to Ref. [42],
Ref. [28] built a decoupled network with two stages
to implement illumination enhancement and denoising
separately. However, none of these methods can enhance
the image and denoise concurrently in a single-stage
network form.

2.3 Attention mechanism

Reference [43] applied the attention mechanism to the
field of computer vision for the first time. SENet[30]

assigns different weights to different channels during
the CNN operation. Reference [31] proposed a non-
local operation to capture long-distance dependencies.
CBAM[32] proposes a serial attention module for feed-
forward convolutional neural networks. ECA-Net[44]

makes lightweight improvements based on SENet.
Reference [29] uses feature attention to remove image
noise.
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3 Method

Figure 2 shows the overall architecture of our model,
which is a GAN. We adopt the encoder-decoder
architecture for the generator. The mixed-attention
module layer is embedded in the generator to guide
image enhancement and denoising. For the discriminator,
we use PatchGAN for global and local discrimination.
In this section, we will illustrate our network and the
mixed-attention module layer in detail.

3.1 Network architecture

Given a low-light image I , the final target is to
obtain a normal-light image IO . We adopt the joint
learning form of GANs to achieve this goal. The
generator G takes the encoder-decoder form. For the
encoder, we perform four downsampling operations
and insert the feature attention layer, which is a
component of the mixed-attention module layer, in the
first level. In the second to fifth levels, we embed the
mixed-attention module layer. Then, the feature map
undergoes four upsampling operations. To avoid the
problem of information loss caused by the convolution
operation in the upsampling process, all upsampling is
performed using the PixelShuffle[45] operation. In the
last four levels, we also insert the feature attention layer.
Eventually, the feature map becomes three channels
through the last convolutional layer and is then modeled
in a residual manner, i.e., the original image is added
element-wise to obtain the final result IO .

IO
D I CG.I / (1)

We use PatchGAN as the discriminator, which has
a fully convolutional form. Similar to Ref. [27], we
use both global and local discriminators. For the global
discriminator, we take the entire image as input, and for
the local discriminator, we take random cropped patches
from both output and real normal-light images as input.
The global and local discriminators consist of 7 and 6
convolutional layers, respectively. We also randomly
crop patches from the original image. The enhanced
image/patches and the original image/patches are sent
into the pretrained VGG-16 to narrow the gap between
the content. Inspired by Ref. [28], when calculating
content loss, we have an instance normalization on
the VGG-16 feature maps to reduce the influence of
brightness on image content, which allows the network
to pay more attention to the image content and stabilize
training.

3.2 Loss functions

To achieve unsupervised learning for our model, we
adopt the learning method of the GAN to ensure that the
sample distribution of the image enhanced by our model
is close to the sample distribution of the normal-light
image. Otherwise, we use the content loss as well to
maintain consistency between the enhanced image and
the original image content.

For the global and local discriminator, we use the
standard LSGAN[46] as the adversarial loss. When the
discriminator is updated, the adversarial loss can be
formally written as

Fig. 2 Overview of MAGAN composed of one generator and two discriminators. The generator is an encoder-decoder
architecture and contains our mixed-attention module layer. The global discriminator takes the entire image as input, whereas
the local discriminator takes random cropped patches from both output and real normal-light image as input.
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where G and D denote the generator and discriminator,
respectively. For the global discriminator, Pdata.x/

represents the real image (normal-light image)
distribution, Pz.z/ represents the fake image (generated
image) distribution, and the adversarial losses ofD anG
are named as named Lglobal

D and Lglobal
G , respectively.

For the local discriminator, Pdata.x/ represents the real
image patch (normal-light image patch) distribution,
Pz.z/ represents the fake image patch (generated image
patch) distribution, and the adversarial losses of D an
G are named as named Llocal

D and Llocal
G , respectively.

x is the samples taken from Pdata.x/, and z is the
samples taken from Pz.z/. E represents the expected
value.

To ensure the perceptual quality of image content, we
use the content loss to ensure consistency between the
enhanced image/patch and the original image/patch. It
is defined as
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where I and IO denote the original image/patch
and the enhanced image/patch, respectively. ˚ij ( )
indicates extracting the feature map obtained by the
j -th convolutional layer in the i-th block of the VGG-
16 network. ins. / denotes the instance normalization
operation. wij , hij , and cij describe the dimensions of
the corresponding feature map. For the whole image and
the image patch, the content losses are named Lglobal

content

and Llocal
content , respectively.

