BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 02/06 ppl15-31
Volume 5, Number 1, March 2022
DOI: 10.26599/BDMA.2021.9020014

A Comparison of Computational Approaches for
Intron Retention Detection

Jiantao Zheng, Cuixiang Lin", Zhenpeng Wu, and Hong-Dong Li*

Abstract: Intron Retention (IR) is an alternative splicing mode through which introns are retained in mature RNAs
rather than being spliced in most cases. IR has been gaining increasing attention in recent years because of its
recognized association with gene expression regulation and complex diseases. Continuous efforts have been
dedicated to the development of IR detection methods. These methods differ in their metrics to quantify retention
propensity, performance to detect IR events, functional enrichment of detected IRs, and computational speed. A
systematic experimental comparison would be valuable to the selection and use of existing methods. In this work,
we conduct an experimental comparison of existing IR detection methods. Considering the unavailability of a gold
standard dataset of intron retention, we compare the IR detection performance on simulation datasets. Then,
we compare the IR detection results with real RNA-Seq data. We also describe the use of differential analysis
methods to identify disease-associated IRs and compare differential IRs along with their Gene Ontology enrichment,
which is illustrated on an Alzheimer’s disease RNA-Seq dataset. We discuss key principles and features of existing

approaches and outline their differences. This systematic analysis provides helpful guidance for interrogating

transcriptomic data from the point of view of IR.
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1 Introduction

Alternative Splicing (AS) is a common phenomenon
in eukaryotes!!!. For genes with multiple exons in the
human genome, 95% are alternatively spliced®!. AS
is an important transcriptional regulation mechanism
that increases the structural and functional diversity of
gene products'®*. Several studies have found that AS is
associated with cancers and other complex diseases> 8!,
AS can be divided into five modes: exon skipping,
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alternative 3’ splice site, alternative 5° splice site,
mutually exclusive exons, and Intron Retention (IR). IR
has received the least attention because Intron-Retained
Isoforms (IRIs) were previously thought to be the
consequence of mis-splicing of pre-mRNAs!.
Previous studies have explored IR from the
perspective of its location and conditions of occurrence.
Galante et al.'"%! conducted a large-scale IR analysis of
21106 known human genes. They found that 14.8% of
genes have at least one IRI and most IRs are located
within UnTranslated Regions (UTRs). Considering
species differences, a comparative analysis of humans
and mice indicates that at least 22% of IRs in humans
also exist in mice. In 2007, Sakabe and De Souzal!!!
proposed that the occurrence of high-frequency IR in
humans is generally accompanied by the following
conditions: (1) genes with short intron lengths; (2) high
expression levels; (3) weak splice sites strength; (4)
low density of exonic splicing silencers; and (5) low
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density of the intronic splicing enhancer GGG. Then
Louro et al.'"?! explored whether or not long introns are
expression noise or expression choice in noncoding RNA
transcription. In 2010, Cenik et al.!'*! performed an in-
depth analysis of human 5° UTR introns. Their study
have shown that 5 UTR introns, which are generally
in highly expressed genes, are relatively short. These
introns are not completely absent from lowly expressed
genes but rather enhance their expression in a length-
dependent manner!'¥

In recent years, some studies have discovered
the regulatory role of IR in gene expression and
its association with complex diseases. For example,
Zhang et al.l"3! explored the effect of IR in lung
adenocarcinoma. They found that genes with tumor-
specific IR are likely to be overexpressed in tumors
and are likely to be lung cancer driver genes. IR may
suppress the overexpression of genes that promote cancer
development by triggering the Nonsense-Mediated
Decay (NMD) mechanism!'%!7l,  Using the RNA-
Seq and exome data of 1812 cancer patients, Jung et
al.'8 found that somatic Single-Nucleotide Variants
(SNVs) causing IR are enriched in tumor suppressors.
Most of these SNVs produce premature termination
codon, resulting in loss of function by triggering NMD
degradation or producing truncated proteins. These
findings suggest that IR is a common mechanism of
tumor suppressor inactivation. Furthermore, Dvinge
and Bradley!!'”! explored the contribution of IR to the
transcriptional diversity of many cancers. They found
that the most common abnormal splicing mode in cancer
is IR and that almost all types of cancers show frequent
IR in cancer tissues.

