
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 05/06 pp266-278
Volume 4, Number 4, December 2021
DOl: 10.26599/BDMA.2021.9020011

A Deep-Learning Prediction Model for Imbalanced Time
Series Data Forecasting

Chenyu Hou, Jiawei Wu, Bin Cao, and Jing Fan*

Abstract: Time series forecasting has attracted wide attention in recent decades. However, some time series are

imbalanced and show different patterns between special and normal periods, leading to the prediction accuracy

degradation of special periods. In this paper, we aim to develop a unified model to alleviate the imbalance and thus

improving the prediction accuracy for special periods. This task is challenging because of two reasons: (1) the

temporal dependency of series, and (2) the tradeoff between mining similar patterns and distinguishing different

distributions between different periods. To tackle these issues, we propose a self-attention-based time-varying

prediction model with a two-stage training strategy. First, we use an encoder-decoder module with the multi-head

self-attention mechanism to extract common patterns of time series. Then, we propose a time-varying optimization

module to optimize the results of special periods and eliminate the imbalance. Moreover, we propose reverse

distance attention in place of traditional dot attention to highlight the importance of similar historical values to forecast

results. Finally, extensive experiments show that our model performs better than other baselines in terms of mean

absolute error and mean absolute percentage error.

Key words: time series forecasting; imbalanced data; deep learning; prediction model

1 Introduction

Time series forecasting has many real-world applications,
such as call arrival forecasting[l], electricity power
consumption forecasting [2] , and air quality prediction[3] .

In some scenarios, the time series may suffer from
the imbalanced problem resulting from differences
between normal and special periods. For example,
the number of calls in call centers during holidays
is significantly less than that on normal days. In
these scenarios of imbalanced time series, existing
methods, such as AutoRegressive Integrated Moving
Average (ARIMA) [4-6] , random forests [7] , and Support
Vector Machine (SVM)[8], bias toward normal periods
(e.g., normal days), and thus suffering from accuracy

• Chenyu Hou, Jiawei Wu, Bin Cao, and Jing Fan are with
the College of Computer Science and Technology, Zhejiang
University of Technology, Hangzhou 310023, China. E-mail:
{houcy, wujw, bincao, fanjing} @zjut.edu.cn.

*To whom correspondence should be addressed.
Manuscript received: 2021-05-21; accepted: 2021-06-10

degradation for special periods (e.g., holidays).
Take a true call traffic dataset as an example.

Figure la represents the distributions of call volumes
on holidays and normal days. The call volumes of
holidays are generally lower. Then we conduct an
empirical experiment to compare the prediction results of
several methods for Spring Festival, as shown in Fig. lb.
Although these methods can roughly predict the trend of
call arrivals, the predicted values are significantly higher
than the true values because call arrivals decrease in
holidays. However, these models fail to learn such a
pattern because the size of holiday data only accounts
for a very small portion of historical data.

Motivated by this phenomenon, we aim to alleviate
the imbalanced problem between normal periods and
special periods and improve the prediction accuracy for
special periods. This task is challenging because of the
following two reasons:

• Temporal dependency: A crucial difference
between time series forecasting and regression tasks
is the temporal dependency. Time series forecasting

© The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.01).

Chenyu Hou et al.: A Deep-Learning Prediction Modelfor Imbalanced Time Series Data Forecasting 267

0- L- ----======___

(a) Distribution of call volumes

However, in this way, the model suffers from imbalanced
data. How to balance the relationship between mining
similar patterns and distinguishing different distributions
on different types of periods is the second challenge.

Minimal attention has been paid to imbalanced
time series forecasting[9]. Most methods are proposed
to solve imbalanced classification problems, such
as resampling[10, 11] and cost-sensitive boosting[12, 13].

Nevertheless, these techniques are infeasible for our
problem because of the aforementioned challenges. A
previous study focused on resampling methods for
imbalanced time series forecasting [14] . However, this
work treats rare values as the minority and focuses on
the prediction accuracy of these rare cases, while we
treat special periods as the minority and aim to improve
the prediction accuracy of special periods.

In this paper, we propose a Self-attention based
Time-Varying (STV) prediction model to overcome the
aforementioned challenges and improve the prediction
accuracy for special periods. First, we adopt an
encoder-decoder module with a multi-head self­
attention mechanism to capture the dependency of
successive series and learn common patterns. Through
the multi-head self-attention mechanism, the model can
project the historical series into multiple subspaces and
extract deep high-level features for prediction. Then, we
adopt a decoder to predict successive multi-step results
based on the encoding vector as primary results. By
adopting this encoder-decoder module, the model can
establish the relationship between input and prediction
to extract common patterns of series between different
periods. However, the outputs of the decoder cannot be
regarded as the final forecasting results because they are
biased toward the distribution of normal periods.

We propose a time-varying optimization module for
the decoder results to distinguish different distributions
of different periods. The time-varying optimization
module takes the forecasting time as input. By extracting
and embedding useful time information, this module
outputs a scale factor S E [-1, 1] for each forecasting
step to adjust the decoder results. In this way, the
forecasting results of special periods can be adjusted
to their own distributions rather than be dominated by
data of normal periods. Finally, optimized results are
regarded as the forecasting results.

In the encoder, we propose a novel attention
mechanism, called "reverse distance attention". Instead
of using dot attention as Transformer[15] did, we look for

D Holidays

D Normal days

(b) Electricity consumption

--12.5

~ 12.0a ///~"'''''''''\
E.- 11.5 /""-'" \

Co 11.0 /
///

~ 10.5 1///§ 10.0

~ 9.5 ,I - Normal days
8 ,......,/ ----- Holidays

9.0 ~_..L.---------,--_-----,-----_--,------------.J
0:00 5:00 10:00 15:00 20:00

Time

- Normal days
----- Holidays

(a) Call traffic

2.0

S 1.8

E.- 1.6

~ 1.4

§ 1.2

~ 1.0 '\
\a 0.8 ",..._- ...",\

~6 \

8:0010:0012:0014:0016:0018:0020:00

Time

(b) Example of prediction

Fig. 2 Distribution differences throughout the day.

1.0

1.5

2.0

1 2
Call volume (x1 03)

0.5

0.0015-

0.0010­
~·en
C
Q)
o

0.0005 -

0L.L-__-------'- ---'-------__------'---.J

2018-02-15 2018-02-16 2018-02-17 2018-02-18
Date

Fig. 1 An example of call arrival prediction.

models usually assume that a degree of correlation exists
between successive values of the series. This assumption
means that we cannot train an independent prediction
model for special periods because it will break the
temporal dependency. In addition, we cannot eliminate
the influence of imbalanced data by simply oversampling
the data of special periods because it will break the
temporal dependency of time series.

• Trade off between mining similar patterns and
distinguishing different distributions: Although time
series on special periods show different distributions
from those on normal periods, similar patterns exist
between the two types of periods. For example, Fig. 2
shows that the trend of call traffics is similar on holidays
and normal days. The same result can be observed in
the trend of electricity consumption. Such patterns
are hard to be learned merely based on data of special
periods, whereas we can use the data of normal periods
to facilitate the learning process for special periods.