The total loss is expressed as
Ltotal D L

global
G C Llocal

G C L
global
content C Llocal

content

(5)

3.3 Mixed-attention module layer

The mixed-attention module layer in our model enhances
the image features that need to be enhanced and, at the
same time, removes image noise. It is composed of
feature attention and pixel attention and is able to model
the relationship between each pixel and features of an
image. Through our mixed-attention module layer, the
feature map can be refined adaptively at every layer

of the network. Figure 3 illustrates the structure of
the mixed-attention module layer, where H;W; and C
represent the dimensions of the feature map.

Feature attention first divides the input feature map
X 2 RH�W�C into two branches and compresses them
in the spatial dimension to be X 0 2 R1�1�C . Then,
the channel dimensions of the two branches at the same
multilayer perceptron are compressed to reduce network
calculation complexity. After the channel dimension
is recovered, the two branches are summed up, and a
sigmoid function is passed to obtain the feature attention
map MF 2 R1�1�C . The feature attention map is
then multiplied by the original map X element-wise
to obtain the intermediate feature map XF 2 RH�W�C .
Accordingly, the weights of feature attention can be
computed as
wD� fW2ReLU ŒW1f .x/�CW2ReLU ŒW1g .x/�g

(6)
where f .x/ and g .x/ denote the max-pooling input
feature map and the average-pooling input feature
map, respectively. W1 and W2 are set to C � .C=r/
and .C=r/ � C , respectively, to reduce calculation
complexity, where r denotes the reduction ratio. ReLU
and � indicate the ReLU activation function and the
sigmoid function, respectively.

Then, XF is used as the input for pixel attention,
which is also divided into two branches for compression
in the channel dimension to be XF 0 2 RH�W�1. Two
branches of the feature map are connected after a
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Fig. 3 Diagram of the mixed-attention module layer. It
is composed of two attention module layers: the feature
attention module layer and the pixel attention module layer.
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convolution layer and a sigmoid function to obtain the
pixel attention map MP 2RH�W�1. Finally, the pixel
attention map MP and XF are multiplied element-wise
to obtain the final refined outputXM2RH�W�C . Hence,
the weights of the pixel attention can be learned by

w D � .conv .concat .f .x/ ; g .x//// (7)

where concat. / denotes the concatenation operation;
conv. / denotes the convolution operation.

Feature attention can model the relationship between
features of an image and enable the network to learn
which features should be overenhanced and which
ones should not be overenhanced, while pixel attention
can model the relationship between each pixel of an
image. The network can adaptively learn the weights
between individual pixel points in the image, and the
weights of the noise points are usually learned to a
lower value. In this way, each pixel in the image can
establish a connection with all other pixels, thereby
highlighting commonalities and eliminating differences
(usually noise).

4 Experiment

In this section, quantitative and qualitative experiments
are conducted to evaluate the performance of our model.
We also perform an ablation study on the mixed-attention
module layer to fully validate its effectiveness on our
model.

4.1 Datasets and implementation details

We trained our model on an unpaired dataset collected
from Ref. [27], which contains 914 low-light images and
1016 normal-light images. To evaluate our performance,
we gathered 200 no-reference low-light images from
Refs. [6,11] to test our model. We also tested our model
on a dataset of 148 paired images collected from datasets,
such as LOL[23], to validate its denoising ability. Low-
light images in the paired dataset contain noise produced
during the photo capture process.

We built our network on PyTorch and trained it for
200 epochs on a PC with NVIDIA GeForce GTX 1080
Ti GPU and 11GB memory. The network was optimized
using the Adam optimizer with a learning rate of 10�4

for the first 100 epochs and a linear decrease to 0 for the
next 100 epochs. For data augmentation, we performed
a random crop to obtain a 320 � 320 patch from the raw
image followed by a random horizontal flip. The batch
size was set to 10 for training.

4.2 Qualitative study

We performed qualitative experiments on the no-
reference low-light image dataset and paired dataset
mentioned above. Our network was compared with both
traditional and recent learning-based methods. Figures 4
and 5 show the representative comparison results of the
no-reference and paired test datasets, respectively.

Input RetinexNet MBLLENLIME CycleGAN OursEnlightenGAN LLDE

Fig. 4 Visual comparison of the results on the no-reference test dataset enhanced by RetinexNet[23], LIME[6], EnlightenGAN[27],
MBLLEN[20], CycleGAN[33], LLDE[24], and MAGAN, where CycleGAN is trained using the training set from this paper. The
first six methods generate images that are overexposed, underexposed, or have color deviations or unclear details. In contrast,
our model generates images with clear details, accurate colors, and distinct contrast. Red boxes indicate the noisy regions where
most existing methods fail.
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Input

RetinexNet

MBLLEN

LIME

CycleGAN

Ours

EnlightenGAN

Ground Truth

LLDE

Fig. 5 Visual comparison of the results on the paired
test dataset enhanced by RetinexNet[23], LIME[6],
EnlightenGAN[27], MBLLEN[20], CycleGAN[33], LLDE[24],
and MAGAN. The images generated by our model have the
highest similarity to the ground truth and are almost free
of noise. Red boxes indicate the noisy regions where most
existing methods fail.