As a mature sequencing technology, RNA-Seq has
been widely used in the genome-wide analysis of pre-
mRNA AS?-22 Powerful algorithms for IR detection
have been developed to date. For example, Bai et
al.[?¥ proposed two methods to detect IR events; one
is IRcall based on ranking strategy, and the other is
IRclassifier based on random forest classifier. These
methods mainly consider gene expression information,
read coverage within an intron, and read counts. They
showed that their methods could effectively filter out
false positives and improve the prediction accuracy of
IR events in the Arabidopsis thaliana control experiment.
The strong point of IRcall and IRclassifier is that they
build a machine learning framework that can improve
IR detection by introducing mature classification
algorithms and exploring other features. Pimentel et
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al.’* developed Keep Me Around (KMA) to find IR
events. This method combines biological replicates to
reduce the possibility of false-positive IR events and is
well compatible with existing RNA-Seq quantification
pipelines, such as eXpress/?!. The advantage of KMA
is that it provides a way to realize the quantification
of IR isoforms. In 2017, Middleton et al.”*®! proposed
IRFinder, which provides a complete end-to-end pipeline
for the IR analysis of mRNA sequencing data. IRFinder
uses read counts of introns to estimate the read coverage
difference between the experimental and control groups
through the Audic and Claverie Test. The main steps
include sequence alignment via the STAR algorithm,
quality controls on the sample analyzed, IR detection,
and quantitative and statistical comparison of IR ratios
between multiple samples. The end-to-end analysis
designed by IRFinder is a good point. In our previous
work, intron Retention Analysis and Detector GREAD)
was proposed(?’! to detect IRs from RNA-Seq data. The
main step is to screen out independent introns from
the transcriptome annotation that do not overlap any
exons of any isoforms. Then, it takes BAM files as
input and calculates intron metrics, such as read counts,
junction reads, Fragments Per Kilobase of exon model
per Million mapped fragments (FPKM), and normalized
entropy score. iREAD also allows users to manually add
known IRs to the independent intron list for analysis.
The principle of iREAD is simple and direct, and the
concise use of commands is also one of its advantages.
In addition to the methods mentioned above for IR
detection, the methods for detecting AS events can also
be used for IR detection. For example, Mixture-of-
ISOforms (MISO) proposed by Katz et al.?®! quantifies
the expression level of AS genes from RNA-Seq data
at the event level, including IR or isoform level, and
provides confidence intervals of level estimation. MISO
can also detect differentially regulated isoforms or exons
between samples. The strength of MISO is that it can
quantify AS events at the IR and isoform levels and
provide confidence scores. Multivariate Analysis of
Transcript Splicing (MATS)!?*! proposed by Shen et al.
analyzes differential AS patterns on non-replicated RNA-
Seq data based on the Bayesian statistical framework.
MATS works with almost any type of null hypothesis and
supports user-defined thresholds to detect differential
AS events. Replicate MATS (rMATS)*Y, as improved
MATS, uses a more robust hierarchical model to detect
differential AS events from replicate RNA-Seq data.
rMATS considers not only the sampling uncertainty
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in individual replicates, but also the variability among
replicates. The advantage of rMATS is that it supports
flexible hypothesis testing methods to detect differential
AS events. DEXSeq!®!! employs a Generalized Linear
Model (GLM) to detect genes affected by Differential
Exon Usage (DEU) with high sensitivity from RNA-
Seq data. DEXSeq considers biological variation to
achieve the reliable control of false discoveries. By
replacing exon coordinates with intron coordinates,
DEXSeq can also be used to detect IR*?!. However,
this conversion method is not rigorous, which may
result in the loss of some IR-related information.
Unlike the method described above, Comprehensive
Alternative Splicing Hunting (CASH)3! detects AS
events neither from incomplete reference genomes nor
from transcripts built by third-party programs. CASH
consists of two main phases: SpliceCons (splice site
construction) and SpliceDiff (differential AS detection).
By fully reconstructing the AS site from RNA-Seq data,
SpliceCons significantly enhances the ability of CASH
to detect novel AS events. To reduce false positives,
SpliceDiff combines two statistical tests, including the
test of AS inclusion/exclusion event expression and the
test of AS exons relative to the entire gene expression.
SpliceDiff also significantly improves the ability of
CASH to detect AS events differentially between RNA-
Seq samples. The advantage of CASH is that it does not
rely on transcriptome annotation, which facilitates the
discovery of novel IR events.

These methods differ in their features and performance
in detecting IR. The principles of these methods
have been systematically reviewed**!. However, an
experimental comparison of these methods is currently
lacking. In this work, we perform a systematic
experimental comparison of rMATS, DEXSeq, CASH,
MISO, IRFinder, and iREAD. These methods are
selected because they represent the state-of-the-art and
widely used methods in their respective categories.

IRFinder and iREAD are the two state-of-the-art
methods dedicated to IR detection, whereas rMATS,
DEXSeq, CASH, and MISO are the most widely used
methods for the analysis of AS events, including IR.
Considering that a gold standard dataset of IR is
available, we use simulated data with known retained
and nonretained introns to evaluate the predictive
performance of each method using the Area Under
the receiver operating characteristic Curve (AUC) and
Area Under the Precision-Recall Curve (AUPRC). These
methods are currently only applicable to next-generation
sequencing data and cannot directly support third-
generation sequencing data. Thus, their results were
compared with real next-generation sequencing data.
Using an Alzheimer’s disease RNA-Seq dataset as an
example, we performed differential expression for the
IRs obtained by each method and compared the Gene
Ontology (GO) enrichment results. Finally, we discussed
the advantages and limitations of each method and
concluded with potential ways to improve IR detection.

2 Material and Method

2.1 Description of IR detection methods

As the field of IR is receiving increasing attention, many
methods can be used to detect IR. The six methods
included in this study are MISO, DEXSeq, rMATS,
CASH, iREAD, and IRFinder. A brief description of
each method is shown in Table 1.