268

moments with similar values for each time and assign
higher self-attention scores to them. This mechanism
enables the encoder to capture the periodicity of the time
series and thus encoding the historical series better.

In addition, instead of training STY end-to-end
directly, we propose a two-stage training strategy
to improve the performance of STY. Following our
proposed training mechanism, the encoder and the
decoder are first trained to complete the forecasting tasks.
Due to the imbalanced data, the first-stage forecasting
results are more consistent with the distribution of
normal periods. Second, we fix the weights of the
encoder and the decoder and then train the time-varying
optimization module individually to optimize the first­
stage results.

Finally, we conduct extensive experiments based on
a real call traffic dataset and an electricity consumption
dataset. The experimental results prove the effectiveness
of the proposed method.

The contribution of this paper can be summarized as
follows:

• We find a novel problem that time series data are
imbalanced between special and normal periods, leading
to the performance degradation of existing models. As
far as we know, this problem has not been addressed
well in existing works.

• We propose an STY prediction model to deal
with the imbalance of time series data. It not only
mines common patterns between different periods, but
also distinguishes different distributions of time series,
thereby improving the prediction accuracy of special
periods.

• To model the periodicity of time series, we design
a "reverse distance attentio" mechanism. This attention
mechanism can improve the prediction accuracy of STY.
We also propose a simple yet effective two-stage training
strategy to fine-tune the forecasting results.

• We conduct extensive experiments based on two
real-world datasets and compare the performance of
our model with five baselines. Experimental results
demonstrate that STY outperforms baselines by an
average of 18.64% and 20.87% on call traffic datasets,
and 5.75% and 20% on the electricity consumption
dataset, in terms of the Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE) for special
periods.

The rest of this paper is organized as follows.
Section 2 outlines the preliminaries, including our
problem definition and some important concepts.

Big Data Mining and Analytics, December 2021,4(4): 266-278

Section 3 describes our proposed model STY. Section 4
presents the evaluation results of our model on real­
world datasets. Related works are presented in Section 5.
Finally, we conclude our paper in Section 6.

2 Preliminary

In this section, we first formulate our multi-step time
series forecasting problem and then present forecasting
strategies for multi-step forecasting.

2.1 Problem formulation

Given the historical data of an observation variable X ==

{Xl, X2, ... , Xt}, the univariate multi-step forecasting
problem can be formulated as follows:

{Xt+1,Xt+2, ... ,Xt+H} == F(X1,X2, ... ,Xt)+E (1)

where F () is the prediction function approximated by
the variable X. The function predicts the values of the
series for the future time steps from t + 1 to t + H, where
H is the intended forecasting horizon. E denotes the
error associated with the function approximation. The
target is finding an optimal function F, i.e., minimizing
the error E.

In model training, a lag parameter I is predefined to
determine how much historical data are used to make
forecasts. Only the latest I historical data are used in
making forecasts. Considering lag parameters I, we can
modify Eq.(l) as
{Xt+1,Xt+2, ... ,Xt+H}==F(Xt-l+1, ... ,Xt-1,Xt)+E

(2)

2.2 Forecasting strategies

Such H -step (H > 1) forecasts can be preduced in three
ways.

Iterated forecasting: Similar to one-step time series
forecasting problems, a "many-to-one" function F () is
trained,

Yt+1 == F(Xt-l +1, ... , Xt-1, Xt) (3)

After training the forecasting model, the following
forecasting results can be obtained by iteratively making
one-step forecasts using previously forecasted values. It
can be formulated as follows:

Yt+2 == F(Xt-l+2, ... , Xt, Yt+1),

Yt+H == F(Xt+H-l+1, ... , Yt+H-2, Yt+H-1) (4)

However, this forecasting strategy may suffer from
high variance due to error accumulation in individual
forecasts. This scenario means that low performance can
be observed over longer time horizons H.

Chenyu Hou et al.: A Deep-Learning Prediction Modelfor Imbalanced Time Series Data Forecasting 269

Multi-model forecasting: The second paradigm is
multi-model forecasting, where we train H "many-to­
one" functions, i.e., F1 (), ... , FH(),

Yt+l == F1 (Xt-l+l, , Xt-l, Xt),

Yt+2 == F2(Xt-l+l, , Xt-l, Xt),

Yt+H == FH(Xt-l+l, ... ,Xt-l,Xt) (5)

Then, we can make H -step forecasts by using
these functions. However, these models are trained
independently, which cannot guarantee the relevance
between predicted values. At the same time, the cost of
training is high.

Multiple Input Multiple Output (MIMO)
forecasting: In this paradigm, we train a "many­
to-many" model,

Yt+l, ... , Yt+H == F(Xt-l +1, ... , Xt-l, Xt) (6)

Then, given I-lag historical data, we can directly
make H -step forecasts. Compared with the multi­
model forecasting paradigm, only one model is required
instead of H different models. Unlike the iterated
forecasting paradigm, error accumulation does not occur
in individual forecasts. Therefore, we build our proposed
model based on the MIMO forecasting strategy.

3 Self-Attention Based
Prediction Network

Time-Varying

the encoder-decoder paradigm and appends a time­
varying optimization module to optimize forecasting
results. STY takes the observation values of the previous
I timestamp as input and then passes it to 1x 1
convolution layer for upsampling. The intuition behind
this phenomenon is that time series can be decomposed
into a trend, circle, and noise. We want the 1x 1
convolution layer to model this decomposition. After
up-sampling, an encoder consisting of multiple sub­
encoder modules is used to extract high-level features
of historical series by leveraging the self-attention
mechanism and residual networks. On the basis of
extracted features, the decoder outputs elementary
forecasting results. So far, normal and special periods
show no significant difference. Without additional
actions being taken, this model will suffer from
imbalanced data, causing poor performance on special
periods. To solve this problem, we add a time-varying
optimization module after the decoder. In the time­
varying optimization module, we leverage embedding
results of forecasting time and a dense network to extract
timestamp-wise features. The timestamp-wise features
enable the network to optimize the decoder results by
leveraging a gate mechanism. Finally, forecasting results
are generated by incorporating residuals and optimized
results.

3.2 Encoder and decoder modules

In this section, we first introduce the framework of
our proposed model. Then, we introduce the modules
of our model in detail, namely, the encoder-decoder
module, the multi-head attention mechanism, and the
time-varying optimization module.

