
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 06/06 pp279–297
Volume 4, Number 4, December 2021
DOI: 10.26599/BDMA.2021.9020012

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Intelligent and Adaptive Web Data Extraction System
Using Convolutional and Long Short-Term Memory

Deep Learning Networks

Sudhir Kumar Patnaik�, C. Narendra Babu, and Mukul Bhave

Abstract: Data are crucial to the growth of e-commerce in today’s world of highly demanding hyper-personalized

consumer experiences, which are collected using advanced web scraping technologies. However, core data

extraction engines fail because they cannot adapt to the dynamic changes in website content. This study investigates

an intelligent and adaptive web data extraction system with convolutional and Long Short-Term Memory (LSTM)

networks to enable automated web page detection using the You only look once (Yolo) algorithm and Tesseract

LSTM to extract product details, which are detected as images from web pages. This state-of-the-art system does

not need a core data extraction engine, and thus can adapt to dynamic changes in website layout. Experiments

conducted on real-world retail cases demonstrate an image detection (precision) and character extraction accuracy

(precision) of 97% and 99%, respectively. In addition, a mean average precision of 74%, with an input dataset of 45

objects or images, is obtained.

Key words: adaptive web scraping; deep learning; Long Short-Term Memory (LSTM); Web data extraction; You

only look once (Yolo)

1 Introduction

Recent advancements in machine learning and Artificial
Intelligence (AI) have unfolded new opportunities, even
in extensively studied research programs in numerous
domains, including medical imaging (e.g., image
recognition), transportation (feature extraction in self-
driving cars)[1, 2], and traffic scenarios (e.g., object
detection)[3, 4]. These advancements also encourage the

� Sudhir Kumar Patnaik is with the Department of Computer
Science and Engineering, M. S. Ramaiah University of
Applied Sciences, Bangalore 560054, India, and also with
Gibraltar India Solutions LLP, Bangalore 560103, India. E-mail:
skpatnaik9@gmail.com.
�C. Narendra Babu is with the Department of Computer

Science and Engineering, M. S. Ramaiah University of Applied
Sciences, Bangalore 560054, India. E-mail: narendrababu.c@
gmail.com.
�Mukul Bhave is with Gibraltar India Solutions LLP, Bangalore

560103, India. E-mail: mukulbhave@gmail.com.
* To whom correspondence should be addressed.

Manuscript received: 2021-04-18; revised: 2021-05-30;
accepted: 2021-06-28

extraction of relevant information from documents
(pdf, doc, or txt files), websites, and images that use
Optical Character Recognition (OCR)[5], subsequently
inspiring the development of automated web data
extraction systems through leading edge technology
solutions[6, 7]. The application of deep learning in web
data extraction[8, 9] is still in its nascent stage; in addition
to extracting data from documents or web pages, this
application involves navigating different websites and
storing data for analytics and visualization purposes.

Although web application development is making
rapid technological change in terms of rendering
content dynamically and embedding websites within
restricted browser environments, maintaining core data
extraction engines still remains a serious challenge[6],
which requires frequent and manual intervention.
Manually fixing extraction engine scripts for hundreds of
websites is cumbersome and inefficient, thus urging the
development of adaptive web data extraction systems
that can adapt to dynamic changes in websites[10].
Some of the available web data extraction techniques,

280 Big Data Mining and Analytics, December 2021, 4(4): 279–297

that are used in such adaptive systems are discussed
below. Web data extraction is explored using repetitive
blocks[11], with their respective attributes obtained from
classification-based approaches. This data extraction
technique demonstrates good accuracy and adaptability
to layout changes in websites. However, it assumes
websites to have repetitive blocks and such an
assumption is not always possible. Another approach
that uses weighted tree matching clustering algorithms
has been developed to extract records from websites;
this approach can be applied to structured (product
descriptions) and unstructured records (e.g., blogs)[12].

The voluminous growth of web data proportionally
adds challenges to the development of adaptive web data
extraction techniques. A detailed review[13] summarized
deep web data extraction technologies and discussed
alternate data extraction methods for structured and
unstructured data. The characteristics of the deep
web (e.g., wider data coverage, higher quality, and
strong structure) make the development of deep web
data extraction techniques challenging[14]. Moreover,
the large amount of data hidden in web pages with
noisy content (in the form of advertisements, page
settings, and navigation buttons) institute further
challenges[15–17]. In this regard, techniques based on
AI and machine learning[5], including deep learning,
can potentially accelerate the development of adaptive
web data extraction techniques. One way to extract
such data is to use the fast Region-based Convolutional
Neural Network (R-CNN) model to filter these images
by using layers in artificial neural network model,
extract hidden data from web pages, and then store
them in a database[18]. Similarly, data extraction
techniques with web wrappers have continued to mature
with the evolution of machine and deep learning
techniques. Contemporary web wrappers adapt to
specific web templates before initiating extraction
process. Such web wrappers use fast R-CNN to learn
from previous templates[19], leading to a site independent
web wrapper, which however, requires their results to
be empirically validated. Some web wrappers can not
check tree structure similarity accurately in the deep
web due to the use of the Document Object Model
(DOM) tree of records[20]. In such cases, ontological
techniques are used, so that wrappers can reduce data
regions and improve extraction accuracy. Empowered
with script edit based machine learning techniques,
wrappers can also adapt to dynamic changes in website

layout[21] by using an extraction model to train new
wrappers that automatically extract the target data
with improved accuracy. Classical object detection
problems in computer vision and image processing
have also evolved by using deep learning methods,
especially those with Convolutional Neural Network
(CNN), but not applied for web data extraction[20].
The application of CNN is typically used for accurate
object detection[13], semantic segmentation[22] (using
selective search algorithm to propose possible regions of
interest)[16, 23] and object classification.

The You only look once (Yolo)[24] deep learning
model was conceptualized in 2015. It works based on
(1) image classification and (2) object localization. In
image classification, an image is assigned to numberous
categories, such as “electronics” and “book”, with
only one category assigned to it. This method quickly
evolved into fast R-CNN[25] by using the region
of interest pooling technique. Subsequently faster R-
CNN[26] and Mask R-CNN[17] models emerged as the
first fully differentiable models. Furthermore, Yolo
was introduced to enable real time image or object
detection[27, 28]. Table 1 shows the evolution of image or
object recognition technologies, models, and algorithms
in recent years. Yolo uses classification and regression
algorithms for image classification and localization.
After selecting the regions, Yolo uses the idea of
anchor boxes, but instead of selecting the anchor boxes
manually, finding the best anchor boxes makes it easier

Table 1 Deep learning models and techniques.
Model Algorithm/Technique

R-CNN
Dataset: ImageNet
Classification: Binary SVM

Fast R-CNN RoI pooling
Faster R-CNN RPN

Mask R-CNN
RoI align (pixel level
segmentation)

RetinaNet
ResNet, Feature Pyramid
Network (FPN)

Single Shot Detector (SSD)
Single deep neural network,
feed forward convolutional
network

Histogram of Oriented Gradients
(HOG)

Detection window, RoI

Region-Fully Convolutional
Network (R-FCN)

ConvolutionalC RoI

Spatial Pyramid Pooling (SPP) Pyramid pooling

Yolo
Classification and regression,
Deformable Parts Model
(DPM) and R-CNN

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 281

for the network to learn as shown in Table 1 with an
aim to predict class and bounding box specifying object
location.