(1) MISO

MISO (v0.5.4)!?8! treats the expression levels
of all isoforms in a gene as random variables
whose distribution could be estimated using Markov
Chain Monte Carlo (MCMC). MCMC sampler uses
a Metropolis-Hastings sampling scheme, combined
with a Gibbs sampling step. The calculation of
isoform expression level estimation between genes is
independent. Thus, MISO provides the basic functions

Table 1 Summary description of IR detection methods.

Method Input Output Feature Reference Source code  Version

MISO  SAM/BAM Percent spliced in MCMC sampler; high degree 28] Python,C  v0.5.4
of parallelization

DEXSeq SAM/BAM Number of reads per intron Exon counting bins; DEU [31] Python, R v1.24.4

rMATS FASTQ/BAM Inclusion level

CASH BAM Percent spliced in

FPKM, entropy, junction

iREAD BAM
read counts, all read counts

IRFinder Fastq/BAM IR-ratio

Hierarchical model; likelihood-ratio test [30]
User-friendly visual interface;

multi-species mRNA sequencing data

Python, C, Cython v4.0.2

SpliceCons and SpliceDiff 331 Java V220
Independent intron; normalized entropy [27] Python, Perl v0.8.0
Complete pipeline for IR analysis of [26] C. Perl v1.2.6
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of running on a cluster to achieve a high degree of
parallelization.

The differential analysis module of MISO relies on
the single sample analysis results of the previous stage.
Thus, MISO cannot directly handle experiments with
multiple biological replicates. One solution is to merge
all BAM files in groups and then input them into the
MISO pipeline. Another solution is to extract the
assigned reads of isoforms in the single sample analysis
stage as input to other differential analysis software,
such as empirical analysis of digital gene expression
data in R (edgeR) and Differential Expression analysis
for Sequence count data (DESeq2). MISO accepts a
genomic annotation file from any source (e.g., RefSeq,
UCSC, or Ensembl) as long as it is organized in the
General Feature Format (GFF3). As for paired-end data,
we need to provide additional information, such as
mean insert length and standard deviation which can
be obtained through the pe_utils module of MISO.

(2) DEXSeq

DEXSeq (v1.24.4)B! uses a GLM to detect genes
affected by DEU with high sensitivity from RNA-Seq
data. The core data structure of DEXSeq is a table that
records exon-overlapping reads. The table is obtained
mainly by the following steps. First, DEXSeq defines
a set of coordinate interval lists of exons, called “exon
counting bins” to divide exons. When exons appear
on different boundaries of different transcripts, exon
counting bins may also indicate a part of exons. Second,
for each BAM file, DEXSeq counts the number of reads
that overlap with exon counting bins to obtain the table
above. Third, DEXSeq fits a GLM for each gene to
test DEU. DEXSeq provides a function interface for
differential analysis, which encapsulates DESeq2. Users
can organize the data into the required format to perform
differential analysis. In particular, DEXSeq considers
biological variation to achieve the reliable control of
false discoveries. By replacing exon coordinates with
intron coordinates, DEXSeq can also be used to detect
IRP2,

(3) rMATS

rMATS (v4.0.2)3% constructs a hierarchical model to
estimate the exon inclusion level (¢) using reads that
uniquely map to exon inclusion or skipping isoforms.

However, the estimation of ¢ is affected by many factors.

For example, in a single sample, the estimation of ¢
is affected by the sequencing coverage of AS events,
and higher sequencing coverage leads to more reliable
estimates. In the sample group, due to biological or
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technical reasons, the differences between replicates
also affect the estimation of ¢. Correspondingly, given
that different isoforms have different lengths, rMATS
normalizes the reads mapped to the exon inclusion or
skipping isoform by the effective length of the isoform
when calculating ¢, which solves the first problem
mentioned above. Differences between replicates could
be resolved through estimating the group mean of ¢ as
fixed effects followed by conducting mixed modeling of
replicates within the group. Compared with the classic
hypothesis that compares the equality of ¢ between
sample groups, rMATS uses a likelihood ratio test to
analyze whether or not the difference in the mean ¢
between groups exceeds a user-defined threshold.

(4) CASH

Many known methods (such as rMATS) rely on
annotated transcripts, but current transcript annotations
are incomplete. Some methods intend to assemble
transcripts from third-party programs, such as Cufflinks,
but the accumulation of false transcripts during the
assembly may lead to the false prediction of AS events.
In addition, even some transcripts containing novel
AS events may have an excessively low expression
to construct. The current third-generation sequencing
can solve the above problems, but its high cost
restricts its wide application in transcriptome studies.
Considering the existing problems mentioned above,
CASH (v2.2.0)*3! proposed two key components,
SpliceCons and SpliceDiff, which significantly improve
the predictive ability of AS events.

SpliceCons extracts all non-redundant junction reads
from the RNA-Seq data and combines the annotated
exon sites from the reference genes to construct all the
splice sites for each gene to detect the novel AS event.
SpliceDiff computes the False Discovery Rate (FDR)
using the Benjamini Hochberg method to reduce false
positives.

The input of CASH includes BAM files that are
required to be sorted and indexed and annotation files
in gene transfer format or GFF3. The output of CASH
contains not only the Percent Spliced In (PSI) value of
introns/exons but also intergroup information, such as
delta-PSI, P-value, and FDR.