3.1 Framework of STY

Figure 3 presents the framework of STY. STY adopts

Encoder: The encoder module aims to extract high­
level features over the original input series. It is
composed of a stack of s sub-encoder modules, where
s is a hyperparameter. Each sub-encoder has two
layers. The first one is a multi-head self-attention
mechanism, whereas the second is a simple, fully
connected feed-forward layer. In addition, a residual
connection[l6] is employed around each layer, followed

Q5
"'0
o
()
c
Q)

.6
::J

(j)

Decoder

Gate mechanism

Q)
"0o
U
c
OJ

.6
::J

(J)

Encoder

>co
()

----+I T""" t----+--+I
X

HolidayOrNot

/ HolidayName;Z

Horizon HLag I

Forecast time

Time-varying optimization module

/ TimeOfDay)

Fig. 3 Framework of ST\:

270 Big Data Mining and Analytics, December 2021,4(4): 266-278

Fig.4 Attention architecture.

subspaces, the inputs Q, K, and V are first linearly
projected to n x dq , n x dk, and n x dv dimensions
by passing them into different, learnable linear layers,
where n is the number of self-attention modules. Then
projection results are divided into n parts and then passed
to multi-head self-attention modules to calculate the
results in parallel. The outputs of each self-attention
module are concatenated.

Two things need to be explained. First, Q, K, and
V in Fig. 4a are copies of the outputs Z of last layers.
Therefore, we actually calculate the attention between
each time step of the input itself. This explains why we
call this attention mechanism self-attention. Second, for
easy interpretation, we maintain the dimension of q, k,
and v in each single head equal to 1, i.e., dq == dk ==

dv == 1. In this way, q, k, and v in every single head can
be treated as decompositions of the original time series,
and each head represents a decomposed space.

The multi-head attention mechanism can be
formulated as below:
MultiHead(Q, K, V) == Concat(head1 , ... , headn) W L ,

s.t. headi ==Attention(QxW?,Kxwf, VxWf) (12)

where W. Q E Rde xn W.K E Rde xn wV E Rde xn and
l ' l ' l '

W L E Rnxde are learnable parameters.
Self-attention: Figure 4b depicts the structure of self­

attention. Self-attention can be treated as mapping a
query and a set of key-value pairs to an output, where
Q, K, and V are the same as inputs.

Most of the time series data are periodic. For example,
the traffic volumes of each day display similar patterns.
Therefore, similar values in the historical series are
more valuable for forecasting. To capture the similarity
between them, in this part, we propose a novel attention
mechanism named "reverse distance attention". As
mentioned before, the dimensions of Qi, K i , and Vi
are equal to 1. Therefore, the Euclidean distance can

by layer normalization[17]. Considering that the internal
dimensions of each time series are related, while
different samples in a batch have minimal relevance, we
adopt layer normalization instead of batch normalization.
To facilitate residual connections, we maintain the input
and output dimensions of each sub-encoder equal to de.
In our experiments, we set the dimension de to 8.

Suppose the input of a sub-encoder is Z E R1xde,

then it can be formulated as follows:
Z(I) == LayerNorm(Z + Multi-head Self-Attn(Z))

(7)
Z(out) ==LayerNorm(Z(I) +FeedForward(Z (1))) (8)

where Z(out) is the output of the sub-encoder.
Decoder: The decoder consists of three fully

connected layers. Except for the last layer, a ReLu
activation function[18] exists after each fully connected
layer. We use fully connected layers instead of the
recurrent neural network, because the outputs of each
fully connected layer are independent, thereby avoiding
error accumulation along with timelines. The decoder
eventually outputs an H -dimension vector d E RH .

The output d can be regarded as the primary forecasting
result. However, it is time independent and thus is more
likely biased to the distribution of normal periods. To
prevent this drawback, we further adopt a time-varying
optimization module to modify the outputs, which will
be discussed later.

Based on the context C E R1xde produced by the
encoder, the decoder can be formulated as follows:

z(l) == ReLu(W1
T C + b1) (9)

z(2) == ReLu(W2
T z(l) + b2) (10)

d == W3
T z(2) + b3 (11)

where weight matrixes WI E R(lxde)X(21xde), W2 E

R(21xde)x(lxde), and W3 E R(lxde)xH, and bias vectors
b 1 E R 21xde, b2 E R1xde, and b3 E R H are learnable
parameters of the fully-connected layers.

3.3 Multi-head attention

We adopt multi-head self-attention architecture in the
encoder to model the correlation from historical data.
Self-attention is good at learning intrinsic relations from
historical data, whereas the multi-head structure allows
the model to learn useful information from different
representation subspaces than single self-attention.

Multi-head attention: Figure 4a depicts the multi­
head attention architecture. Instead of performing single
self-attention, n self-attention modules are utilized.
To learn comprehensive information from different

Linear

(a) Multi-head attention

n

q k

(b) Self-attention

v

Chenyu Hou et al.: A Deep-Learning Prediction Modelfor Imbalanced Time Series Data Forecasting 271

(16)

Fig. 5 Two-stage training strategy.

r---------- -------------

i I Encoder I
i -} _

~NfN\
Lag I

(2) Fix weights of the encoder and decoder,
train the time-varying optimization module

Shared
weights

y

1,---------------,
I I

i~ ~~~~~~~ __ j
,---------------\
I I

i~ ~_~~~~_~~ __ j

Lag I

(1) Pre-train the encoder
and the decoder

if we want to embed "hour" information, the embedding
dimension is 12.

Once we obtain the embedding vector, we feed it into
a fully connected layer and activate the result using the
Tanh function to determine the scale factor s. Finally, the
Hadamard product of outputs of the decoder with scale
factor s plus residual connections yields the eventual
forecast results y. A forecasting result Yt at a particular
time step t can be calculated as follows:

Yt == (1 + St) x dt (17)

3.5 Model training and prediction

Instead of following the end-to-end manner to train our
model, we propose a two-stage training manner that
enables STY to overcome imbalanced data and thus
improving forecasting accuracy. Figure 5 presents the
main idea of our training strategy. Instead of training the
whole model directly, we first train a sub-model that is
composed of an encoder and a decoder (including 1x 1
convolution layer). Then, we copy the updated weights
to STY. We finally train the time-varying optimization
module independently by fixing the weights of the
encoder and the decoder in STY. Intuitively, we first
use the encoder-decoder module to predict results that
are biased toward normal periods. Then, we use a time­
varying optimization module to adjust the prediction
results by incorporating forecast time information and
eliminate bias.

The proposed STY model is trained via
backpropagation to minimize mean squared error
between the forecasting results and the ground truth.
The pseudo-code of the training and prediction process
is presented in Algorithm 1. First, we obtain the training,

be used to measure the difference between queries and
keys. We use 1 - EuclideanDist(·,·) to represent the
similarity between two values. To ensure the sum of the
weights equals 1, we should conduct a softmax operation
to obtain the final attention scores,

exp(eij) (13)
aij == I

L exp(eik)
k=l

where I is the length of time series, and

eij == 1 - Iqi - kj I (14)

this score semantically represents the importance of each
historical value.