Table 2 compares traditional, machine learning, and
deep learning tools in manual and automated web
data extraction. It reveals that much of the literature
focused on automated web data extraction using machine
learning[39] and neural network techniques for deep
web data extraction[20]. The above discussion also
suggests that the above-mentioned approaches did
not use image-based recognition as a technology for
data extraction. Furthermore, traditional and machine
learning techniques focused on data accuracy, rather than
building intelligent and adaptive web data extraction
systems, with the exception of Refs. [10, 21], where
some structuralism of the website is assumed for
developing adaptive web scrapers.

Today, web data extraction is performed using
contemporary and machine learning techniques, as
shown in Table 2 with 99% data extraction accuracy. The
techniques followed are DOM-based by using automated
wrapper generation algorithms[8], which makes the
system susceptible to website layout changes, despite
progress in development of automated information
extraction systems[10, 12, 21].

The proposed system in this study primarily addresses
this gap in the contemporary and machine learning
techniques by using deep learning object detection
technology, such as Yolo, and eliminates DOM or
wrapper techniques for data extraction. The novelty
in the proposed system is based on object detection
technique, and therefore lends itself to detecting the
object irrespective of its location in the website. Once
the object or product page in a website is detected, LSTM
is used for extracting the product detail from the object.

This approach to detect the object or product page makes
the proposed web data extraction system adaptable to
dynamic changes in the website. The proposed web data
extraction system using Yolo and Tesseract LSTM deep
learning networks will demonstrate two key concepts to
prove that:
� web data extraction system is intelligent by

handling the image identification, detection and
extraction of data from web page,
� proposed system is adaptive, and extracts data from

the new location or layout of the web page due to change
in website layout, and
� proposed system is domain agnostic and can handle

data extraction in nonretail domain.
The contribution of this study is to build a state-of-the-art

intelligent and adaptive web data extraction system to
� extract data with a deep learning based object

detection technique using Yolo and Tesseract Long Short-
Term Memory (LSTM) networks,
� eliminate traditional or machine learning based core

data extraction engines, and
� build self-correction capability in a web data

extraction system with an adaptive capability to handle
dynamic changes in the website layout[10, 21].

To the best of the authors’ knowledge, the proposed
approach is one of its kinds in the literature. The
remaining part of this paper are structured as follows:
Section 2 defines the problem statement outlining
the issues in the web data extraction system due to
changes in website layouts. Design and architecture
of self-correction capability with Yolo[24] and LSTM
neural networks[39], including input data modeling,
are discussed in Section 3. Section 4 presents the
experiment setup process, input data modeling, and
results from seven real-world cases conducted with the

Table 2 Comparison of traditional, machine learning, and deep learning based web data extraction tools.
Tool Extraction rule Technique Precision (%) Self-healing

TSIMMIS[29] Wrapper-based Traditional/statistical Not available No
WebOQL[30] Tag tree Traditional/statistical Not available No
WHISK[31] Regular expression Supervised learning 69 No
RAPIER[32] Logic rules Supervised learning 89 No

SRV[33] Logic rules Supervised learning 58 No
SoftMealy[34] Regular expression Supervised learning 58 No

DEPTA[35] Tag tree Un-supervised learning 98 No
Trinity[36] Regular expression Un-supervised learning 96 No
DeLA[37] Regular expression Un-supervised learning 80 No

OLERA[38] Regular expression Semi-supervised learning 99 No
Proposed system Object detection Deep learning To be determined Yes

282 Big Data Mining and Analytics, December 2021, 4(4): 279–297

proposed system. Section 5 highlights the critical review,
limitations, and future scope. Concluding remarks are
summarized in Section 6.

2 Problem Definition

Data extraction is accomplished through web scraping
techniques, such as open source, commercial crawlers,
and application program interface. “Extraction Engine”
is one of the core subcomponents in traditional, machine
learning, and deep learning based automated end-to-
end web data extraction systems, as shown in Fig. 1[40].
It is implemented using various techniques, such as

automated wrapper generation[21], tree-based DOM[41],
pattern matching[12], and HyperText Markup Language
(HTML) tags, which assume some form of data
structuralism in the websites. Figure 2 shows traditional,
machine learning, and deep learning based web data
extraction systems with core data extraction engine, and
their subcomponents are explained as follows:
� Crawler: A web crawler downloads and indexes

content from all over the Internet. It follows certain
policies that make it more selective about which pages to
crawl, in what order to crawl them, and how often they
should crawl them again to check for content updates.
Web crawlers start from a list of known URLs and then

Fig. 1 Traditional, machine learning, and deep learning based web data extraction system.

Fig. 2 Traditional, machine learning, and deep learning based web data extraction system with core data extraction engine.

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 283

crawl the web pages at those URLs first. As they crawl
those webpages, they will find hyperlinks to other URLs,
and they add those to the list of pages to crawl next.
� Script generator: These generators are selenium-

based record and playback tools that generate Python
code that can be rerun for navigation.
� Data extractor: Extraction engines can extract

specific data, images, and files from any website.
It contains crawling rules and an extraction pattern
providing efficient and accurate data extraction. The
extractor engine automatically scans the provided URLs
and scrapes all the information that meets the specified
template.

The process involved in manual and automated data
extraction is explained as follows:
� Navigation and categorization: Navigation is

performed to identify the product pages, thereby
obtaining the URL in an e-commerce website and the
product is categorized.
� Extraction: A core extraction engine is used to

identify the sections of the page, thereby obtaining the
x-path from where the data of interest is extracted.

The introduction of machine learning and deep
learning techniques in the data extraction engine
enhances data extraction accuracy and enables
automated web data extraction, by following the process

as outlined below, while still using a core extraction
engine for crawling the data from the webpage, as shown
in Fig. 2:
� Selecting parameter and hyper-parameters for input

data modeling and training.
� Training the machine learning model with input

images and minimizing loss function for improved data
accuracy.
� Extracting data from the specific product page and

storing in database.
� Gaining insights from the web data extraction

process and continuously training the machine learning
model for improving data extraction accuracy.
� Analyzing stored data and feeding them back to the

website for improving personalized user experience.

2.1 Limitations of traditional, machine learning,
and deep learning based web data extraction
systems due to changes in website layout

Given the dynamic changes in websites, errors, such as
(1) website not found (404 error), (2) change in location
of product page, and (3) nonexistent product page, occur
for various reasons and break the “data extractor and
script generator”, as shown in Fig. 3. Data extraction
is performed from web pages by (1) using extraction
engines with contemporary, machine learning, and deep

Fig. 3 Failure in core data extraction engine using traditional, machine learning, and deep learning technique for automated
web data extraction.

284 Big Data Mining and Analytics, December 2021, 4(4): 279–297

learning methods, or (2) using open source tools, such
as crawlers. In all the cases, the extraction logic is
built into the core extraction engine with contemporary,
machine learning, or deep learning techniques. In such
circumstances, the script developer usually debugs
the error, identifies an appropriate solution, fixes the
error in “data extractor/script generator”, and re-runs
the “extraction engine” to extract correct data. This
process is manual and labor intensive, and does not
scale to extracting data from large websites. Given that
traditional, machine learning, and deep learning methods
rely on the core “data extraction engine”, these three
methods fail in the event of changes in website layout or
product page location, as shown in Fig. 3.