(5) iREAD

iREAD (v0.8.0)?”! assumes that reads for retained
introns are evenly distributed throughout the intronic
region. Thus, iREAD calculates the entropy score to
detect IR events that do not overlap with exons from poly-
A enriched RNA-Seq data. The statistical information
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of intron mainly includes the Total number of Reads
(TR), the number of exon-intron Junction Reads (JR),
the FPKM value, and the normalized entropy score (NE-
score). iIREAD defines a set of high threshold values
(TR>20, JR>1, FPKM>3, and NE>0.9) to detect IR
events strictly.

iREAD accepts a sequence alignment file in BAM
format and an annotation file of independent introns
in BED format as input. iREAD also needs to input
the number of reads mapped to the whole genome
to calculate FPKM, which can be obtained through
SAMtools (v1.6)331. Although iREAD does not provide
the functionality of differential analysis, the read counts
in its output file can be directly used as the input of
differential analysis software, such as edgeR or DESeq?2.

(6) IRFinder

IRFinder (v1.2.6)2! provides a complete pipeline for
the IR analysis of mRNA sequencing data. IRFinder uses
IR-ratio to measure IR in terms of splicing level, which
reflects the proportion of intron retaining transcripts. To
reduce the impact of noise on IR estimates, IRFinder
excludes regions where each intron is covered by highly
expressed features, such as snoRNAs, microRNAs, or
unannotated exons. IRFinder also filters out samples
that are not suitable for IR detection, such as samples
that suffer from high levels of DNA contamination or
are mislabeled as mRNA sequencing. The differential
analysis module of IRFinder captures the IR-ratio change
of introns across multiple samples and calculates the
significance. Considering the difference in the number of
biological replicates, IRFinder provides different ways to
perform differential analysis. If the number of replicates
between groups is less than four, the Audic and Claverie
Test should be used; otherwise, Student’s t-test can be
used. IRFinder also provides modules that encapsulate
DESeq?2 for differential analysis.

IRFinder has some special requirements for input
files. For example, the transcriptome annotation file
and genomic sequence file require fixed names of
“transcript.gtf” and “genome.fa”, respectively. The input
BAM file must be sorted according to the read name.

2.2 RNA-Seq datasets

We use one simulation dataset and two real RNA-Seq
datasets. The description on each dataset is shown in
Table 2. Details are as follows.

2.2.1 Simulation data

Considering the unavailability of a gold standard dataset
of IR, we used simulated data with known retained

Table 2 Description for three mouse RNA-Seq datasets.

Read Sequencing

Dataset length (bp) depth (x1 0%) Source
Simulation data 100 15, 30, 60 BEER
Upf2 knockout 75 20 GEO (accession
mouse data ID: GSE26561)
App mutant Tau and APP mouse
mI:)Iilse data 101 100 model study

and nonretained introns to evaluate the predictive
performance of each method using AUC and AUPRC.
The simulation process is described below. First, we
used the Benchmarker for Evaluating the Effectiveness
of RNA-Seq Software (BEER)!*®! to generate paired-
ended RNA-Seq simulation data of the mouse genome
(version: mm10). Following the advice of the author
of BEER, we turned off the option for generating
novel splice isoforms to facilitate IR analysis. We first
simulated a dataset of high sequencing depth of 60
million reads with a read length of 100 bp, which is
called SIMU60. We then generated another two datasets
with 15 and 30 million reads by sampling from SIMU60,
which are called SIMU15 and SIMU30 for short.

In the subsequent comparative analysis, we focused
on investigating the IR prediction performance of each
method on SIMU30 with medium sequencing depth.
The gene numbers of SIMU15, SIMU30, and SIMU60
were 22202, 22298, and 22376, respectively, and
their intron numbers were 64 161, 69338, 73544,
respectively. These simulated data were mapped to the
Ensembl mouse transcriptome annotation (version 75)
and genome (GRCm38) using STAR (v2.6.0a) with
default settings to generate aligned reads in BAM files.

2.2.2 RNA-Seq data

The first dataset is from a control experiment of liver
tissue from the Upf2 knockout mouse as described
in IRFinder without biological replicates (accession
ID: GSE26561)128, It contains two single-end raw
sequencing data in SRA format, with a read length of
75 bp and a sequencing depth of 20 million reads. The
dataset was divided into a control group (Wild-Type,
WT) and an experimental group (KnOckout, KO). These
two SRA files were first converted to FASTQ files by
using fastq-dump (v2.9.2). Then, the reads were mapped
to the Ensembl mouse transcriptome annotation (version
75) and genome (GRCm38) using STAR (v2.6.0a) with
default settings, and BAM files with aligned reads were
obtained.

The second dataset was
APPPS1 mouse models of amyloidosis,

generated from
which
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was produced in the Accelerating Medicines
Partnership-Alzheimer’s Disease Project (https://
www.synapse.org/#!Synapse:syn17008852). Brain
samples were sequenced using Illumina HiSeq 2000
to obtain paired-end sequence data with a sequencing
depth of approximately 100 million and a read length of
101 bp. We selected 16 female samples from the APP
mice in the study. Among them, eight normal samples
served as the control group, and eight APP mutant
samples served as the experimental group.