After obtaining attention scores, the final result can be
calculated using the following equation:

m

0i == L aik x Vk, i == 1,2, ... , I (15)
k=l

3.4 Time-varying optimization module

The time series of normal periods account for most of
the historical data. Thus, if our model only receives the
historical time series as inputs, then the outputs of the
decoder will be more likely biased to the distribution of
normal periods. To overcome this problem, we introduce
a time-varying optimization module to optimize the
forecasting results of the decoder. The input of this
module is forecasting time, whereas the outputs are step­
wise scale factors S (E [-1,1]) indicating how to adjust
the primary results of the decoder. For example, if the
output is -0.2 at time step t, then the final forecasting
result should be 0.2 times smaller than the output of
the decoder at time t. By further scaling the prediction
results for each time step, we can adjust the prediction
results of special periods to its own distribution rather
than being dominated by the distribution of normal
periods.

The structure of the time-varying optimization module
is displayed in the upper part of Fig. 3. First, we
extract three features from forecast time, namely, the
time of the day, a holiday or not, and holiday name.
All of them are categorical features. Therefore, we
transform each feature into a low-dimensional vector by
feeding them into different embedding layers separately,
and then concatenate those embeddings to construct
an embedding vector e. The embed dimensions are
determined by

lcat_num + 1Jemb_dim ==
2

where cat_num is the number of categories. For example,

272

Algorithm 1 STY training and prediction

Input: Historical time series X = Xl, ... ,Xr; Forecast
horizon H; Lag I

Output: Predicted values of the future H steps
1 Dtotal+-0;

2 for each t in [1, T- H] do
3 LAppend [Xt-l+l, ... ,Xt; Xt+l, ... ,Xt+H] to Dtotal

4 Divide Dtotal into D train , D valid, and D test ;

5 sub-model +- Copies of encoder and decoder of STY ;
6 for i in [1, 1000] do
7 Update sAb-mAdel Ay Ainimizing Ahe Aoss D train ;

lossvalid +-Aalculate Aoss D valid ;

if lossvalid does not decrease in consecutive 50 epochs
then

10 LStop the first-stage training process;

11 Copy weights of sub-model to STY and fix them;
12 for i in [1, 1000] do
13 Update STY by minimizing the loss D train ;

14 lossvalid +-calculate Aoss D valid ;

15 if lossvalid does not decrease in consecutive 50 epochs
then

16 LStop the second-stage training process;

17 Y+- STV(Xr-l+I, . .. ,Xr) ;
18 return y

validation, and test sets (Lines 1-4). Then, we pre-train
the sub-model that excludes the time-varying module of
STY (Lines 5-10). During training, we adopt the early
stop strategy to prevent overfitting (Lines 9 and 10).
Once the first-stage training is stopped, we share the
weights of the sub-model with STY and fix them (Line
11). Then, the time-varying module is trained on the
second stage, following the same training process (Lines
12-16). Finally, we input the latest I historical data to
the STY model and predict the H -step results (Line 17).

4 Experiment

4.1 Experimental settings

Datasets: We collect the following four datasets from
two domains to evaluate the effectiveness of the proposed
model:

• CallTraffic: We collect three real-world call traffic
datasets from China Telecom, including Hangzhou
(HZ), Taizhou (TZ), and Lishui (LS) cities. These
datasets contain call volume records at hourly granularity
from January 2017 to May 2019. Considering that call
volumes in the midnight and early morning are very
low, which is not important for evaluation, we select call
volumes from 7:00 to 21:00 every day for experiments.
In addition, we divide periods into holidays and normal

Big Data Mining and Analytics, December 2021,4(4): 266-278

days according to the Chinese public holidays to study
the performance of different methods.

• Electricity Consumption (ElecCONS): The
electricity consumption dataset is collected from
Commonwealth Edison company. This dataset records
hourly power consumption data from 2014-01-01 to
2018-08-02. Considering that this dataset is collected
in the United States, we divide the time according
to American holidays. This dataset is available on
https://www.kaggle.com/robikscube/hourly-energy­
consumption.

Evaluation metrics: We use MAE and MAPE for
evaluation. They are defined as follows:

1 N
MAE = N L IYi - Yil (18)

t=l

MAPE = ~ t IYi - Yil (19)
N t=l Yi

where Yi and Yi are the ground truth and the
corresponding predicted value, and N is the total number
of all available ground truth. MAE is more affected by
large values, whereas MAPE receives more punishments
from small values.

In our experiments, holidays are regarded as special
periods while normal days are regarded as normal
periods. To compare the performance of the model on
normal and special periods, we calculate the MAE and
MAPE from three perspectives: overall (denoted as
MAE and MAPE), for normal days (denoted as MAE_N
and MAPE--N), and for holidays (denoted as MAE_H
and MAPE_H).

Baselines: The methods in our comparative
evaluation are listed as follows.

• ARIMA[6]: It is a well-known statistic model for
forecasting time series.

• LSTM[l9]: It is a better RNN architecture that
could alleviate the problem of gradient vanishing.

• Seq2Seq[20]: It uses an RNN to encode the input
sequences into a feature representation and another RNN
to make predictions iteratively.

• LSTNet[21]: The convolution neural network and
the skip-recurrent neural network are used in LSTNet to
extract short-term local dependency patterns. To model
long-term patterns, LSTNet additionally exploits the
traditional autoregressive model.

• N-Beats[22]: N-Beats is the state-of-the-art method
for univariate time series forecasting problems. It is a
deep neural architecture based on backward and forward
residual links and a very deep stack of fully-connected

Chenyu Hou et al.: A Deep-Learning Prediction Modelfor Imbalanced Time Series Data Forecasting 273

layers.
Model details: We use min-max normalization to

normalize the target values into [0, 1], and use one­
hot encoding to transform date-time features. In the
evaluation, we rescale the predicted values back to
normal values. The learning rate is 0.001, and the
batch size is 1024. We leverage Adam[23] for stochastic
gradient descent. We adopt the early stop strategy where
training will be terminated when the validation loss
does not decrease during consecutive 50 epochs. We
conduct a grid search over all tuneable hyperparameters
for the STY model. In specific, the stack number of
encoders is chosen from {I, 2, 3}, the number of heads
h is chosen from {2, 4, 6, 8}, the upsampling factor
de is chosen from {2, 3, ... , 8}, and the hidden size of
self-attention dh is chosen from {25 , 26 , ... , 2ID }. For
other baselines, we select the best setting by tuning
their hidden size ranging from {25 , 26 , ... , 2ID }. The
experiment platform is equipped with Intel Core i9­
9940X CPU, 128 GB RAM, and Nvidia RTX 2080Ti
GPU. We implement all neural network models with
Pytorch in Ubuntu.

4.2 Results on CallTraffic

4.2.1 Model comparison
In this section, we compare the performance of
our model against baselines. To compare our model
comprehensively, we conduct experiments at different
forecasting horizons, namely, HI == 14, H 2 == 42, and
H 3 == 98. These three horizons represent "short",
"middle", and "long" forecasting lengths, which can
reflect the performance of our model in different
scenarios.