2.2 Deep learning and LSTM network based
automated web data extraction to handle
changes in website layout

The proposed system in this study solves the issue
highlighted in Section 2 by eliminating the need for a
“core extraction engine” making the proposed automated
web data extraction intelligent and adaptive to dynamic
changes in websites. By addressing this issue, the
proposed system redefines the way data extraction will
be performed in the future. The proposed system uses
a deep learning based Yolo model for object or image
detection and Tesseract LSTM deep learning networks
for the extraction of data from images or objects. As
a result, the “core extraction engine” is eliminated as
shown in Fig. 3 and hence referred to as an intelligent
web data extraction system. The proposed end-to-end
automated web data extraction system is achieved in a
three-step process as follows:
� Step-1: Changes in website layout: Changes

in website layout are introduced by simulating an
experiment where the user accesses the specific product
web page (1) without login (as a guest user) and (2)
with user login. With user login, the layout of the web
page changes. In real-world scenarios, this change is a
definite possibility due to other business needs, such as
promotions and discounts.
� Step-2: Auto-navigation: The image detection

feature of the Yolo model enables auto-navigation
to the product page (also called “records” [product]
and “regions” [product detail], and demands extensive
training of the model for high accuracy in locating
records and regions.
� Step-3: Self-correction and automated web

data extraction: Using object detection based deep

learning techniques, such as Yolo and image-to-
text extraction using Tesseract LSTM, eliminates
the core extraction engine; thus, the proposed
system demonstrates self-correction and adaptability to
dynamic changes in website layout. This capability is
demonstrated in Fig. 3, where the “X” mark indicates the
core data extraction engine is not needed in the proposed
web data extraction system.

2.3 Yolo object detection and Tesseract LSTM
image-to-text extraction techniques for
automated web data extraction

R-CNN techniques use regions to localize objects within
an image, and do not consider the entire image, but only
the parts of the images with a high chance of containing
an object. By contrast, the Yolo framework handles
object detection by taking an entire image in a single
instance and predicts the bounding box coordinates
and class probabilities for these boxes[27, 28]. Hence, the
speed at which it processes (45 frames per second)
coupled with the ability to understand generalized
object representation provides the framework a unique
advantage over the R-CNN family of object detection
techniques as shown in Table 1. Recently, Yolo has
evolved to be one of the best algorithms for object
detection with a comparatively similar performance
to R-CNN algorithms. Hence, the proposed web data
extraction system uses the Yolo architecture and an
algorithm for object detection, which is briefly discussed
in Section 3. Tesseract LSTM is an OCR technique used
for extracting text from images[39]. It uses CNNs to
recognize images by using recurrent neural networks[16]

and LSTM. The input image is processed in boxes
line by line and inserted into the LSTM model; then,
the output is generated in the form of a text or Excel
file. The proposed web data extraction system uses the
Tesseract LSTM architecture and algorithm for image-to-
text extraction, which is briefly discussed in Section 3.

3 System Architecture and Proposed
Algorithm

3.1 System architecture

The end-to-end automated data architecture, including
its subcomponents, is depicted in Fig. 4. However, the
Yolo model is a new core component that enables self-
correction. It is introduced as a novel method; hence,
the proposed architecture discusses Yolo and the self-
correction architecture. The Yolo architecture shown

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 285

Fig. 4 End-to-end automated web data extraction system architecture using Yolo and Tesseract.

in Fig. 4 starts with an image, from which (1) a list
of records with bounding box is obtained within each
record, (2) a label is assigned to each region with the
bounding box, and (3) a probability score is obtained for
each label and bounding box. The Yolo architecture has
the following subcomponents:
� Convolutional layer: In this layer, filters are

trained to extract appropriate features from the image.
These filters then learn the desired object features.
Convolution is computed by sliding the filter all along
input images and the result is a two dimension matrix
called a feature map. As an example, the input object is
a set of image files of a product (e.g., “book”), where the
CNN extracts features of different “book” objects; then,
applies a filtering process to reach the desired “book”
object.
� MaxPool layer: The features computed by CNN

are used to find a predefined number of regions
(bounding boxes), which may contain objects. As
an example, once the “book” object is identified, the
MaxPool layer then applies the bounding box to the
regions (i.e., product detail within the “book” object
[e.g., “author”, “price”, and “title”]). From these regions,
data are extracted. The object could have several regions;
therefore, classification and bounding box are applied.
� Classes and bounding boxes prediction: Regions

proposed by MaxPool layer are provided as input to
fully connected network. Then they predict object class
using the Support Vector Machine (SVM) classification
technique and draw bounding boxes around the classified
objects. In a specific case of the retail website, the
“regions” within the object “book” are classified and
predicted using the SVM algorithm and data are
extracted from these regions.

The scope of this study aims to understand and apply
the deep learning based Yolo model to enable the web
data extraction system to perform self-correction in the
event of website layout changes. The internal workings
of the subcomponents of the Yolo model are already
explained in Ref. [26]; hence, an in-depth overview
focusing on its application in web data extraction is
provided. Once the Yolo is sufficiently trained with
product images and the loss function is optimized, the
proposed self-correction capability in the end-to-end
web data extraction system is achieved.
� Object detection: Yolo is used for object or

image detection. Twenty-four CNN layers and two
fully connected network layers are used to extract
features from images and then predict bounding box
output coordinates. Yolo CNN, which can identify
multiple text objects on a webpage image, is used. To
identify text objects, Yolo DarkNet-19 architecture is
considered. The DarkNet architecture is selected due
to its lower processing requirement compared with
other architectures, such as ImageNet and GoogleNet.
The structure of DarkNet-19 and its application in the
proposed web data extraction system is shown in Fig. 5.
� Data extraction: Once, the output image or

product detail image is detected, Tesseract is used
to extract the text. Tesseract is an optical character
recognition open-source system that uses AI for text
search and its image recognition; it also uses a two-step
approach that initiates adaptive recognition. In turn,
Tesseract uses LSTM for text recognition. The Tesseract
architecture in the proposed web data extraction system
is shown in Fig. 6. To predict text accurately from
webpage images, a stepwise strategy is used to identify
the text objects on the page using the Yolo model.
Once the bounding boxes with text are detected, the

286 Big Data Mining and Analytics, December 2021, 4(4): 279–297

Fig. 5 Yolo architecture for object detection in the proposed web data extraction system.

Fig. 6 Tesseract LSTM architecture for image-to-text extraction in the proposed web data extraction system.

text is recognized. Several techniques can recognize
text. A pretrained Tesseract neural nets LSTM engine,
which is an OCR engine, is used. One advantage of
the Tesseract engine is its support for many languages.
Yolo detects the required text regions and crops them
out from the image. Later, these regions are passed one
by one to Tesseract, which reads them and returns the
corresponding text. In the experiment, sixteen images
are used to validate multiple cases. The pipeline predicts
different numbers of text objects for retail vs. nonretail
wesite, extracting the “book title”, “author”, and “price”
from the products page in retail website and only the
“book title” and “author” in the nonretail website. The
performance of the pipeline is summarized in Table 3.

The end-to-end automated web data extraction system
includes:

ProdDetail D product detail data extracted from
output images,

Table 3 Development environment, tools, and technologies.
Tool Detail

Programming language Python 3.8
Object detection ML library Yolo
Text extraction ML library Tesseract (4.1.1)
Data storage hdf5
GPU computing capacity Yolo trained on Intel I7-10750H

CPU@2.5 GHz
Installation and package
management

Anaconda 4.9.0

Source code repository GitHub

ObjDetect D object detection using the Yolo deep
learning model, and

TxtExtract D image-to-text extraction using the
Tesseract LSTM neural network model.