3 Result

Intron annotations adopted by each method are different.
Hence, the number of shared introns among more than
three methods is small. For example, iREAD custom
independent intron and CASH reconstruct AS site. We
addressed this problem by using “intron cluster”’, which
is defined as non-overlapping intron regions of all genes
as proposed in LeafCutter!®’
compare these methods at the cluster level by mapping
the detected retained introns of each method to the
intron cluster to obtain the intersection. The specific
steps for generating intron clusters are as follows. First,
GTFtools!*! was used to obtain genome-wide introns
in BED format from the genome annotation file. Then,
BEDtools (v2.25.0)!*! were employed to merge the
overlapping introns by gene, and an intron cluster was
obtained. With regard to the rules for mapping to intron
clusters, the target intron with the largest overlap with a
given intron was selected.

1. In this way, we can

3.1 Performance comparison on simulated data

In this section, we compared the IR prediction
performance of each method on SIMU30 data. rMATS
and CASH analyze AS events differentially and require
two groups of samples. Therefore, we generated
SIMUS0 with 50 million reads sampled from SIMU60
to form a group with SIMU30 to meet the input
requirements of rMATS and CASH. Based on the
configuration, BEER was used to generate the gold
standard dataset of IR. For each intron, the TR, FPKM,
and the number of JRI*®! were calculated. The threshold
values (TR>10, FPKM>0.3, and JR>1) were used
to define IR events following the work in Ref. [27].
SIMU30 has a total of 69 338 introns, of which 20332
were retained. Then, we labeled the intron cluster based
on the labels of the corresponding simulation data. For
example, for intron A in the intron cluster, we selected
intron B from the simulation data that has the most
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overlaps with A’s coordinates and assigned the label
of Bto A.

Then, we run each method to obtain their predicted
IR events. The criteria to define IR for each method are
described in the following. MISO, rMATS, IRFinder,
and CASH were used to estimate a metric related to
IR levels, namely, PSI, inclusion level, IR-ratio, and
PSI. We set the threshold value of 0.1 to filter for IR
events. iIREAD directly labels whether or not each intron
is retained based on the default setting. DEXSeq counts
the number of reads that overlap with exon counting
bins in SIMU30. We calculated FPKM based on the
read count and set the same threshold value as used by
iREAD to determine IR events.

Basing on the intron cluster, we extracted the
intersection of IRs detected by all methods and used it to
calculate AUC and AUPRC. IRFinder, MISO, DEXSeq,
iREAD, CASH, and rMATS predicted 13 935, 12298,
3237, 2650, 2114, and 630 IR events, respectively.
IRFinder and MISO predicted tens of thousands of
IRs, whereas rMATS predicted less than 1000 IRs.
The difference in the number of IR is related to the
detection criteria of each method. One possible reason
is that IRFinder detects introns that appear in more
than 10% of transcripts (IR-ratio>0.1). MISO calculates
PSI at the gene level. rMATS may be related to the
insufficient number of biological replicates, which leads
to insufficient differential analysis between groups. The
intersection of IR sets on SIMU30 is shown in Fig. 1,
and other simulation data are shown in Figs. Al and
A2 in the Appendix. The prediction results of IRFinder
and iREAD, two methods specially designed for IR,
were different. Combining IR-ratio and FPKM, iREAD
and IRFinder had different detection tendencies for IR.
iREAD prefers IR with relatively higher expression,
whereas IRFinder prefers IR with relatively higher IR-
ratiol?”!, The reason may be that iREAD only recognizes
IR that is not found in the annotation file by default,
and the default threshold for the NE of iREAD is
high (NE>0.9). Similarly, DEXSeq, which detects
IR based only on FPKM, predicted more than iREAD.
Furthermore, the prediction results of rMATS and CASH
were significantly different. The reason may be that
CASH considers the annotation splicing site of the
reference gene and the new splicing site of the RNA-
Seq alignment data, whereas rMATS relies more on
annotated transcripts of reference genes.

Given the algorithmic difference between the six
methods, the number of shared IR events detected by
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Fig.1 Venn and UpSet diagram showing the IR intersection of six methods on SIMU30. The Venn diagram is in the upper right
corner. The color of the circle indicates the method and the size indicates the number of IRs the method predicts. The UpSet
diagram is a combined bar chart at the bottom. The horizontal bar chart on the left shows the total number of IRs predicted
by each method. The connection point graph and the vertical bar chart together show the IR intersection between methods. A
single point in the connection point graph represents the number of unique IRs predicted by each method.

these methods is so limited that the detected IR could
not be fully used, and the performance of these methods
could not be well compared. Therefore, we divided the
six methods into two categories based on how IR is
analyzed and reported in each method. The first category
contains TMATS and CASH, which are designed to
analyze differentially expressed IRs for case-control
experiments including multiple samples. The remaining
four IREAD, IRFinder, MISO, and DEXSeq) belong
to the second category, which detects IR from only a
single sample. The methods in the second category often
detect much more IRs than those in the first category. In
this way, the different types of methods could be better
compared. The number of intersections of IRs predicted
by rMATS and CASH was 901, including 121 positive
samples and 780 negative samples. The intersection
number of IRs predicted by IRFinder, iREAD, MISO,
and DEXSeq was 7867, including 3241 positive and
4446 negative samples. The AUC values of iREAD,
DEXSeq, IRFinder, and MISO were 0.900, 0.853, 0.748,
and 0.553, respectively, whereas those of rMATS and
CASH were 0.588 and 0.569, respectively. The AUC

and AUPRC obtained by all methods are shown in Fig. 2.