Table 1 reports the overall MAP and MAPE of
different methods in the three cities. We have the
following observation: (1) When the forecasting horizon
is 14 or 42, the STY model outperforms all baselines
in the three cities. Compared with the runner-up
method, STY achieves 5.02% and 7.21 % improvement
and in terms of MAE when H == 14 and H == 42,
respectively. This result indicates that our proposed
model is good at dealing with imbalanced time series
for short or middle forecasting lengths. (2) When the
forecasting length is 98, LSTNet achieves the best
performance in HZ and TZ while STY outperforms other
methods in LS. Compared with the runner-up method,
their improvements are 0.09%, 3.55%, and 2.93%. This
result implies that LSTNet and STY are competitive for
long-term forecasting. (3) LSTM performs poorly in

Table 1 Overall MAE and MAPE of different methods.

C· M h d H=14 H=42 H=98Ity et 0
MAE MAPE MAE MAPE MAE MAPE

ARIMA 125.21 0.11 145.60 0.13 193.45 0.19
LSTM 309.47 0.35 322.59 0.36 346.80 0.39

HZ Seq2Seq 110.69 0.10 153.42 0.14 206.46 0.19
LSTNet 121.13 0.10 148.69 0.13 166.48 0.15
NBeat 118.65 0.10 150.22 0.14 179.22 0.16
STY 104.81 0.09 131.53 0.12 166.63 0.15

ARIMA 121.66 0.11 145.99 0.13 187.55 0.18
LSTM 284.06 0.30 292.83 0.31 321.43 0.34

TZ Seq2Seq 105.89 0.09 132.02 0.11 148.46 0.13
LSTNet 104.64 0.09 126.50 0.11 131.48 0.11
NBeat 102.88 0.08 122.70 0.10 161.55 0.14
STY 99.47 0.08 111.50 0.09 136.32 0.11

ARIMA 100.90 0.11 122.27 0.14 158.94 0.19
LSTM 229.29 0.31 242.09 0.33 261.26 0.36

LS Seq2Seq 90.18 0.09 119.80 0.13 205.06 0.23
LSTNet 93.99 0.10 93.98 0.10 116.69 0.13
NBeat 83.35 0.09 98.39 0.11 123.09 0.14
STY 77.98 0.08 91.32 0.09 113.26 0.12

all scenarios. By diving into the training process, we
find that the training is stopped immediately because of
the early stop strategy. Thus, LSTM cannot converge,
resulting in poor performance. This phenomenon
demonstrates that LSTM is unsuitable for solving multi­
step forecasting problems.

To study the performance of STY on different types
of periods, we compare the MAE and MAPE on normal
days and holidays. The results are shown in Table 2. STY
achieves the best performance on holidays regardless of
the forecasting length, indicating that STY has a great
advantage in the prediction for holidays. In detail, STY
outperforms the runner-up method by an average of
15.50%, 19.18%, and 21.25% in terms of MAE in the
three cities.

For normal days, STY is not dominant in all cases.
STY achieves the best performance in terms of MAE~

only when the forecasting horizon is 14 or 42. In addition,
the improvements are not as big as those of holidays (by
an average of 7.07%, 4.97%, and 2.28% in the three
cities). When the horizon is 98, LSTNet outperforms
STY by 5.07%, 8.95%, and 1.78% in the three cities,
explaining why the overall accuracy of LSTNet is higher
than that of STY when H == 98 in HZ and TZ.

The accuracy of normal days and that of holidays
significantly differ for each model, which also
agrees with our empirical studies that models suffer
from imbalanced data. However, the gap could be

274 Big Data Mining and Analytics, December 2021,4(4): 266-278

Table 2 MAE and MAPE on normal days and holidays.
H == 14 H == 42 H == 98

City Method
MAE~ MAPE~ MAE_H MAPE_H MAE_N MAPE_N MAE_H MAPE_H MAE_N MAPE~ MAE_H MAPE_H

ARIMA 116.29 0.10 243.74 0.26 139.24 0.12 270.90 0.29 175.30 0.17 432.92 0.51
LSTM 297.25 0.33 471.99 0.59 307.60 0.34 521.27 0.65 329.97 0.37 568.85 0.71

HZ
Seq2Seq 103.62 0.09 204.65 0.21 138.13 0.12 356.15 0.38 186.98 0.17 463.31 0.50
LSTNet 111.99 0.09 242.74 0.25 135.14 0.12 328.35 0.35 152.81 0.13 346.82 0.37
NBeat 111.20 0.09 217.75 0.23 136.80 0.12 328.20 0.36 164.52 0.15 373.17 0.41
STY 98.73 0.08 185.76 0.19 122.41 0.11 252.49 0.27 160.98 0.14 241.05 0.25

ARIMA 115.24 0.10 207.05 0.19 142.63 0.13 190.56 0.19 176.59 0.16 332.09 0.35
LSTM 275.62 0.29 396.20 0.44 282.74 0.30 426.68 0.48 310.11 0.33 470.81 0.53

Seq2Seq 101.19 0.08 168.38 0.15 126.10 0.10 210.63 0.19 138.56 0.12 279.04 0.27
TZ

LSTNet 100.73 0.08 156.59 0.14 117.73 0.10 242.76 0.23 124.06 0.10 229.41 0.21
NBeat 98.63 0.08 159.40 0.14 115.43 0.10 219.16 0.21 152.60 0.13 279.58 0.27
STY 95.72 0.08 149.29 0.13 107.37 0.09 166.30 0.15 136.24 0.11 137.33 0.12

ARIMA 97.96 0.11 139.87 0.17 120.65 0.13 143.70 0.19 151.71 0.18 254.33 0.34
LSTM 224.61 0.30 291.57 0.42 235.78 0.32 325.88 0.46 254.05 0.35 356.33 0.50

LS
Seq2Seq 87.26 0.09 128.94 0.15 112.36 0.12 218.41 0.26 195.79 0.21 327.27 0.40
LSTNet 89.66 0.09 151.60 0.17 89.43 0.10 154.33 0.18 109.42 0.12 212.61 0.26
NBeat 80.15 0.08 125.90 0.15 93.55 0.10 162.55 0.20 118.99 0.13 177.16 0.21
STY 76.57 0.08 96.75 0.11 89.35 0.09 117.40 0.14 111.41 0.12 137.67 0.17

narrowed using the STY model. This phenomenon also
demonstrates that STY can effectively alleviate the
problem that the forecasting results of holidays are
biased toward the distribution of normal days.
4.2.2 Training strategy
In this section, we conduct experiments to demonstrate
the effect of the proposed two-stage strategy for STY. We
compare the performance of STY with the variant STV­
E2E, which is trained following the end-to-end manner.
The results of MAE of three aspects can be found in
Fig. 6.

STY outperforms STV-E2E from three perspectives,
indicating that the proposed two-stage training strategy
can improve the performance of STY significantly.
Compared with that of STV-E2E, the MAE of STY
decreases by an average of 19.5%, 19.8%, and 16.5%
from three perspectives. The improvement of MAE--N is
greater than that of MAE_H. This result implies that STV­
E2E can improve the prediction accuracy of holidays to
a certain extent, but can reduce the prediction accuracy
of normal days.