The input image sequence is set as X D Œx1; x2; : : : ;

xi �, where
xi D .c; w; h; o; p/,
c D bounding box center,
w, h D width and height of the bounding box,
o D class of object, and
p D probability of finding the object.
The output of convolutional layers in the Yolo model

.ObjDetect/ is pretrained on the ImageNet 1000 dataset
with twenty-four convolutional network layers, followed
by ROI pooling and fully connected network layers,
using the DarkNet framework for training, inference,
and detection. The final network layer predicts bounding
box coordinates using an activation function and leaky
rectified linear activation function for the remaining
layers,

�.X/ D

(
X; if X > 0I

0:1X; otherwise
(1)

where X D probability of finding an object in the
bounding box. After predicting the class probability,
it uses a nonmax suppression algorithm to eliminate
unnecessary anchor boxes and outputs bounding box
detail for each class, as shown in Fig. 4. Text extraction
.TxtExtract/ is performed using the LSTM neural

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 287

network model for post object identification. The
input to LSTM neural networks is defined as Y D
Œy1; y2; : : : ; yj �, where
yj D .sd ; ts; ft /,
sd D sample data point,
ts D number of steps in single data,
ft D number of variables for the corresponding true

value in X .

3.2 Proposed algorithm

Given the input sequence Y D .y1; : : : ; yi /, the model
is trained to maximize probability distribution .P.l jY //
for the corresponding target and compute the output with
the Tesseract algorithm, as shown in Algorithm 1.

3.3 Evaluation metrics

3.3.1 Bounding box output
The bounding box output in XML data format is
represented with a few key tags shown (e.g., bounding
box coordinates [xmin; ymin; xmax; ymax] and object
properties) as follows:
� folder containing images;
� physical file name in the folder;
� image size in width, height, and depth; and
� object details with annotations, such as (1) object

name, (2) truncated, indicating that the bounding box
specified does not correspond to the full extent of the
object, (3) difficult, means the object is difficult to
recognize, and (4) bounding box coordinates.

3.3.2 Mean Average Precision error (mAP)
For all the experiments in Section 4, the mAP of a set
of objects or images is used to measure the performance
of models performing information retrieval and object

Algorithm 1 Proposed web data extraction system algorithm
1: Define evalProductData(image names list):
2: classes load class names()
3: tesseract model init tesseract lstm model()
4: yolo model init yolov2 model()
5: fpred outD open file(“prediction output.txt”)
6: prediction timeD fg
7: FOR image name in image names list:
8: image load image array(image name)
9: predict start timeD current time

10: predicted bounding boxes, predicted classesD yolo model.predict (image)
11: image with boxes classes draw boxes classes(image)
12: save image to disk(image with boxes classes)
13: FOR index,box in enumerate(predicted bounding boxes) :
14: predicted location image.crop(box)
15: predicted class nameD classes[predicted classesŒi��

16: predicted text tesseract.image to string(predicted location)
17: prediction time[image name]D current time - predict start time
18: plot prediction time(prediction time)

detection, which is defined in the following:
AP D

P
n.Rn �Rn�1/Pn;

mAP D
1

n

Pn
iD1 APi

(2)

where n D number of images in the dataset and AP D
Average Precision (AP) for a given image. For a given
image, AP is calculated and the mean of all the AP
scores indicates the model’s performance in identifying
the images or objects. In Eq. (2), Rn and Pn are the
precision and recall at the n-th threshold. mAP is the
mean of AP over all the images or objects.

3.3.3 Data extraction accuracy
Data extraction accuracy is measured by precision
and recall for image or object detection (e.g., product
detail) and character extraction within the product detail
or image, precision and recall are calculated in the
following:

Precision D .jRrl \Rrt j/=Rrl ;

Recall D .jRrl \Rrt j/=Rrt

(3)

where Rrl = relevant images or objects and Rrt =
retrieved images or objects.

3.3.4 Model performance
The third version of Yolo used in the experiment uses
a binary cross-entropy loss function for each label, as
shown in the following:

LossD

(
� log Objpredicted; if Objactual D 1I

� log.1 � Objpredicted/; otherwise
(4)

This reduces the computation complexity and predicts
the objectness score for each bounding box by using
logistic regression.

If validation loss and total loss converge, then
the model is performing an accurate prediction
task. Validatoin loss is a cost function value for cross-
validation data, whereas total loss is a cost function value
for training data.

Evaluation time is measured as an average of training
time per input image over n images in the input dataset
specified in the following:

EvalTime D
1

n

nX
iD1

xi (5)

where xi D Œx1; x2; : : : ; xn� is the input dataset.

4 Experimentation and Result

The experiment environment and input data modeling
are explained in Section 4. Section 4.3 focuses on the
results of seven real-world cases in the retail and

288 Big Data Mining and Analytics, December 2021, 4(4): 279–297

nonretail domains to demonstrate the unique ability of
the proposed system to identify the image of the product
specification page by using Yolo, extract data from it
by using Tesseract LSTM neural networks, and adapt
to dynamic changes in the website layout. Section 5
provides deep insights into the limitation of the proposed
web data extraction system and future research scope.
The experimental results for 7-different real-world cases
are presented in this section.

4.1 Experiment setup

Table 3 shows the tools, technologies, and hardware
configuration used in the proposed web data extraction
system. The case details in the proposed web data
extraction system are shown in Table 4 to prove
the system’s automated extraction and self-correction
capabilities.

4.2 Input data modeling and training

���Input data modeling: One of the key steps to
building a successful deep learning based web data
extraction system is the ability to define the input data
model correctly. The remainder of the paper refers
to specific product pages as “records” and product
attributes as “regions”. Each record is at a product
category level,whereas each region is at a product detail
level. Each record consists of multiple regions. Two
parameters can influence automated web data extraction
by using deep learning model (1) number of records to
the input data model and (2) the loss incurred during the
objection detection process. Increasing or decreasing the
number of records or tuning the learning parameter in
the loss function can remarkably improve the accuracy
of the output data. The section below explains the input
data setup process, which includes three steps: (1) data
gathering, (2) data labeling, and (3) file creation.

– Gathering a high quality dataset: Image files
are crucial to training deep learning systems, and
considerable amount of time is spent to create 100+
image files across retail and nonretail websites, including

Table 4 Experiment structure.
Experiment Product Domain Error Self-correction

1 Single Retail No No
2 Single Retail Yes Yes
3 Multiple Retail No No
4 Multiple Retail Yes Yes
5 Single Nonretail No No
6 Single Nonretail Yes Yes
7 Multiple Nonretail No No

single and multiple product specifications. The Yolo
model is trained to detect single product (e.g., book) and
multiple products (e.g., book and mobile) in the retail
domain, and single product (e.g., book1) and multiple
products (e.g., book1 and mobile1) in the nonretail
domain.

– After data are gathered, bounding boxes around the
objects are drawn. Eighty percent of the dataset is then
labeled and associated with corresponding object classes
and validation; testing phases use 10% of the dataset.