iREAD demonstrated the best prediction performance
among these four methods, and MISO performed less

well. In simulation data generation, the introduction
of a random base may affect the estimation of exon
expression level distribution by MISO. In addition, the
performance of IRFinder was not as good as that of
iREAD, which was related to the IR detection tendency
mentioned earlier. The simulation data showed that more
IRs had relatively higher expression.

Finally, we investigated the influence of sequencing
depth on the IR detection performance of each
method. Except for IRFinder, the AUC of other
methods decreased as the depth increased. The positive
correlation of IRFinder reflects the stability of IR
discrimination from the side. The relationship between
AUC and depth is shown in Table 3.

3.2 Performance comparison on real-world RNA-
Seq data

In this section, we compared the IR prediction
performance of each method on two real-world RNA-
Seq datasets. One is the Upf2 knockout mouse dataset
without biological replicates, and the other is the APP
mutant mouse dataset with eight biological replicates
(see details in Section 2). Similarly, we extracted the
intersection of IR sets detected by all methods based on
the intron cluster. Then, we compared the performances
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Fig.2 Performance comparison for six methods in identifying IRs on SIMU30, (a) and (c) in terms of AUC, (b) and (d) in terms

of AUPRC.

Table 3 Comparison of AUC on the simulated datasets with
different sequencing depths.

Dataset MISO DEXSeq iREAD IRFinder rtMATS CASH
SIMUI15 0.55409 0.87251 0.921 11 0.73635 0.60267 0.62590
SIMU30 0.55268 0.85284 0.90049 0.74815 0.587 66 0.568 95
SIMUG60 0.55967 0.85703 0.89561 0.78605 0.58679 0.587 21

of these methods on the intersection.

Here we show the results of the KO group in the Upf2
knockout mouse dataset. In the case of no biological
replicates, MISO, IRFinder, DEXSeq, CASH, rMATS,
and iIREAD detected 17 381, 5694, 2047, 1892, 666,
and 582 IR events, respectively. The numbers (and
proportions) of unique IR events of all methods were
8443 (48%), 3373 (56%), 1164 (56%), 674 (36%), 118
(18%), and 98 (17%), respectively. The intersection of
IR sets on the KO sample is shown in Fig. 3 and Table 4.
The number of IRs and unique IRs detected by MISO
considerably exceeded those detected by other methods.
One of the possible reasons is that MISO considers

some AS transcripts that only appear in specific cells or
conditions compared with other methods. In addition,
the proportion of unique IRs predicted by each method
varied greatly, which partly reflects the ability of each
method to detect novel IRs.

Here we show the results for the APP mutant mouse
dataset that contains 16 samples. MISO, IRFinder,
DEXSeq, CASH, rMATS, and iREAD detected 18 309,
29665, 3697, 4032, 1717, and 3079 IR events,
respectively. The numbers (and proportions) of unique
IR prediction results of all methods were 7750 (42%),
17504 (59%), 1176 (32%), 959 (24%), 105 (6%),
and 447 (15%), respectively. The intersection of IR
sets among these methods is shown in Fig. 4. For the
remaining 15 samples, IRFinder predicted the highest
number of IRs, and the IR sets predicted by other
methods had intersections with IRFinder. To show that
these methods can be applied to the human dataset,
we conducted evaluation experiments on a paired-
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Fig. 3 Venn and UpSet diagram showing the IR intersection of six methods on the Upf2 knockout sample.

Table4 The numbers of IRs detected on the Upf2 knockout
mouse dataset.
Dataset MISO DEXSeq IRFinder iREAD rMATS CASH
Liver WT 16829 1624 6784 498 720 1878
Liver KO 17381 2047 5694 582 666 1892

end male dataset (accession ID in the SRA database:
SRR5305480). The IR intersection results of each
method are shown in Fig. A3 in the Appendix. MISO,
IRFinder, DEXSeq, CASH, rMATS, and iREAD

20 000

17504

15000

0000

Intersection size

5000

0
B MATS

detected 8092, 2789, 1867, 1244, 535, and 130 IR events,
respectively. The numbers (and proportions) of unique
IR prediction results of all methods were 6971 (86%),
1544 (55%), 1390 (74%), 446 (36%), 127 (24%), and 19
(15%), respectively.