We analyze the traInIng process to study the
importance of fixed weights of different modules in
STY. We remove different components of STY from
the weight sharing step to study their performance. The
results of H == 42 are shown in Table 3. All of the
variants perform worse than STY in the three cities,
indicating that removing any module from the weight
sharing step leads to performance degradation.
4.2.3 Key components
In this section, we study the effects of each component
of our method. To this end, we compare STY with its
different variants:

• STV-NConv: The 1x 1 convolution layer is
excluded from our model, which can help reveal the
significance of the convolution layer.

• STV-NTV: We simply remove the time-varying
optimization module from our model to study the effect
of this module.

• STY-Dot: We replace the attention mechanism
with dot product attention to demonstrate the effect of

Table 3 Inside the two-stage training.

Fig. 6 Performance of different training mechanisms.
0.09

LS
MAE MAPE
223.07 0.23
99.49 0.11
105.22 0.11

Removed HZ TZ
module MAE MAPE MAE MAPE
Conv 253.76 0.21 113.15 0.09

Encoder 139.22 0.13 128.41 0.11
Decoder 133.72 0.12 138.05 0.12

~~:~~~e 131.53 0.12 111.50 0.09 91.32
(c) MAE on holidays(b) MAE on normal days(a) Overall MAE

200 200 300

150 150

w z
I

I 200

~100 ~ 100 w
I

«
~ ~ 100

50 50

Chenyu Hou et al.: A Deep-Learning Prediction Modelfor Imbalanced Time Series Data Forecasting 275

the "reverse distance attention" mechanism.
Take the forecasting horizon H == 98 as an example;

we study the MAE of these variants in the three cities.
The MAPE shows the same trend as the MAE. Thus, we
omit the analysis of MAPE.

txt convolution layer. Figure 7 plots the MAE of
STY and STV-NConv. STY outperforms STV-NConv by
6.9%,7.0%, and 7.5% in terms of MAE, MAE~, and
MAE_H, respectively. This result reveals that the 1xI
convolution layer can improve the prediction accuracy
ofSTV.

Time-varying optimization module. Figure 8 plots
the MAE of STY and STV-NTV. First, MAE decreases
in the three cities when the model is equipped with the
time-varying optimization module. In specific, MAE
drops by 4.0%, 1.2%, and 21.9% from three aspects.
This result indicates that the time-varying optimization
module can improve the forecasting accuracy of STY.
Second, compared with MAE on normal days, the
MAE on holidays decreases more significantly. This
result demonstrates that the time-varying optimization
module can optimize the forecasting results of holidays
effectively. Without the time-varying optimization
module, the prediction results of the model will be
biased toward the data distribution of normal days.
Therefore, the prediction results of the holidays can still
be optimized.

Reverse distance attention. As shown in Fig. 9, STY
outperforms STY-Dot in terms of MAE, MAE~, and

120

w so
«
~

40

DSTV
.STV-NConv

120 ~

Z
Wi SO
«
~

40

DSTV
• STV-NConv 250

I 200

wl 150«
~ 100

50

DSTV
.STV-NConv

MAE_H (improve by 5.6%, 4.0%, and 17.1% on average,
respectively). The improvement of STY demonstrates
the effectiveness of the proposed attention mechanism.
4.2.4 Training size
In this section, we study the effectiveness of training
data volume by selecting the latest training data from
the original training set according to different ratios.
Figure 10 plots the MAE results for H == 42. As the
training data volume increases, the performance of
STY initially improves and then fluctuates when the
data volume exceeds 40%. This observation reveals
that increasing time series data can properly improve
prediction accuracy, but excessive outdated data may
degrade the performance of the model. Excessive out­
date historical data may affect the model to learn recent
data distribution and thus decreasing the performance
of the model. Increasing training data volume exerts
minimal influence on the prediction accuracy of
normal days while improves the accuracy of holidays
significantly from 20% to 40%. This result can be
ascribed to the fact that the historical data of holidays
only account for a small amount of the whole data.
Therefore, increasing training data volume can add more
holiday data to learn holiday patterns. However, data
of normal days are sufficient for model training even if
only 20% of historical data are used.
4.2.5 Training efficiency
Figure 11 presents the training efficiency of different
models, where bars represent training time and lines
represent numbers of model parameters. Although STY
contains many parameters, it is easy to train. The training
time is about 200 s, which is acceptable in real-life
deployments.

Fig. 7 MAE comparison on the convolution layer.

200~----

(a) Overall MAE

~I:::~ ~
~300~

100~=====-J
20 40 60 SO 100

Train size(%)

(c) MAE on holidays

140

20 40 60 SO 100
Train size(%)

(b) MAE on normal days

------------zI100
W 1-------
~ I=~~60 - TZ

(a) Overall MAE

140,"--

W100~«
~ - HZ

- LS
60 - TZ

20 40 60 SO 100
Train size(%)

Fig. 10 MAE comparison of different training data volumes.

DSTV
• STV-NTV300

D STV
• STV-NTV

200----~

150

(b) MAE on normal days (c) MAE on holidays

(b) MAE on normal days (c) MAE on holidays

D STV
• STV-NTV

(a) Overall MAE

w
~100

50

150

Fig.8 MAE comparison of STV and STV-NT\:
• STV
D Seq2Seq
D LSTM
D LSTNet
• Nbeat

TZHZ

~-------------;::::=====:::;l9.0 __a
7.5~

~
6.0.$

a.>
E

4.5 ~L-- I ctl

c..
3.0 0
1.5~

E
::J

~~t::::!::t::b~---.J __~~ __L-..L-----=-,""""", "------' 0 Z

1000

~ 800
U5
8 600
a.>

~ 400

200
HZ TZ LS

(b) MAE on normal days (c) MAE on holidays

LS

150
D STV 300

D STVD STV
• STV-Dot • STV-Dot• STV-Dot

~1100
I 200

« W
I

~ «
50 ~100

HZ TZ

(a) Overall MAE

100
w«
~

50

150~-----

Fig. 9 MAE comparison of STV and STV-Dot. Fig. 11 Training efficiency of different models.

276

4.3 Results on ElecCONS

Table 4 shows model performances using the electricity
consumption dataset. In this experiment, we set the
forecasting horizon to 24. One important trait of the
ElecCONS dataset is that the electricity consumption in
the early morning of holidays is similar to that on normal
days, which results in less difference between holidays
and normal days versus that in the call traffic prediction
task. Nonetheless, STY outperforms the best baseline
by 6.99%,6.91 %, and 5.74% in terms of MAE, MAE~,

and MAE_H, respectively. Thus, STY not only works
on the large-difference scenario, but is also adaptable
to time series whose difference between holidays and
normal days is smaller. However, the improvement of the
holidays only slightly influences the overall performance,
because American holidays only account for a very small
portion of a year.