– The DarkNet expects the same dataset as that used
in Section 2 for training and uses 80% of the total dataset
for training and the remaining 20% for testing.
� Training: Training the model starts with

pretraining the weights of the DarkNet and fine-
tuning the model by changing the weights of the last
two layers. This procedure allows maintaining the
same feature extraction layers and retraining only
the decision part, thus reducing training time. With
the scope of research in consideration, the dataset
is relatively smaller. The training, validation, and
test sets are composed of 1000 images at a ratio of
80:10:10. The dataset is created by capturing images
of product pages from different retail websites, and
then creating bounding boxes and label for each image
in the dataset. Yolo identifies the top K bounding
boxes per image based on the intersection over union
measure and the confidence score of the bounding
box for each text object class. In this research scope,
three different classes of text objects (book title, author,
and retail price) for identification are chosen. The
model is trained for 30 epochs, and the learning rate,
weight decay, and momentum values are similar to
the values used for training Yolo DarkNet-19 on the
Common Objects in COntext (COCO) and Visual
Object Challenge (VOC) datasets. Pascal VOC is an
XML file, where one file is created for each image in the
dataset, whereas COCO is in the form of a JSON file,
which has one file for the entire dataset and the testing
and validation datasets. The bounding box in Pascal
VOC is represented as (x � top left, y�top left, width,
height), and the COCO bounding box is represented as
(xmin � top left, ymin � top left, xmax � bottom right,
ymax � bottom right).

4.3 Results

For each experiment the following figures are included:
� Input image with and without user login indicating

an error/ no error condition;

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 289

� Output image with a bounding box user login
indicating an error/no error condition, and demonstrating
the automated image or object detection capability by
using the deep learning based Yolo model;
� Output text demonstrating the work of the proposed

web data extraction algorithm.
4.3.1 Experiments 1 and 2: Extracting data from

single product specification in the Amazon
retail site without and with changes in
website layout

This experiment uses the proposed web data extraction
framework to extract data from one product page (e.g.,
“book”) in the Amazon retail website, without logging
into the Amazon website, which represents the normal
condition. The next step is to log into the Amazon retail
website as a registered user and search for the same book
that shows a different URL and layout of the product
page. The change in product page layout and associated
URL is an indication of the change in website layout and
hence there is an error condition. The input data are an
image for a single product specification from which data
are extracted without login (or as a guest user), and the
corresponding output image with a bounding box around
single product detail is shown in Fig. 7. Similarly, input
and output images with bounding boxes around single
product detail and with error conditions (guest user) are
shown in Fig. 8. Data extracted from single product
specification pages (e.g., product: “book” and product
details: “author name” and “price”) in the Amazon retail
website are shown in Figs. 9 and 10.

(a) Input: Single product page without changes in website layout or location (URL)

(b) Output: Single product page with bounding boxes around product detail (e.g., book)
without changes in website layout or location (URL)

Fig. 7 Object detection with bounding boxes around single
product detail without changes in the website layout or
location (URL) of the product page.

(a) Input: Single product page with changes in website layout or location (URL)

(b) Output: Single product page with bounding boxes around product detail (e.g., book)
with changes in website layout or location (URL)

Fig. 8 Object detection with bounding boxes around single
product detail with changes in the website layout or location
(URL) of the product page.

(a) Output: Coordinates of the bounding box around product detail without changes in
the website layout or location (URL) of the product page

(b) Output: Product detail extracted from the single product page (e.g., book) of the
Amazon retail website

Fig. 9 Object detection with bounding boxes around single
product detail and data extracted without changes in the
website layout or location (URL) of the product page.

4.3.2 Experiments 3 and 4: Extracting data
from multiple product specifications in the
Amazon retail site without and with changes
in website layout

The input data as an image for multiple product
specifications from which data need to be extracted
without error conditions(no login) and the corresponding
output image with a bounding box, as shown in Fig. 11.
Similarly, input and output images with bounding
boxes around product detail with error condition (as a
guest user) are shown in Fig. 12. Data extracted from
the product specification page (e.g., product: “book”
and product detail: “author name” and “price”) in

290 Big Data Mining and Analytics, December 2021, 4(4): 279–297

(a) Output: Coordinates of the bounding box around single product detail with changes
in the website layout or location (URL) of the product page

(b) Output: Product detail extracted from the single product page (e.g., book) in the
Amazon retail website

Fig. 10 Object detection with bounding boxes around single
product detail and data extracted with changes in the website
layout or Location (URL) of the product page.

(a) Input: Multiple products with no changes in website layout location (URL)

(b) Output: Multiple products with bounding boxes around product detail (e.g., book)
without changes in website layout or location (URL)

Fig. 11 Object detection with bounding boxes around
multiple product detail without changes in the website layout
or location (URL) of the product page.

the Amazon website by using Tesseract LSTM neural
networks are shown in Figs. 13 and 14.

4.3.3 Experiments 5 and 6: Extracting data from
single product specification in nonretail site
without and with changes in website layout

This experiment uses the proposed web data extraction
framework to extract data from one product page (e.g.,

(a) Input: Multiple products with changes in website layout or location (URL)

(b) Output: Multiple products with bounding boxes around product detail (e.g., book)
with change in website layout or location (URL)

Fig. 12 Object detection with bounding boxes around
multiple product detail with changes in website layout or
location (URL) of the product page.

(a) Output: Coordinates of the bounding box around multiple product detail without
changes in website layout or location (URL) of the product page

(b) Output: Product detail extracted from multiple products (e.g., two books) in the
Amazon retail website

Fig. 13 Object detection with bounding boxes around
multiple product detail and data extracted without changes
in website layout or location (URL) of the product page.

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 291

(a) Output: Coordinates of bounding box around product detail with changes in
website layout or location (URL) of the product page

(b) Output: Product detail extracted from single product page (e.g., book) in Amazon
retail website

Fig. 14 Object detection with bounding boxes around
multiple product detail and data extracted with changes in
website layout or location (URL) of the product page.

book) in the nonretail website without logging in to the
website, which is the normal condition. The next step is
to log into the nonretail website as a registered user and
search for the same book that shows a different URL and
layout of the product page. The change in product page
layout and associated URL is an indication of the change
in website layout and hence an error condition. The input
data as an image for a single product specification from
which data need to be extracted without error conditions
(no login) and the corresponding output image with a
bounding box is shown in Fig. 15. Similarly, input
and output images with bounding boxes around product
detail with error conditions (as guest user) are shown in
Fig. 16. Data extracted from product specification page
(e.g., product: “book” and product detail: “author name”
and “price”) of the Amazon website using Tesseract
LSTM neural networks are shown in Figs. 17 and 18.

4.3.4 Experiment 7: Extracting data from multiple
product specification in nonretail site without
changes in website layout

This experiment uses the proposed web data extraction
framework to extract data from multiple products (e.g.,
two book) in the Amazon retail website, without user
login to the nonretail website. The input data for multiple
product specifications from which data are extracted
without login (or as a guest user); the corresponding
output image with a bounding box around product detail

(a) Input: Single product page in nonretail website without changes in website
layout or location (URL)

(b) Output: Single product page in a nonretail website with bounding boxes around
product detail (e.g., book) without changes in website layout or location (URL)

Fig. 15 Object detection with bounding boxes around single
product detail in a nonretail website without changes in the
website layout or location (URL) of the product page.

is shown in Fig. 19. Data extracted from the multiple
product specifications page (e.g., product: “book” and
product detail: “author name” and “price”) of a nonretail
domain are shown in Fig. 20.