3.3 Differential analysis

These methods differ in their ways of detecting
differentially-expressed IRs. The details are as

Label
CASH
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iREAD
IRFinder
MISO
rMATS

&

20000 15000 10000 5000 O
Set size

Fig.4 Venn and UpSet diagram showing the IR intersection of six methods on the APP mutant mouse dataset.
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follows. For iREAD, we combined the TR of
all IR in each sample and then input them into
edgeR (v3.26.8)1% to detect significantly differentially
expressed IRs. IRFinder uses read counts of introns
to estimate the difference in read coverage between
the experimental and control groups by fitting a
GLM. DEXSeq provides an R script that encapsulates
DESeq2 for differential analysis. The above three
methods use log2FoldChange and FDR with appropriate
thresholds (|log2FoldChange| > 1 and FDR<0.05) to
detect differentially expressed IRs. rMATS uses delta-
PSI (|delta-PSI| > 0.05) to represent the difference
in intron inclusion level between groups and FDR
(FDR<0.01) to detect differentially expressed IRs.
Because MISO is designed only for comparison between
two samples, it cannot directly handle a control
experiment with multiple biological replicates. One
solution was to merge all BAM files by groups using
SAMtools (v1.6)1*! and then input them into the pipeline
of MISO for differential analysis. MISO uses the
Bayesian factor (Bayesian factor>10) and delta-PSI
(|delta-PSI| > 0.20) to detect differentially expressed
IRs.

First, we analyzed the number of differentially
expressed IR detected by each method. For the
differential analysis result of the APP mutant mouse
dataset, the numbers of significantly differentially
expressed IRs detected by MISO, IRFinder, rtMATS,

316 312
300 |-

Intersection size
N
o
o

100 |

20
421111

0

421111
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iREAD, DEXSeq, and CASH were 414, 361, 127, 41,
12, and 0, respectively. The intersection of differentially
expressed IRs on the APP mutant dataset is shown
in Fig. 5. MISO predicted the highest number of
differentially expressed IRs. One possible reason was
that we combined all the replicates in each group
to accommodate the limitation that MISO can only
compare two samples. DEXSeq uses a more general
concept than differential AS, called DEU, which
additionally considers changes in the usage of AS
transcript polyadenylation sites and start sites. However,
the number of differentially expressed IRs predicted
by DEXSeq was relatively small. The reason may be
that DEXSeq did not use the information of splice
JR. In specific, CASH did not detect any differentially
expressed IRs. The SpliceDiff module merged two
statistical tests, and the conditions that required IR to
pass both tests simultaneously were too strict.

Second, we mapped the Differentially Expressed
IRs obtained by each method to Genes (DEIRG)
and compared DEIRG with Differentially Expressed
Genes (DEGs) identified using traditional exon-level
expression using edgeR. We observed the difference
between DEIRG and DEG. The number of traditional
DEGs was 1031. The numbers of DEIRG obtained by
MISO, IRFinder, rtMATS, iREAD, and DEXSeq were
283, 103, 122, 15, and 16, respectively. The numbers
of intersections between DEIRG and DEG for these
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IRFinder
MISO
MATS

125

11h2211621111

0 DEXSeq

iREAD

I VATS
I MISO

== [ [l Wl 1 1

300 200 100
Set size

Fig. 5 Venn and UpSet diagram showing the comparison of significantly differentially expressed introns obtained by the six

methods on the APP mutant mouse dataset.
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methods were 35, 88, 6, 12, and 6, respectively. Many
disease-related genes were detected by differentially
expressed IRs. Among these DEIRGs, iREAD and
IRFinder had the highest degree of overlap (over
80%). These results suggest that IR provides additional
information for detecting disease-related genes that
traditional exon-level based approaches cannot capture.
Finally, we investigated the functions of DEIRGs by GO
enrichment analysis with the R package clusterProfiler
(v3.12)#11 We set strict thresholds (Pvalue<0.01 and
FDR<0.01) to detect enriched GO terms. The numbers
of GO terms of each method and the intersection between
methods are shown in Fig. 6. Only one intersection was
found among IRFinder, DEXSeq, and iREAD, which
was astrocyte development (GO: 0014002). This term
was reported in the study of prefrontal gene expression
patterns in rats by Duggan et al.[*?! In addition, only one
intersection was found between iREAD and DEXSeq,
which is neuron projection organization (GO: 0106027).
This term was reported in the study on the interaction
between AD and the Beta-secretase 2 gene!*’l. The top

10 enriched GO terms of each method are shown in Fig. 7.

For further verification, we searched the genes and gene
products annotated by these GO terms and found that
most of them contain genes that have been recorded in

known AD-related gene databases*+*71.

4 Computational Time

Our experimental machine is a Linux system server

Fig. 6 Venn diagram showing the intersection of GO terms
enriched in the retained introns obtained by IRFinder,
DEXSeq, iREAD, and MISO. The only GO term shared by
IRFinder, DEXSeq, and iREAD is the astrocyte development
(GO: 0014002), whose annotated genes include the known
AD-associated gene APP. The only GO term shared by
iREAD and DEXSeq is the neuron projection organization
(GO: 0106027), whose annotated gene includes the AD risk
gene PRNP.

with an Intel Xeon E5-2630 v4 10-core CPU and 252 GB
memory. For the same reason, we separately compared
the two categories of methods for the computational
time. The results are shown in Fig. 8. rMATS and
CASH were grouped into the first group to detect IR
using two real-world control experiment datasets with
no biological replicates: Upf2 knockout mouse dataset
and APP mutant mouse dataset. TMATS can be set to run
in parallel. The running time results showed that IMATS
required much less running time than CASH. IRFinder,
iREAD, DEXSeq, and MISO were grouped into the
second group to detect IR using three simulation datasets
with different sequencing depths: SIMU15, SIMU30,
and SIMU60. Among these methods, iREAD and MISO
can set parallel parameters, whereas IRFinder requires
the input BAM file sorted by the read name. The running
time results showed that iREAD and IRFinder took less
time to run, whereas DEXSeq took the most.