5 Related Work

In this section, we first investigate the related work about
univariant time series forecasting problems from the
following three groups: including statistical methods,
machine learning methods, and neural network based
methods. Then, because our model alleviates the impact
of imbalanced data, we discuss some works in the field
of imbalanced learning.

5.1 Univariant time series forecasting

Statistical methods establish statistical models according
to the historical data, where the most famous method
is ARIMA. Bianchi et al. [24] used ARIMA models
with intervention analysis to forecast telemarketing call
arrivals. Contreras et al. [25] used ARIMA to predict the
next-day electricity price. However, ARIMA performs
poorly when the forecasting time bucket becomes
10ng[26].

Many machine learning models are applied by treating
time series forecasting problems as regression problems
to find an appropriate mapping between input features
and prediction values. Lu et al.[27] proposed to use the

Table 4 Model comparison on the ElecCONS dataset.
Method MAE MAPE MAE--N MAPE--N MAE_H MAPE_H
ARIMA 570.29 0.05 564.95 0.05 675.91 0.07
LSTM 1281.17 0.12 1273.13 0.12 1614.56 0.13

Seq2Seq 527.10 0.05 522.29 0.05 726.28 0.06
LSTNet 499.01 0.05 496.03 0.05 622.51 0.05
NBeat 515.10 0.05 513.14 0.05 596.65 0.05
STV 464.09 0.04 461.72 0.04 562.40 0.04

Big Data Mining and Analytics, December 2021,4(4): 266-278

support vector machine to forecast financial time series.
Dudek[7] proposed to use random forests to predict the
short-term electricity load.

Recently, neural network based methods have been
developed to solve this problem. Kong et al. [28] used an
LSTM network to predict residential load. Rangapuram
et al.[29] proposed a deep-state space model for time
series prediction. Yi et al. [3] proposed a distributed fusion
network to predict air quality.

Neither of these works considers that the time series
patterns are different in different periods, which may
influence their prediction accuracy. In our work, we
divide the historical data into normal and special
periods and learn them, thereby improving the prediction
accuracy significantly.

5.2 Imbalanced learning

Existing imbalanced learning methods can be divided
into three groups: sampling-based methods, cost­
sensitive-based methods, and neural network based
methods.

A conventional way to solve the imbalanced problem
is through resampling. Resampling-based methods
balance the data by increasing or decreasing the number
of labels in the class. In specific, Chawla et al. [11]
proposed the synthetic minority oversampling technique
to increase the data of the class containing a small
number of labels. Liu et al. [10] proposed BalanceCascade
to under-sample the data of the class, which prevents
information loss due to random undersampling methods.
Batista et al. [30] proposed an oversampling method
combined with data cleaning techniques to overcome
category reordering.

For the second group, cost-sensitive-based methods
aim to adjust the weights of samples in different classes.
In this way, existing machine learning algorithms can
still work well even during data imbalance. Sun et
al.[12] proposed three cost-sensitive boosting methods
for imbalanced learning, which introduce cost items into
the weight updating strategy of Adaboost. Elkan et al. [31]
used the Laplace smoothing method of the probability
estimate and the Laplace pruning technique to improve
the cost insensitivity in the decision tree.

For the last group, Wang et al. [32] used the mean false
error loss function as they experimented with classifying
imbalanced data with deep MLPs. Lin et al.[33] proposed
a neural network that can overcome the extreme class
imbalance in object detection problems. Wang et al. [34]
used a cost-sensitive deep neural network method to

Chenyu Hou et al.: A Deep-Learning Prediction Modelfor Imbalanced Time Series Data Forecasting 277

detect hospital readmissions.
However, all of the above methods aim to solve the

imbalanced data in classification problems. Our work
focuses on the imbalanced data in the regression problem.
The closest work to us is the Ref. [14], which studied
the application of resampling strategies with imbalanced
time series data. However, they only focused on rare
occasions. They claimed that these rare occasions are
important to end-users. Different from it, our work
focused on the imbalanced data in different types of
periods rather than rare values.

6 Conclusion

We aim to solve the time series forecasting problem
with the consideration of data imbalance between special
and normal periods. To this end, we propose a novel
STY model. First, we leverage the encoder-decoder
module to mine the common patterns of time series
between different periods. To address the imbalanced
problem, we propose a time-varying module that takes
the temporal features of forecasting timestamps as inputs
and outputs scale factors to optimize the decoder results.
Finally, we use two datasets to verify the effectiveness of
our proposed method. Our approach advances baselines
by an average of 18.64% and 20.87% on the CallTraffic
dataset and 5.74% and 20% on the ElecCONS dataset
in terms of MAE and MAPE for special periods (i.e.,
holidays). In the future, we will explore improving the
model structure and accuracy for long-term forecasting.

Acknowledgment

This research was partially sponsored by the National
Key R&D Program of China (No. 2018YFB1402800)
and the Fundamental Research Funds for the Provincial
Universities of Zhejiang (No. RF-A2020007).

References

[1] B. Cao, 1. W. Wu, L. C. Cao, Y. S. Xu, and 1. Fan, Long-term
and multi-step ahead call traffic forecasting with temporal
features mining, Mobile Netw. Appl., vol. 25, no. 2, pp.
701-712,2020.

[2] X. R. Shao, C. S. Kim, and P. Sontakke, Accurate
deep model for electricity consumption forecasting using
multi-channel and multi-scale feature fusion CNN-LSTM,
Energies, voL 13, no. 8, p. 1881,2020.

[3] X. W. Yi, J. B. Zhang, Z. Y. Wang, T. R. Li, and Y. Zheng,
Deep distributed fusion network for air quality prediction, in
Proc. 24th ACM SIGKDD Int. Con! Knowledge Discovery
& Data Mining, London, UK, 2018, pp. 965-973.

[4] S. L. Ho and M. Xie, The use of ARIMA models for
reliability forecasting and analysis, Computers & Industrial
Engineering, voL 35, nos. 1&2, pp. 213-216, 1998.

[5] C. H. Liu, S. C. Hoi, P. L. Zhao, and J. L. Sun, Online
ARIMA algorithms for time series prediction, in Proc. 30t h

AAAI Con! Artificial Intelligence, Phoenix, AR, USA, 2016,
pp. 1867-1873.

[6] G. E. P. Box and D. A. Pierce, Distribution of
residual autocorrelations in autoregressive-integrated
moving average time series models, J. Am. Stat. Assoc.,
voL 65, no. 332,pp. 1509-1526, 1970.

[7] G. Dudek, Short-term load forecasting using random forests,
in Intelligent Systems'2014, D. Filev, J. Jablkowski, J.
Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski, V.
Sgurev, E. Sotirova, P. Szynkarczyk, and S. Zadrozny, eds.
Cham, Germany: Springer, 2015, pp. 821-828.

[8] N. I. Sapankevych and R. Sankar, Time series prediction
using support vector machines: A survey, IEEE Comput.
Intell. Mag., voL 4, no. 2, pp. 24-38, 2009.