5 Critical Review, Limitation, and Future
Scope

The performance parameters outlined below
demonstrate the intelligent extraction and self-
correction capability of the proposed web data
extraction system, that is, (1) data correctness; (2) data
or character extraction accuracy; (3) image detection
accuracy; (4) no code, no rework for data extraction,
resulting in developer productivity; and (5) adaptability
to dynamic changes in websites due to self-correction
(enabling automated extraction). Two key parameters
constitute the performance of the proposed system: (1)
data quality and (2) performance.

5.1 Data quality and performance

In object detection technology, mAP is used as an
evaluation metric to measure the model performance
and data quality of web data extraction systems. First,
data are assessed whether they have been extracted

292 Big Data Mining and Analytics, December 2021, 4(4): 279–297

(a) Input: Single products in a nonretail website with changes in website layout or
location (URL)

(b) Output: Single product page in a nonretail website with bounding boxes around
product detail (e.g., book) with changes in website layout or location (URL)

Fig. 16 Object detection with bounding boxes around single
product detail in a nonretail website with changes in the
website layout or location (URL) of the product page.

(a) Output: Coordinates of the bounding box around the product detail without changes
in the website layout or location (URL) of the product page in a nonretail website

(b) Output: Single product page in a nonretail website with bounding boxes around
product detail (e.g., book) without changes in website layout or location (URL)

Fig. 17 Object detection with bounding boxes around
product detail in a nonretail website without changes in the
website layout or location (URL) of the product page.

or measured by mAP. Second, the extracted data are
assessed whether they are correct (also called data
accuracy or data correctness). Experiments 1–7 have

(a) Output: Coordinates of the bounding box around product detail with changes in the
website layout or location (URL) of the product page of a nonretail website

(b) Output:Product detail extracted from the single product page (e.g., book) of a
nonretail website

Fig. 18 Object detection with bounding boxes around
product detail and data extracted from a nonretail website
with changes in the website layout or location (URL) of the
product page.

(a) Input: Multiple product page in a nonretail website without changes in website layout
or location (URL)

(b) Output: Bounding boxes around multiple product detail (e.g., two book) without
changes in the website layout or location (URL) of the product page

Fig. 19 Object detection with bounding boxes around
multiple product detail in a nonretail website without
changes in the website layout or location (URL) of the
product page.

established that the extracted data are correct as per
product detail, with a focus on measuring whether all
the data records in a product specification have been
extracted, as shown in Table 5.

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 293

(a) Output: Coordinates of the bounding box around multiple product detail with changes
in the website layout or location (URL) of the product page of a nonretail website

(b) Output: Product detail extracted from multiple products (e.g., two book) of a nonretail
website

Fig. 20 Object detection with bounding boxes around
multiple product detail and data extracted from a nonretail
website with changes in the website layout or location (URL)
of the product page.

Table 5 Performance metrics of the proposed web data
extraction system.

Parameter Object/character
mAP 74%

Object extraction accuracy
(precision and recall)

97% and 48.8%

Character extraction accuracy
(precision and recall)

99% and 49.5%

Evaluation time 1.02 s (Avg.)
Total loss 6% (Avg.)

Validation loss 6% (Avg.)

Through experimentation with the seven cases, 18
“author” records, 12 “price” records, and 15 “title”
records were successfully extracted. At the record level,
the total number of objects to be detected was 45, of
which 44 were extracted and only 1 object was not
detected, with a precision of 97% and recall of 48.8%. At
the character level, 990 characters out of 1000 characters
were detected and 10 characters were not detected or
detected wrongly, with a precision of 99% and recall of
49.5%. The mAP was 74%.

The performance of the proposed system, such as
evaluation time, is shown in Fig. 21a, that includes
execution time from initiation to completion process
of the end-to-end extraction. Figures 21b and 22 show
overall loss and validation loss for all the experiments
conducted as per Eq. (5). Figure 21a shows the time
consumed by the pipeline when extrating text data from

the webpage, including the time consumed when saving
images with bounding boxes and extracting text in the
disk or output file.

Yolo and LSTM model execution time is higher
in the initial run, but decreases in subsequent cycles,
thus reducing the overall execution time. The model
training time is a function of the system GPU because it
involves graphic image processing, which is computation
intensive. The execution time starts from the initiation
of the experiment (i.e., locating the product specification
page) up to the extraction of data, as shown in
Fig. 21a. The evaluation time is high in the first iteration

(a) Evaluation time of the proposed model (Avg.: 1.02 s)

(b) Total loss of the proposed model

Fig. 21 Evaluation time and total loss of the proposed web
data extraction system.

Fig. 22 Validation loss of the proposed web data extraction
model.

294 Big Data Mining and Analytics, December 2021, 4(4): 279–297

due to the initial model training time, but decreases in
subsequent iterations.

Evaluation time, total loss, and validation loss exhibit
a marginal difference for the experiments involving
data extraction from single and multiple product
specifications for retail and nonretail websites. This
result reinforces the proposed system’s scaling capability
to extract data from multiple product specifications
without much performance degradation. Therefore, the
proposed system can perform self-correction in the event
of website layout changes.

5.2 Limitations and future scope

Many articles on web data extraction using heuristics
techniques, traditional statistical models, and machine
learning algorithms are available. Research on web
data extraction includes webpages with unstructured,
semistructured, and structured data, in addition to data
rendering with static HTML or dynamic rendering using
JavaScript. The following presents some challenges
faced by the research community in automated web data
extraction and the future scope of research.

5.2.1 Deep learning based web data extraction
systems

��� Deep learning networks using image-based
recognition techniques are transforming the auto
navigation and extraction process in the end-to-end web
data extraction systems; however, such transformation
requires extensive training of the Yolo and Tesseract
LSTM neural network models for a precise object or
image detection and image-to-text extraction[1–3].
� Deep learning based automated web data

extraction results in 99% data accuracy (precision), as
demonstrated with seven real-world cases, including
the detection and extraction of 18 “author” records, 12
“price” records, and 15 “title” records, the detection of
44 out of 45 objects, and the extraction of 990 out of
1000 characters.
� Model loss and evaluation time data reveal no

significant degradation of the proposed web data
extraction system by using Yolo and LSTM models,
although further experimentation with additional
datasets is recommended to prove the scalability,
adaptability, and domain agnostic capability of the
proposed system. However, extracting multiple product
information across web pages requires numerous images
to be captured and trained, thus increasing the model
training time and potentially slowing down the execution
time. Optimizing the model training and execution time

will be a future scope of research.
� Deep learning based automated and adaptive web

data extraction systems are progressing rapidly[3, 8, 41]

with high data accuracy rates (precision and recall
100%)[6]; however, the adaptation of such systems
to dynamic changes in website layout still remains a
challenge. The proactive detection of faults in websites
using anomaly detection techniques[42, 43] for improved
self-correction capability is another area of future
research on web data extraction.
� Deep learning based object detection techniques are

highly computation intensive, thus requiring numerous
GPUs because of the need to preprocess and train several
web pages as images. Web data extraction systems
handling data extraction from numerous websites and
nested web pages will limit the ability of the proposed
web data extraction system to fetch data with optimal
performance. These systems will have to rely on cloud-
based computing systems, such as Google Colaboratory,
for data extraction efficiency.
� Rotating bounding boxes as a technique is not

considered due to its implementation complexity, but
in a real-world scenario where the text is rotated, the
proposed approach will not work.
� Text extraction OCR cannot recognize the rupee

symbol in the book “price”. Additionally, the price listed
on the Amazon retail website has the decimal part in
superscript form and hence not recognized. Nevertheless,
this problem can be handled by retraining Tesseract to
recognize such text elements.