As we can see in Fig. 4, for the first row, images
generated by LIME, MBLLEN, CycleGAN, and LLDE
suffer from underexposure. The image generated
by RetinexNet has significant color distortion, and
the image generated by EnlightenGAN has obvious
overexposure. For the middle two rows, the image
enhanced by our model is the most natural. For the
last row, LIME enhances images with loss of detail.
Images enhanced by RetinexNet and CycleGAN are
blurry. EnlightenGAN, MBLLEN, and LLDE enhance
images with low contrast. Checking the details shows
that our model achieves the best qualitative quality.

In Fig. 5, the images generated by RetinexNet and
LLDE suffer from color bias and excessive noise. The
contrast of the images generated by LIME and MBLLEN
is too high, and the images generated by MBLLEN
have excessive smoothing. The images generated
by EnlightenGAN and CycleGAN are overenhanced
compared with the ground truth. Contrary to all the other
methods, our model has the best visual performance,
with the image having the highest similarity to the

ground truth and containing almost no noise.

4.3 Quantitative study

We performed a quantitative evaluation of all
generated images. For the no-reference test dataset,
we used a reference-free image evaluation metric
Blind/Referenceless Image Spatial QUality Evaluator
(BRISQUE) for evaluation because all generated images
are not supervised by reference images. The overall
principle of the algorithm is to extract the Mean
Subtracted Contrast Normalized (MSCN) coefficients
from the image, fit the MSCN coefficients to asymmetric
generalized Gaussian distribution, extract the features
of the fitted Gaussian distribution, and input them to a
Support Vector Machine (SVM) for regression to obtain
the image quality evaluation results. A small BRISQUE
value corresponds to a higher representation of the image
quality. For the paired test dataset, we use the PSNR
and SSIM values to evaluate the model performance;
large PSNR and SSIM values correspond to improved
model performance. The experimental results are shown
in Table 1.

Our model achieves the best performance except for
BRISQUE, which is inferior to CycleGAN only. This
finding shows the good superiority of our model.

4.4 Ablation study

To fully validate the effectiveness of the mixed-attention
module layer on our model, we performed an ablation
study. First, we removed the mixed-attention module
layer from the model. Then, we removed the feature
attention and pixel attention from the mixed-attention
module layer in the model. Other hyperparameters were
kept constant throughout the experiment. The models
were trained and tested with the same datasets and
metrics. Table 2 shows the quantitative results.

As shown in Table 2, the mixed-attention module layer
has a strong superiority in the model.

Table 1 Average BRISQUE results on the no-reference test
dataset, and average results of PSNR and SSIM on the paired
test dataset.

Method BRISQUE PSNR SSIM
RetinexNet 62.6888 16.4051 0.6744

LIME 56.6476 17.1019 0.7753
EnlightenGAN 43.4444 19.4903 0.8413

MBLLEN 48.5092 19.5440 0.8374
CycleGAN 33.6521 20.8784 0.7882

LLDE 43.1376 18.8779 0.8066
MAGAN 37.9784 22.3895 0.8470
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Table 2 Ablation study.
Condition BRISQUE PSNR SSIM

Without mixed-attention 44.8738 19.5343 0.8368
With pixel attention,

without feature attention 38.1645 19.4078 0.8249

With feature attention,
without pixel attention 40.7780 21.2273 0.8412

With mixed-attention 37.9784 22.3895 0.8470

We randomly selected representative comparison
results from the no-reference test dataset; Fig. 6 shows
the result. In the first row, except for the model with the
mixed-attention module, the images generated by all the
models have a large amount of noise. In the second row,
only the sky in the image generated by the model with
the full mixed-attention module looks natural.

5 Conclusion

This paper proposes MAGAN for enhancing low-light
images and performing denoising concurrently in a fully
unsupervised way. We adopt the GAN and integrate
a mixed-attention module layer into our model. The
mixed-attention module layer consists of two attention
procedures: feature attention and pixel attention. Feature
attention can model the relationship between the features
of an image and enable the network to learn which
features should be overenhanced and which ones should
not be overenhanced, while pixel attention can model
the relationship between each pixel of an image to
highlight commonalities and denoise. To the best of
our knowledge, we are the first to integrate a mixed-
attention mechanism into a GAN for unsupervised low-
light image enhancement. In addition, we conducted
extensive experiments to verify the superiority of our
model.
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