[9] B. Krawczyk, Learning from imbalanced data: Open
challenges and future directions, Prog. Artif. Intell., vol.
5,no.4,pp.221-232,2016.

[10] X. Y. Liu, J. X. Wu, and Z. H. Zhou, Exploratory
undersampling for class-imbalance learning, IEEE Trans.
Syst., Man, Cybern., Part B (Cybern.), vol. 39, no. 2, pp.
539-550, 2009.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, SMOTE: Synthetic minority over-sampling
technique, J. Artif. Intell. Res., vol. 16, pp. 321-357,2002.

[12] Y. M. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang,
Cost-sensitive boosting for classification of imbalanced data,
Pattern Recognit., vol. 40, no. 12, pp. 3358-3378, 2007.

[13] S. H. Khan, M. Hayat, F. Sohel, and R. Togneri. Cost-
sensitive learning of deep feature representations from
imbalanced data, IEEE Transactions on Neural Networks
and Learning Systems, voL 29, no. 8, pp. 3573-3587, 2017.

[14] N. Moniz, P. Branco, and L. Torgo, Resampling strategies
for imbalanced time series forecasting, Int. J. Data Sci.
Anal., vol. 3, no. 3, pp. 161-181,2017.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is
all you need, in Proc. 31st Int. Con! Neural Information
Processing Systems, Long Beach, CA, USA, 2017, pp. 6000­
6010.

[16] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep
residual learning for image recognition, in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 2016, pp. 770-778.

[17] J. L. Ba, 1. R. Kiros, and G. E. Hinton, Layer normalization,
arXiv preprint arXiv: 1607.06450,2016.

[18] V. Nair and G. E. Hinton, Rectified linear units improve
restricted Boltzmann machines, in Proc. 27t h Int. Con!
Machine Learning, Haifa, Israel, 2010, pp. 807-814.

[19] S. Hochreiter and 1. Schmidhuber, Long short-term memory,
Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

[20] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence
learning with neural networks, in Proc. 27t h Int. Con!
Neural Information Processing Systems, Montreal, Canada,
2014,pp.3104-3112.

[21] G. K. Lai, W. C. Chang, Y. M. Yang, and H. X. Liu,
Modeling long- and short-term temporal patterns with deep
neural networks, in Proc. 41 st Int. ACM SIGIR Con!

278

Research & Development in Information Retrieval, Ann
Arbor, MI, USA, 2018, pp. 95-104.

[22] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio,
N-BEATS: Neural basis expansion analysis for interpretable
time series forecasting, arXiv preprint arXiv:1905.10437,
2019.

[23] D. P. Kingma and J. L. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv: 1412.6980,2014.

[24] L. Bianchi, J. Jarrett, and R. C. Hanumara, Improving
forecasting for telemarketing centers by ARIMA modeling
with intervention, Int. J. Forecasting, vol. 14, no. 4, pp.
497-504, 1998.

[25] J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo,
ARIMA models to predict next-day electricity prices, IEEE
Trans. Power Syst., vol. 18, no. 3, pp. 1014-1020,2003.

[26] E. D. Feigelson, G. J. Babu, and G. A. Caceres,
Autoregressive times series methods for time domain
astronomy, Front. Phys., vol. 6, p. 80, 2018.

[27] C. J. Lu, T. S. Lee, and C. C. Chiu, Financial time series
forecasting using independent component analysis and
support vector regression, Decis. Support Syst., vol. 47,
no.2,pp.115-125,2009.

[28] W. C. Kong, Z. Y. Dong, Y. W. Jia, D. J. Hill, Y. Xu, and
Y. Zhang, Short-term residential load forecasting based on
LSTM recurrent neural network, IEEE Trans. Smart

Big Data Mining and Analytics, December 2021,4(4): 266-278

Grid, vol. 10, no. 1, pp. 841-851,2019.
[29] S. S. Rangapuram, M. Seeger, J. Gasthaus, L. Stella, Y. Y.

Wang, and T. Januschowski, Deep state space models for
time series forecasting, in Proc. 32nd Int. Con! Neural
Information Processing Systems, Montreal, Canada, 2018,
pp. 7796-7805.

[30] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard,
A study of the behavior of several methods for balancing
machine learning training data, ACM SIGKDD Explorat.
Newsl., vol. 6, no. 1, pp. 20-29, 2004.

[31] C. Elkan, The foundations of cost-sensitive learning, in
Proc. i7l h Int. Joint Con! Artificial Intelligence, Seattle,
WA, USA, 2001, pp. 973-978.

[32] S. J. Wang, W. Liu, J. Wu, L. B. Cao, Q. X. Meng, and P. J.
Kennedy, Training deep neural networks on imbalanced data
sets, in Proc. Int. Joint Con! Neural Networks, Vancouver,
Canada,2016,pp.4368-4374.

[33] T. Y. Lin, P. Goyal, R. Girshick, K. M. He, and P. Dollar,
Focal loss for dense object detection, in Proc. IEEE Int.
Con! Computer Vision, Venice, Italy, 2017, pp. 2999-3007.

[34] H. S. Wang, Z. C. Cui, Y. X. Chen, M. Avidan, A. B.
Abdallah, and A. Kronzer, Predicting hospital readmission
via cost-sensitive deep learning, IEEE/ACM Trans. Comput.
BioI. Bioinform., vol. 15, no. 6, pp. 1968-1978,2018.

data mining.

Chenyu Hou received the BEng degree
from Zhejiang University of Technology,
Hangzhou, China in 2016. He is now a
PhD student at Zhejiang University of
Technology. He has published many papers
on international journals and conferences,
like TKDE, CIKM, and WWWJ, etc.
His research interests are database and

Jiawei Wu received the BEng degree
from Zhejiang University of Technology,
Hangzhou, China in 2017. He is now
a PhD student at Zhejiang University
of Technology. He has published several
papers on international journals and
conferences, like TOIT, MONET, etc. His
research interest is natural language

at the College of Computer Science and Technology, Zhejiang
University of Technology. He has published more than 30 papers
on many international authoritative journals and conferences,
including TKDE, TSC, and CIKM. His research interests include
data mining and natural language processing.

Jing Fan received the BEng, MEng, and
PhD degrees in computer science from
Zhejiang University, China in 1990, 1993
and 2003, respectively. She is now a
professor at the College of Computer
Science and Technology, Zhejiang
University of Technology, China. She is
a director of China Computer Federation

(CCF). She has published more than 100 papers on many
international journals and conferences, including TSC, TKDE,
and IEEE Virtual Reality. Her current research interests include
service computing, virtual reality, and intelligent interaction.

processing.

Bin Cao received the PhD degree in
computer science from Zhejiang University,
China in 2013. He then worked as a
research associate at Hongkong University
of Science and Technology and Noah's
Ark Lab, Huawei. He joined Zhejiang
University of Technology, Hangzhou, China
in 2014, and is now an associate professor