5.2.2 Machine learning based web data extraction
systems

���Scheduling the extraction of the same data multiple
times causes errors, due to the inability to find the
interval for extraction. It assumes websites to expose
JSON data in DOM. Future work is required to integrate
DOM extraction techniques to develop a general purpose
web data extraction engine.
� In recent years, research on automatic extraction

without manual labeling has been conducted. Many of
these automatic extraction systems are less accurate
because users need to label the training pages.
Additionally, a manual post-processing step is involved,
that is, users must identify what he/she is interested in.
� Data manipulation, extensibility, and execution

are key considerations when extracting data from
restricted browser environments. JavaScript has become
an essential part of the majority of webpage development
and the cornerstone of rich Internet applications.

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 295

Browser extension to improve browsing experience
has been another recent development that has posed
challenges to extracting data, examples include pop-up
data.
� Commonly used position or structure-based web

scraping tools must be manually reconfigured as soon
as the structure of the webpage changes. Wrappers are
specific to a given website and are tightly linked to the
markup and structure of provider pages.
� With the development of web applications

using cascading style sheets and JavaScript enabling
dynamic data rendering, modern-day approaches use
visualization-based techniques for data extraction.
However, such approaches are highly computation
intensive, and it slows down the extraction process (e.g.,
deep learning).

5.2.3 Adaptive web data extraction systems
���Contemporary and machine learning based extraction

systems usually rely on extraction rules or wrappers
tailored to a particular data source.
� Most automatic data extraction systems can only

cope with a limited set of document formats and do not
adapt well to changes in the document structure, HTML
documents containing interesting data must be located.
� Data of interest must be located within the web

page, and rules that can be used to extract data must be
created.
� A mechanism used to create data extraction rules

must either be sufficiently general or be easy to
implement, so that data can be extracted from the wide
variety of page formats available on the web.
� Data extraction system must be able to cope

with changes to webpage structure, because web data
providers frequently change the configuration and data
of their pages.

6 Conclusion

This study proposes an adaptive and intelligent
automated web data extraction system that uses YOLO
and Tesseract LSTM neural networks, which not only
adapts to dynamic changes in website layout, but
also automatically extracts data. The proposed web
data extraction system eliminates the extraction engine
subcomponents, which are core to traditional and
machine learning techniques for efficient data extraction;
therefore, the system has the potential to transforming
the process of automated data extraction from websites
in the future. This study completes experiments with

real-world examples from the retail and nonretail
domains to extract product detail from single and
multiple web pages, and demonstrates intelligence
and adaptability. Future research will be driven by
advancements in deep learning networks to reimagine
the end-to-end automated web data extraction process.

References

[1] Y. B. Zhang, Image feature extraction algorithm in big data
environment, Journal of Intelligent and Fuzzy Systems, vol.
39, no. 4, pp. 5109–5118, 2020.

[2] L. Xie, J. L. Tao, Q. N. Zhang, and H. Y. Zhou, CNN
and KPCA-based automated feature extraction for real
time driving pattern recognition, IEEE Access, vol. 7, pp.
123765–123775, 2019.

[3] J. Tao, H. B. Wang, X. Y. Zhang, X. Y. Li, and H. W.
Yang, An object detection system based on YOLO in traffic
scene, in Proc. of 2017 6th Int. Conf. Computer Science
and Network Technology (ICCSNT), Dalian, China, 2017,
pp. 315–319.

[4] F. Ali, A. Ali, M. Imran, R. A. Naqvi, M. H. Siddiqi,
and K. S. Kwak, Traffic accident detection and condition
analysis based on social networking data, Accident Analysis
& Prevention, vol. 151, p. 105973, 2021.

[5] N. Islam, Z. Islam, and N. Noor, A survey on optical
character recognition system, Journal of Information &
Communication Technology-JICT, vol. 10, no. 2, pp. 1–4,
2016.

[6] H. Rao and D. R. M. Sashikumar, A survey on automated
web data extraction techniques for product specification
from e-commerce web sites, International Journal of
Advanced Research in Computer Science and Software
Engineering, vol. 6, no. 8, pp. 310–316, 2016.

[7] E. Uzun, A novel web scraping approach using the
additional information obtained from web pages, IEEE
Access, vol. 8, pp. 61726–61740, 2020.

[8] M. Salah, B. Al Okush, and M. Al Rifaee, A comparison
of web data extraction techniques, in Proc. of 2019
IEEE Jordan Int. Joint Conf. Electrical Engineering and
Information Technology (JEEIT), Amman, Jordan, 2019,
pp. 785–789.

[9] S. L. Li, C. Chen, K. W. Luo, and B. Song, Review of deep
web data extraction, in Proc. of 2019 IEEE Symp. Series on
Computational Intelligence (SSCI), Xiamen, China, 2019,
pp. 1068–1070.

[10] W. Nadee and K. Prutsachainimmit, Towards data extraction
of dynamic content from JavaScript web applications, in
Proc. of 2018 Int. Conf. Information Networking (ICOIN),
Chiang Mai, Thailand, 2018, pp. 750–754.

[11] B. V. S. Ujwal, B. Gaind, A. Kundu, A. Holla, and
M. Rungta, Classification-based adaptive web scraper, in
Proc. of 16th IEEE Int. Conf. Machine Learning and
Applications, Cancun, Mexico, 2017, pp. 125–132.

[12] J. Park and D. Barbosa, Adaptive record extraction from
web pages, in Proc. of WWW 2007, Banff, Canada, 2007,

296 Big Data Mining and Analytics, December 2021, 4(4): 279–297

pp. 1335–1336.
[13] C. J. Liu, Y. F. Tao, J. W. Liang, K. Li, and Y. H. Chen,

Object detection based on YOLO network, in Proc. of
2018 IEEE 4th Information Technology and Mechatronics
Engineering Conf. (ITOEC), Chongqing, China, 2018, pp.
799–803.

[14] J. L. Hong, Deep web data extraction, in Proc. of 2010
IEEE Int. Conf. Systems, Man and Cybernetics, Istanbul,
Turkey, 2010, pp. 3420–3427.

[15] F. Ali, P. Khan, K. Riaz, D. Kwak, T. Abuhmed, D. Park,
and K. S. Kwak, A fuzzy ontology and SVM-based web
content classification system, IEEE Access, vol. 5, pp.
25781–25797, 2017.

[16] W. Li, W. Shao, S. X. Ji, and E. Cambria, BiERU:
Bidirectional emotional recurrent unit for conversational
sentiment analysis, arXiv preprint arXiv: 2006.00492,
2021.

[17] K. M. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask
R-CNN, in Proc. of 2017 IEEE Int. Conf. Computer Vision
(ICCV), Venice, Italy, 2017, pp. 2980–2988.

[18] S. Nagarajan and K. Perumal, A deep neural network
for information extraction from web pages, in Proc.
of 2017 IEEE Int. Conf. Power, Control, Signals and
Instrumentation Engineering (ICPCSI), Chennai, India,
2017, pp. 918–922.

[19] T. Gogar, O. Hubacek, and J. Sedivy, Deep neural
networks for web page information extraction, in Artificial
Intelligence Applications and Innovations. IFIP Advances
in Information and Communication Technology, vol. 475,
L. Iliadis and I. Maglogiannis, eds. Thessaloniki, Greece:
Springer, 2016, pp. 154–163.