5 Discussion

In recent years, IR has received increasing attention
because of its correlation with gene expression
regulation and complex diseases!** 3>, Many researchers
have made continuous efforts for the development of
IR detection methods. These methods differ in many
aspects, such as ways to preprocess RNA-Seq data,
metrics to quantify the retention propensity, ways to
detect differentially expressed IR, and so on. Although
the principles of these methods have been reviewed®*,
a systematic comparison of these methods has yet to be
conducted.

In this article, we conducted a systematic experimental
comparison of existing IR detection methods. First,
considering that a gold standard of IR dataset is
unavailable, we compared the IR detection performance
on three simulation datasets for which the ground truth
of retained introns is known. BEER was used to generate
the simulated datasets with different sequencing depths.
Second, the number of shared introns among more than
three methods is small because of the different intron
annotations and principles adopted by the methods. We
used “intron cluster” to solve this problem, which is
defined as connected intron regions within one gene as
proposed in LeafCutter®”!. rMATS and CASH analyze
differential AS events and require two groups of samples.
Thus, these two methods were separately discussed from
other ones.

Existing methods have limitations. First, in terms
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Fig. 7 Top 10 GO enrichment results for rMATS, IRFinder, iREAD, and DEXSeq, where GeneRatio indicates the proportion
of genes containing the GO term. Circle size represents the number of genes or gene products annotated by GO terms. The more
reddish the color, the more significant the enrichment.

50F
CASH
40 N rMATS
=
'E30*
Q
E 20}
[=
10f

.
Upf2 knockout
mouse dataset

APP mutant
mouse dataset

Real world datasets

(a)

120f
iREAD
100 MM |RFinder
< sol MISO
3 I DEXSeq
é 60
" 40
20
0

SIMU15 SIMU30 SIMU6B0
Simulation datasets

(b)

Fig.8 Comparison of running time of IR detection methods. (a) Running time of CASH and rMATS on two real-world datasets
without replicates. (b) Running time of IRFinder, iREAD, MISO, and DEXSeq on three simulated datasets with different

sequencing depths.

of methodological integrity, IRFinder has the highest
functional integration, which integrates sequence
alignment, sample quality control, IR detection, and
differential analysis. Each method can perform sample
quality control before IR detection, such as whether or

not DNA contamination is present, which helps reduce
noise. Second, in terms of the information on which
IR detection depends, relying solely on the annotated
transcript could limit the discovery of novel IRs because
the current transcript annotation is incomplete. The
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intron coordinates constructed by sequence alignment
of RNA-Seq data can remove the dependence on
incomplete annotation and are conducive to the detection
of novel IRs. For example, CASH combines transcript
annotation and RNA-Seq data information to reconstruct
AS sites. Third, current methods detect IRs based on only

RNA-Seq data without considering other information,
56-58]

such as sequence features and splice site strength!

The introduction of intron-related a priori information,

such as intron length and canonical status of splice
sites, is helpful for IR detection. Fourth, the discussed
methods do not resolve IR events at the isoform level

because of the short read length of RNA-Seq technology.

That is, retained introns are not assigned to their origin
of isoforms. IR can be detected at the isoform level in
two possible ways. One is to construct intron retaining
isoforms according to the detected IRs combined
with transcriptome annotation and then quantify them
using transcriptome quantitative tools. However, the
construction of isoforms has a combinatorial explosion
problem. The other is to use third-generation sequencing
technologies, such as SMRT!™!, which can generate
full-length transcript isoforms. Long sequencing length
and high sequencing error rate are the characteristics
of third-generation sequencing. The long read length is
the main reason why the current IR detection methods
cannot be directly applied to third-generation sequencing
data. Accordingly, the calculation method of coverage
depth from sequencing data needs to be improved to
expand the data types available for existing IR detection

6000 |- 5705
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4000 |-

2000 -

Intersection size

0

@ rVATS
@ iREAD
I CASH

methods. In the future, developing methods to detect
IRs for isoforms would be of great value. Addressing
the above limitations could enable the development of
accurate IR detection methods.

6 Conclusion

IR has been gaining increasing attention for its roles
in gene regulation and its association with diseases.
Analysis of IR provides a complementary approach
to traditional methods that are based on only exon
expression. IR is informative about disease status or
biomarkers. In the analysis of IR, the first step is
to detect IR events from biological samples. Several
methods have been developed, each having advantages
and limitations. This work discussed key principles
and features of existing IR detection approaches and
performed systematic experiments to compare their
performance on detecting IRs. We pinpointed potential
ways to improve the accuracy of IR detection methods.
We expect that the systematic analysis provides a helpful
guidance for the detection and analysis of IRs.

Appendix
Figures A1-A3 are presented in this section.
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