[20] R. Baumgartner, M. Ceresna, and G. Ledermuller,
DeepWeb navigation in web data extraction, in Proc. of Int.
Conf. Computational Intelligence for Modelling, Control
and Automation and Int. Conf. Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06),
Vienna, Austria, 2005, pp. 698–703.

[21] D. Liu, L. Ma, and X. Liu, Research on adaptive wrapper in
deep web data extraction, in Internet of Vehicles-Safe and
Intelligent Mobility. IOV 2015. Lecture Notes in Computer
Science, vol. 9502, C. H. Hsu, F. Xia, X. Liu, and S. Wang,
eds. Chengdu, China: Springer, 2015, pp. 409–423.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich
feature hierarchies for accurate object detection and
semantic segmentation, arXiv preprint arXiv: 1311.2524v5,
2014.

[23] M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, and U. R.
Acharya, ABCDM: An attention-based bidirectional CNN-
RNN deep model for sentiment analysis, Future Generation
Computer Systems, vol. 115, pp. 279–294, 2021.

[24] J. Redmon and A. Farhadi, YOLO9000: Better, faster,
stronger, in Proc. of 2017 IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp.
6517–6525.

[25] R. Girshick, Fast R-CNN, in Proc. of 2015 IEEE Int. Conf.
Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440–
1448.

[26] S. Q. Ren, K. M. He, R. Girshick, and J. Sun, Faster R-CNN:
Towards real-time object detection with region proposal
networks, arXiv preprint arXiv: 1506.01497v3, 2016.

[27] R. Huang, J. Pedoeem, and C. X. Chen, YOLO-LITE: A
real-time object detection algorithm optimized for Non-
GPU computers, in Proc. of 2018 IEEE Int. Conf. Big Data
(Big Data), Seattle, WA, USA, 2018, pp. 2503–2510.

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You
only look once: Unified, real-time object detection, in
Proc. of 2016 IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779–
788.

[29] J. Hammer, J. McHugh, and H. Garcia-Molina,
Semistructured data: The TSIMMIS experience, in Proc.
of 1st East-European Symp. Advances in Databases and
Information Systems (ADBIS), St. Petersburg, Russia, 1997,
pp. 1–13.

[30] G. O. Arocena and A. O. Mendelzon, WebOQL:
Restructuring documents, databases and webs, in Proc. of
14th IEEE Int. Conf. Data Engineering, Orlando, FL, USA,
1998, pp. 24–33.

[31] S. Soderland, Learning information extraction rules for
semi-structured and free text, Machine Language, vol. 34,
nos. 1–3, pp. 233–272, 1999.

[32] M. E. Califf and R. J. Mooney, Bottom-up relational
learning of pattern matching rules for information
extraction, The Journal of Machine Learning Research,
vol. 4, pp. 177–210, 2003.

[33] D. Freitag, Information extraction from HTML: Application
of a general machine learning approach, in Proc. of
15th National/Tenth Conf. Artificial Intelligence/Innovative
Applications of Artificial Intelligence, Madison, WI, USA,
1998, pp. 517–523.

[34] C. N. Hsu and M. T. Dung, Generating finite-state
transducers for semi-structured data extraction from the
web, Information Systems, vol. 23, no. 8, pp. 521–538,
1998.

[35] A. Manjaramkar and R. L. Lokhande, DEPTA: An efficient
technique for web data extraction and alignment, in Proc.
of Int. Conf. Advances in Computing, Communications and
Informatics, Jaipur, India, 2016, pp. 2307–2310.

[36] H. A. Sleiman and R. Corchuelo, Trinity: On using
Trinary trees for unsupervised web data extraction, IEEE
Transactions on Knowledge and Data Engineering, vol. 26,
no. 6, pp. 1544–1556, 2014.

[37] J. Y. Wang and F. H. Lochovsky, Data extraction and label
assignment for web databases, in Proc. of the 12th Int. Conf.
World Wide Web, Budapest, Hungary, 2003, pp. 187–196.

[38] C. H. Chang and S. C. Kuo, OLERA: Semisupervised web-
data extraction with visual support, IEEE Intell. Syst., vol.
19, no. 6, pp. 56–64, 2004.

[39] Y. Wang, A new concept using LSTM Neural Networks for
dynamic system identification, in Proc. of 2017 American
Control Conf. (ACC), Seattle, WA, USA, 2017, pp. 5324–
5329.

[40] E. Ferrara, P. De Meo, G. Fiumara, and R. Baumgartner,
Web data extraction, applications and techniques: A survey,

Sudhir Kumar Patnaik et al.: Intelligent and Adaptive Web Data Extraction System Using Convolutional and : : : 297

Knowledge-Based Systems, vol. 70, pp. 301–323, 2014.
[41] Y. H. Zhai and B. Liu, Web data extraction based on partial

tree alignment, in Proc. 14th Int. Conf. World Wide Web,
Chiba, Japan, 2005, pp. 76–85.

[42] S. Kuamri and C. N. Babu, Real time analysis of social
media data to understand people emotions towards

national parties, in Proc. of 8th Int. Conf. Computing,
Communication and Networking Technologies (ICCCNT),
Delhi, India, 2017, pp. 1–6.

[43] D. G. Gregg and S. Walczak, Adaptive web information
extraction, Communications of the ACM, vol. 49, no. 5, pp.
78–84, 2006.

Sudhir Kumar Patnaik received
the MEng degree in electronics and
communication from National Institute of
Technology, Rourkela, India in 1995. He
is currently a PhD candidate in computer
science (machine learning) at M. S.
Ramaiah University of Applied Science,
Bangalore, India. He is working as the

vice president of engineering and site leader at Gibraltar India
Solutions LLP, Bangalore, India. Prior to Gibraltar India, he was
the VP of platform engineering at Intuit India, for 13 years. His
research interests are in the areas of data extraction, deep learning,
and machine learning. He is a member of Industry Advisory
Board at International Institute of Information Technology,
Bangalore, and a member of the Board of Studies for Computer
Science at Vellore Institute of Technology, Andhra Pradesh. He is
also a senior member of IEEE, a fellow at Institution of Engineers
(India), and a member of CSI, ACM, and ISTE.

C. Narendra Babu received the BEng
degree in CSE from Adichunchanagiri
Institute of Technology, India in 2000, the
MEng degree in CSE from M.S. Ramaiah
Institute of Technology, India in 2004. and
the PhD degree from Jawaharlal Nehru
Technological University Anantapur, India
in 2015. He is currently an associate

professor at the Department of Computer Science and Engineering,
M. S. Ramaiah University of Applied Sciences, Bangalore, India.
His research interests include artificial intelligence, machine
learning, data analytics, social media analytics, and time series
and spatio-temporal data modeling. He is a senior member of
IEEE, a member of the IEEE Education Society, and a member of
IAENG. He has published a book chapter, over twelve refereed
journal papers, and eleven refereed conference proceeding papers.

Mukul Bhave received the MS degree in
mathematics from Bundelkhand University,
Jhansi, India in 1997, and the MS degree
in business administration and management
from Pt. Ravishankar Shukla University,
Raipur, India in 1999. He is working as
a software engineer at Gibraltar India
Solutions LLP, Bangalore, India. He

was previously employed at Intuit where he worked on the
data aggregation platform. With over 16 years of software
development experience, he has worked with Digital Insight,
SoftwareAG (webMethods), and MindTree. His research interests
are building application servers and platforms, deep learning, and
web data extraction.

